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Design of the property transformation in elementary nonlinear
decoupling of multivariable processes

JENS G. BALCHENY

Keywords: Nonlinear control, nonlinear decoupling, multivariable process, property
transformation.

In elementary nonlinear decoupling theory a property space (z) is defined as a
transformation of the state space (x). Elementary nonlinear decoupling has the
purpose of generating the control vector u which drives the system in such a way
that the property vector has a desired rate of change. A method is described in this
paper for the design of this property transformation which makes the nonlinear
decoupling realizable and at the same time makes the system satisfy certain dynamic
specifications.

1. FElementary nonlinear decoupling (END)
The process to be controlled is in general described by a nonlinear model where
x=f(x,u,v) (1)
x state vector (dim x=n)
u control vector (dimu=r)
v disturbance vector (dimv=p)
f(-) vector of nonlinear functions (dim f=mn)

In the following we shall assume for simplicity that the model is linear in u so that (1)
takes the form

x=f(x,v)+ B(x)u @

This simplifies the arguments but the general solution based upon (1) is easily available
(Balchen 1991).

The principle of elementary nonlinear decoupling expresses that we desire to find the
control vector (1) which will drive the process (2) so that some property vector defined
by z=g(x) will attain a specified rate z=2z,.

The clementary solution to this problem is

o) . \"'[. og(-
u=(%8(x}) (zr B fix, a)) @)

provided the inverse ((@g/0x)B(x)) ! exists and the system is stable.
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An alternative approach to nonlinear decoupling is developed on the basis of
differential geometry and often referred to as exact linearization (Isidori et al. 1981,
Isidori 1989). This approach, though more general, yields a result which is hard to
realize in some practical systems because Lie derivatives of high order must be
computed. In implementations it is preferable to integrate rather than differentiate
noise corrupted signals. The major difference between exact linearization and
elementary nonlinear decoupling is that the latter is based on the design of a property
transformation which yields a directly invertible system.

A number of extensions and applications of elementary nonlinear decoupling are
reported in Balchen, Lie and Solberg (1988), Lie and Balchen (1988), Lie and Balchen
(1990) and Balchen (1991). A comprehensive review of literature in the general field of
nonlinear control is given in Henson and Seborg (1991).

In most cases the property transformation will be chosen linear so that

z=Dx 4)

where D is a constant matrix. (3) expresses the necessary conditions for elementary
nonlinear decoupling to exist. As can be seen from (3), the whole state (x) must be
available in order to compute u. A block diagram illustrating the solution of (3) is
shown in Fig. 1.

The new input 2, is seen to drive m independent integrators which can be controlled
by a simple diagonal control matrix (G) towards the setpoints z,,. In case the system is of
the general form (1) the solution will take the form as shown in Fig. 2. In order to arrive
at sufficient conditions for elementary nonlinear decoupling one must consider also
that the final system as shown in Fig. 2

e must be stable and
e must show acceptable behaviour in the original state space (x) under normal
disturbances.
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Figure 1. Block diagram of END solution based on (2).
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Figure 2. Block diagram of extended END solution with control system based on (1).
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Even though the resulting system with nonlinear decoupling with respect to the
property vector (z) with dim z=m<dim u=r has order m the total system is still of
order n=dim x. The apparent reduction in order m <n of the input-output relation is
caused by what in linear systems is known as pole-zero-cancellation.

1.1. SISO example of elementary nonlinear decoupling

A very simple example of a linear SISO system will illustrate this point. Consider
the system on companion form

i=Ax+bu ®)
- 0 | 0 07
0 0 1 0 0
o o o i O
| —a, —a4; —43 ... a, |
z=[d,...d,]x=d"x 6)
The first condition for elementary decoupling of this system is
db+£0

which leads to d,#0. In other words it appears at this point that the coefficients
dy,d,,...d,_, may be given any numerical values as long as d, #0. An easy way to sce
the consequence of this is to determine the transfer function from u to z as

z ds"" '+ ... dys+d
L=t el )
u s"ta,s" " +.a5+a,
As can be seen, the system is of order one. Dividing by s" ! (7) can be written
z dy+d, s7'+.. +d;sTV 1
“(s)= _ d
u(s} s+a,+a, s '+... +a;sT" Y b“-*s+a,, L @

which again shows that the system is of order one.

The property vector defined by (6) can be interpreted as a linear combination of the
process output(x, ) and all its derivatives up to the (n— 1)th. Controlling the quantity x,
alone is thus not possible by elementary nonlinear decoupling,

2. Design of the property space

When the necessary conditions for elementary nonlinear decoupling are satisfied, it
is still of interest to determine ways to specify the property space such that certain goals
are reached.

Considering the nonlinear system of (2) the control vector realizing elementary
nonlinear decoupling will be given by (3) which when applied to (2) yields

x=(f-m(g§ B(x})_ gi-)f(xHB(x)(g—i B(x))_ , )
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A linearized version of (9) is
x=(I—-B(DB) 'D)Ax+ B(DB) '3, (10)
One of the objectives in the design of the property space
z=g(x)=Dx

could be to minimize some measure of the response in the state space for some given
exitation of z,. One such measure may be derived by defining the transfer matrix for (10)
by

x(s)=H (s)2s) (11)
where
H (s)=(sI —(I— B(DB) 'D)A4) 'B(DB) ! (12)
A measure of the response may be
L=max ,6y (jw) (13)

where G,,_is the maximal singular value of H,. This is the H ,, norm. An early account of
this principle is given in Balchen (1958).

The optimal choice of property space then will be found as that which minimizes L
in (13), that is

miny, L=miny,(max, 6y (jo)) (14)

Finding quantitative results based on these principles will be a matter of computer
aided numerical computations for all but the very simplest cases. In doing this the
unknown elements of the function g(-) (or D) should be collected in a vector a« and a
numerical gradient procedure applied to make dL/da=0.

Another way to view the problem is to specify a desirable, but possibly unrealizable
property transformation

72°=D% (15)
and thereafter find the realizable property transformation
z=Dx (16)
which minimizes some measure of the difference, Az =z —z, for example
L=max, Gap (jo) (17
where
AH (jw)=(D—D°)jwl —(I—-B(DB) 'D)4A)"'B(DB)~! (18)

The “optimal’ property space would then be found by

miny, L=miny (max, g (jo)) (19)

By this optimization procedure presumably the best approximation to the desired
property transformation is obtained. Now a feedback system controlling z can be
realized as shown as the inner loop in Fig. 3 with z,, as reference input. This loop is
decoupled and linearized. A new feedback system with z® as the output can now be
established as shown in Fig. 3. This loop is only approximately decoupled and linear,
but due to the optimization procedure described above, the deviation should be small




Elementary nonlinear decoupling 223

2o RS Z4 | Nonlinear Nonlinear
G G decaupling process

- B | x

] lrb

Figure 3. Block diagram of approximately decoupled control system.

and thus the desired performance achieved. A detailed analysis of the errors involved is
both feasible and desirable. _

But the transfer matrix AH,(s) will have specific dynamic properties that are only
functions of the D and D° matrices and not the A matrix because this matrix disappears
in the algebraic manipulations. This does not make sense in physical reality. Hence
in order for the resulting system to make physical sense we must specify something
about the dynamics of AH (s) relative to the dynamics of the original system, say,
d(s)=(sI — A)~! or the eigenvalues of A. A reasonable specification of the dynamics of
AH [(s) is to relate a characterizing parameter to the largest eigenvalue of A. If the
parameter is a frequency it could be

Wag, = kl’lzl maxl

The factor k gives a measure of the bandwidth of the decoupled system relative to the
bandwidth of the original process.

2.1. SISO example of design of dynamics

In the example above with a SISO process of third order the desirable property
transformation is suggested to be

22=d"Tx=[100]x

and the realizable transformation

z=[1d,d;]x
and
AH (s) = Ah(s)=(d™— d°T)sI —(I — b(d"b)~'d)A)~ ' b(d"B) ! (20)
dy+dys Lo~ 1
=1+;2s+113s2= Z'H_Z‘:i;(i)z T okl
Wo Wy

Since this case is scalar

G an(J@)=|Ah(jw)

In Fig. 4 |Ah,(jo)| is shown for different d, and d5. The |Ah,(jw)l,..x Will occur near the
resonance. If, for simplicity the relative damping { is assumed to be {=0-5 we get
w,=w, and dy=d3 and therefore

1+d,s

M= s “
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Figure 4. Frequency response of error function in approximate nonlinear decoupling.

According to the argument above we shall specify

1
— k
dz IAA manl

where we could choose, say, k=10. If 1, ... =10 we thus get d,=10"2? and d;=10"%.
This set of parameters defines the property-space-transformation

zZ= [dldzdajx = [] 10_2 10_4]x
The transfer function for the realizable system is

and the transfer function for the decoupled “desirable’ system
Xy 1 _ 1
s {s)_s(l_l_dzs_l_(dzs)z)_ l+2.05.i+ s \2 (23}
100\ 100

The difference between these two transfer functions is, as decided, only the double pole
at frequency w, = 100 which is 10 times higher than the highest eigenvalue of 4. Had we
chosen k=100 the resulting property transformation would have been

z=[110"310"%]x

In the eqn (3) determining u it is clearly seen what the consequence is of reducing d,. The
‘gain’ of the equation is (d"b) ™! =1/d ;b which for the last case will give 1/d;b=10°
(assuming b=1). With such a high ‘gain’ in the inversion equation saturation will occur.
Hence the factor k must be given a smaller numerical value based on process related
considerations.
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2.2. Example of more complex nonlinear process

To further illustrate the techniques of elementary nonlinear decoupling, a more
complex nonlinear process presented in Kravaris and Soroush (1988) is considered.
The process is described by the nonlinear differential equations

J°Cl = _x3 +x1u1

- 2

x2=x1 _leul

. (29
X3= —XaX; + X4+ (1 4+x)x,u,

Xg=Uy

The desirable, but nonrealisable property to be controlled is

1000 X
0— D% — = 1
2% =DO% [0 | OO]x I:xz] (25)

Inspection of (24) reveals immediately that the state x, can be removed because it can
be controlled directly with a feedback of any bandwidth through the control variable
u,. Thus we can replace

Xa=1U, (26)
and get a reduced system of three differential equations
Xy =—X3+ Xl
5‘2=x%_2x1“1 (27
Xy= —X3X; +ty + {1 +x,)x,u,

Furthermore by inspection we observe that the control variable u, always appears in a
product with the state variable x,. This obviously must lead to a special situation when

. _lr?iroducing the property transformation
1 dy, d
z =Dx=[d21 1‘2 d:] x (28)
based on the reduced state of (27), and the compact form (2)
X=f(x)+ B(x)u (29)
where
— X,
fx=1| xt (30)
—X3Xy
and
Xy 0
B(x)=| -2x;, 0 @31

(T4+x.)x, 1
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we want to compute the expression

X, , 0 -t
(DB(x) ' = ([1 diz ‘“3] 2, 0
dy 1 da A+x)x, , 1

_I:xl(l_mlz+d13(l+xl)) ) dlS]-l

= 32
xyldgy —2+day(14x1) o das 2

1 dz;', B _dli'l :|
X1(dy3—2d33d 3 —dy3dy —2dy3) [_xl(d2.l —2+dy5(1+x,) . x,(1—2dy,+dq5(1+xy))

We also want to compute

1 d,, d %
Df(x)={ 12 13] X2
dyy 1 dys x‘x

— A3

(33)

_ —X3+d x5 —dy3%3%,
| —dyaxs+xi—dasxax,
The algorithm for computing the control vector realizing elementary nonlinear
decoupling, is then given by applying (32) and (33) to
u=(DB(x))~ }(z,— Df (x) (349

As can be seen from the numerator of the first term in the final expression of (32) we may
choose all the elements d,,, dj;, dy3 OF dy3, da,, da3 €qual to zero without (DB)
becoming singular. Thus as a very simple illustrative example let d, , =d,,; =d,3=0and
d,3#0. Then we get from (34)

j
Uy % (Zar +x3)

2 1 2 1
uy=-——(14x) s+ 2+ ——l)x ——x2 K]
2 (d23 ( ) d1 d23 d2 (d23 3 d23 1 5)
which when applied to (27) yields
J"1=Z.{|n
J'Cz=2'.fz—‘3'233"53 (36}

. 1. .
X3=—[2Z41 +Z42+2x3—x7]
dys

This illustrates that we have achieved approximate decoupling because
Xy =Zg

37

X~ Zgp

3. Applications

Elementary nonlinear decoupling is a model based technique particularly effective
for the design of control laws for highly nonlinear processes. Such processes are known
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to occur frequently in reactor technology and separation technology in the chemical
industry, as well as in kinematic-dynamic systems of robotics and wvehicles. An
introductory study of the application of elementary nonlinear decoupling to compo-
sition control of a distillation column has given promising results (Skarstein 1992).

4. Conclusion

A systematic procedure is presented for the design of the property space for
clementary nonlinear decoupling. The procedure leads to a decoupling strategy which
is both theoretically and physically appealing.
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