MODELING, IDENTIFICATION AND CONTROL, 1993, voL. 14, no. 4, 193-218
doi:10.4173/mic.1993.4.2

ALSPEN—A mathematical model for thermal
stresses in direct chill casting of aluminium billets

HALLVARD G. FIZRYt and ASBJORN MO}
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This paper presents the mathematical model ALSPEN, in which the thermally
induced strains and stresses which develop during direct chill (DC) semicontinuous
casting of aluminium billets are calculated by a finite-element method. The metal is
assumed to be an isotropic elastic-viscoplastic material with strongly temperature-
dependent properties. In the material description, the viscoplastic strain {s treated in
a ‘unified’ manner, in which low-temperature (approximately) time-independent
plasticity and creep at high temperatures occur as special cases. Furthermore, in the
numerical time stepping procedure, all of these plastic material properties which are
present simultaneously in the solution domain as a result of the large temperature
differences, are treated in a similar way. To demonstrate some of the capabilities of
ALSPEN, we have modeled the casting of an AIMgSi alloy, AA6063. The material
properties of this alloy have been studied in parallel with the development of the
mathematical model.

1. Introduction

Direct chill (DC) semicontinuous casting of axisymmetric billets is one of the most
important processes in the production of aluminium. A major problem, however, is the
formation of residual stresses which can cause cold cracking. Furthermore, thermally
induced stresses and strains can lead to defects during casting, and especially close to
the liquid zone, this may result in hot tearing.

The purpose of this paper is to present the mathematical and numerical model
ALSPEN. In this model, the stresses and strains which develop during casting are
calculated in order to predict the optimal process parameters and thereby avoid defects
in the ingot.

In parallel with the development of ALSPEN, the viscoplastic material properties
of the AlMgSi alloy AA6063 have been studied in Nedreberg (1990)§ and these
properties are incorporated in the present version of ALSPEN.

A successful solution of the residual stress problem depends upon a correct solution
of the thermal problem. For the present study, the thermal problem has been solved by
the temperature model ALSIM-2 in which the heat transfer during casting is simulated.
This model is described in Madsen and Fladmark (1973) and verified in Madsen (1979),
Fossheim and Madsen (1979), Vorren and Brusethaug (1987), Jensen (1980), Jensen and
Schneider (1990).

Several models for simulating thermal stresses in continuous casting have been
reported, and two-dimensional (2-D) models where either plane stress or plane strain is
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assumed are presented in Kristiansson (1982), Williams, Lewis and Morgen (1979),
Rammerstorfer, Jaquemar, Fisher and Wiesinger (1979).

The case of axisymmetric stress modeling of DC cast aluminium is studied in
Moriceau (1975), Mathew and Brody (1976, 1979). The important rate dependence of
the constitutive equations, however, is not taken into account in Mathew (1979). In
Mathew (1976, 1979), on the other hand, constitutive equations for both time-
independent plastic strain and creep are implemented, but the papers do not give a
detailed study of the material behaviour.

Other relevant papers to the present problems are Smelser and Richmond (1988),
Thomas, Samarasekera and Brimacombe (1987). The solidification of a cylindrical
casting is studied in Smelser and Richmond (1988). Here, the thermal and stress
problems are solved, and the viscoplastic material model with one internal variable,
given in Sample and Lalli (1987), is used in the stress problem. Thomas et al. 1987),
describes a mathematical model which calculates the thermal stresses generated in an
ingot during solidification, and a rather general form of the constitutive equations,
including a ‘structure parameter’, is discussed. In the calculations, however, the
viscoplastic part of the strain is described only by a creep formula.

In the present study, we have treated the problem in a transient manner, leading to a
continually increasing solution domain consisting of the solid part of the billet. In the
finite-element solution, we must, at certain time steps, incorporate new elements in the
solution domain, and it turns out that an initial component of the strain field must be
added to each new element in order to ensure that the displacement and stress fields
shall not be disturbed by its incorporation. It should be noted that this initial strain
component is significant for the quantitative results.

In our material description, the viscoplastic strain has been treated in a ‘unified’
manner as one quantity, and our theory does not require a yield criterion or loading
and unloading conditions. For the AIMgSi alloy AA6063, we have found explicit
mathematical formulae for the relation between effective flow stress, temperature, and
effective viscoplastic strain rate. In this relation, we have also included a hardening
parameter by which the strain hardening in the metal is quantified.

Section 2 of the present paper concerns the formulation of the mathematical model,
and in Section 3, we present the numerical solution. Results obtained by ALSPEN are
discussed in Section 4.

2. Model formulation

Because of the axisymmetric form of the billet, the mathematical problem reduces
to two dimensions, and we denote the radial and axial coordinates by r and z,
respectively. The region, Q, in which the problem is to be solved is shown in Fig. 1,
together with the frame of reference.

The stress distribution in the solid part of the billet is governed by Cauchy’s
equations, which will be solved by a finite-element technique. As is common in finite-
element analysis, we therefore start from the statement of virtual work

I oe* o dQ)— J. Su* pgdQ— f Su*-tdl'=0 1)
o o r

Here, the superscript “* denotes the transpose of a vector (or matrix), g is the
acceleration of gravity, p is the density, and tis the force per unit length acting on the
boundary I'. Furthermore, du and 8¢ denote virtual variations of displacement u and
associated strain vector &, respectively. Expressed by its radial and axial components u,
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Figure 1. Solution domain and finite-element mesh.

and u,, the displacement field is given by

| ulr,2)
u(r,2)= [uz(r, z @
and the relation between u and & can be written as
e=B-u 3)
where
é
o 0
1
- 0
r
Bij
B= 0 P (4)
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Finally, the associated stress vector, g, and the associated strain vector, &, are given by
Gr
Gy

o=| o, (5
Trz

Tar

and

~
[
)

z (6)

The subscripts r, and 6, and z denote the radial, circumferential, and axial directions,
respectively, and the shear strain and shear stress have subscripts rz and zr.

2A) Boundary conditions

As indicated in Fig. 1, the boundary T is subdivided according to the different
physical conditions applying. Due to the axial symmetry, the radial displacement and
the shear stress equal zero on the centreline, I'y.

At the bottom, I',, we have assumed that the billet can move freely in the positive
axial direction and without surface friction in the horizontal direction. The boundary
I, is treated in a similar manner. Here, the billet can move freely in the negative radial
direction, and there is no friction in the axial direction. Furthermore, a free surface
condition is implemented at I';.

The boundary I, is defined by the isotherm for temperature, T,. The term T, is the
so-called coherency temperature, being defined as the temperature above which the
alloy is treated like a liquid and below which it is treated like a solid. Since coherence
depends on the skeleton resulting from physical bridging of the dendrites, it is difficult
to specify an exact numerical value of T, for a given alloy. It lies between the liquidus
temperature and the temperature of final solidification, which equals the temperature
of a (meta)stable eutectic. For the AIMgSi alloy AA6063 studied in the present paper, T,
is given the value 913K (=640°C). Above s, the liquid melt acts with hydrostatic
pressure, and this boundary will be more thoroughly discussed in Section 3(A).

2(B) Constitutive equations

The metal is described as an isotropic elastic-viscoplastic material in which strain is
generated by thermal contractions. While the material parameters are strongly
dependent on temperature, the temperature increase generated by the viscoplastic
strain is negligible. A coupled thermoviscoplastic description of the material is
therefore not necessary. Furthermore, we have based our mathematical formulation on
the classical small deformation theory (this assumption is justified by the results
obtained by ALSPEN) implying that the total strain may be divided into an elastic, a
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viscoplastic, and a thermal part, which will be denoted here by superscripts e, p,and T,
respectively. Hence,
e=e°4ef el 4 ¢ )

where we also have introduced the so-called initial component, &, of the associated
strain vector mentioned in the Introduction. This part of the strain will be discussed in
Section 3(B).

The thermal contractions can be expressed by an associated thermal strain vector
given by

f ;ﬁ(T)dT ®)

L]
|
|
S e e -

0

where f is the coefficient of thermal expansion. The temperature dependence of f has
been taken from Mondolfo (1976).

The elastic part of the strain is given by Hooke’s generalized law, which here is
written in the form

o=D-& ©)
where

E
T (1+v)(1—2v)
I—v v v 0 0
I1—v v 0 0
0 (10)
0 0 1-2v 0
0 0 0 0 1—2v

The temperature dependence of Young’s modulus, E, and Poisson’s ratio, v, has also
been taken from Mondolfo (1976).

Viscoplastic strain

In material descriptions for problems related to ours, creep and time-independent
plastic flow are very often treated separately by so-called overlay models (Mathew and
Brody 1976). For a basic discussion of overlay models, we refer to Chapter 8.15in Owen
and Hinton (1980). From a mechanical point of view, however, the strain generated by
creep is indistinguishable from that resulting from time-independent plastic flow, and
particularly at higher temperatures, only the combined effect is experimentally
observable (Thomas et al. 1987, Zienkiewitcz and Cormeau (1974)).

In ALSPEN, we have therefore treated the ‘total’ viscoplastic strain as one quantity,
as is usual in ‘modern’ constitutive equations with internal variables. Furthermore, we
have in the present version of the model approximated the material behaviour by
introducing a hardening parameter which accounts for the isotropic strain hardening
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of the material. In this description, kinematic hardening is not taken into account,
partly due to lack of experimental data for the actual alloy (AA6063). (As will be
discussed below, only tensile tests have been carried out in Nedreberg (1990).) It should
also be noted that a large part of the viscoplastic deformation occurs in the ‘high-
temperature’ regime, in which hardening is of minor importance.

Recent applications of internal variable constitutive equations are presented in
Smelser and Richmond (1988), Brown, Kim and Anand (1989), Makin, MacEwen,
Winter, Mason, Kanouff and Fuchs (1988). In Smelser and Richmond (1988), where the
development of thermal stresses in a solidifying cylindrical casting is modeled, the
constitutive equations are valid for commercially pure aluminium. Hot compression
tests of an iron-29; silicon alloy and commercially pure aluminium are simulated in
Brown et al. (1989) and Makin et al. (1988) internal variable constitutive equations for
304 stainless steel, developed by Bammann (1988), are applied in the evaluation of
residual stresses in a travelling gas tungsten arc(GTA) weld. However, any papers using
an internal variable constitutive theory in modeling the solidification of an AIMgSi
alloy are not known to us.

We have assumed the viscoplastic (nonelastic) deformation to be incompressible,
and the viscoplastic strain increment, de?, to be given by Prandtl-Reuss relations for

associated plasticity
_3dgr
2

o (11)

Here, 6’ denotes the associated deviatoric stress vector, and the effective stress, &, and
the effective viscoplastic strain increment, dé¥, are defined by

a=(g o -a’)uz (12)

2 1/2
d§"=(§ds"°ds") (13)

and

respectively.

In ‘classical’ (time-independent) plasticity theory, isotropic strain hardening is
taken into account by an empirical relation between the effective stress, &, and the
integrated effective plastic strain increment, jde". However, in order to incorporate the
dependence on temperature and strain rate in the theory, we have, in accordance with
Persyna (1966), also introduced the effective viscoplastic strain rate, £ = déf/dt, and the
temperature, T, in this relation. Furthermore, we have only taken the strain hardening
into account below some certain temperature Ty, since all the viscoplastic strain may be
assumed to be generated by creep above T, (Nedreberg 1990). Consequently, the
above-mentioned hardening parameter, « = {dy, is defined by

de? when TS T,
da"{O otherwise (14)

Viscoplastic material properties are specified for the AlMgSi alloy AA6063 in
Nedreberg (1990). For representative constant values of T and £°, ¢ here has been
related to the accumulated viscoplastic strain (which is equal to « when T is below T;)in
a series of tensile tests. The main problem in experiments of this kind is to obtain a




Mathematical model for thermal stresses 199

microstructure in the test specimen approximately equivalent to that during casting. In
Nedreberg (1990), this problem is treated as follows. In experiments at temperatures
higher than 300°C, the temperature is first elevated to approximately 550°C and then
lowered as fast as possible to the experimental value. On the other hand, in the ‘low-
temperature experiments’ (7 below 300°C), the temperature is increased as fast as
possible to the experimental temperature.

Assuming é to be dependent on o, £°, and T only, it has been found appropriate to fit
the experimental curves by

6 =£(0, &, T)=c(T)ot+0o) (Ey™D (15)

where ¢, n, and m are nonlinear functions of T. The values of ¢(T) and n(T) decrease
when T increases, and they are fitted by

c(T)=a,(l—b,-tanh (T;d‘)) (16)
n(T)=a,,(l—b,,-tanh(Tc_d“)) (17

respectively. The value of m(T) increases with T and fitted by the 4th degree polynomial
m(T)=Pyo+ P, T+P,T*+ P, T*+P,T* (18)

g is a constant equal to 0-001, and the ‘onset temperature’ T;,, above which the strain
hardening can be neglected, has been determined to be 700 K. The ‘material constants’
in the three equations above are easily determined by least-squares fit to the results
given in Nedreberg (1990), and their numerical values are given in Table 1.

It is well known that the mathematical formula (Eqn. (15)) also applies to
aluminium alloys other than AIMgSi AA6063. For some alloys, however, it may be
appropriate to use other functional forms for ¢(T), n{T), and m(T) than those applied in
the present case, and in Section 3 (C), it will be shown that, in principle, any form of f
which is differentiable with respect to & and £” may be applied in ALSPEN. It should
furthermore be noted that an elaboration of the material description by introducing
more general constitutive equations with several internal variables (see, for example,
Miller (1987) and references cited there) is, mathematically and numerically, relatively
simple in ALSPEN.

In the mathematical description of the viscoplastic strain, the commonly used
concept of ‘static yield stress” Perzyna (1966) has not been introduced. In the material
description, we have only defined a flow strees, &, which depends on the effective
viscoplastic strain rate (and the temperature). This means theoretically that a
viscoplastic strain will be generated for all nonzero values of & at any temperature. At
low temperatures, however, the viscoplastic strain rate will be very close to zero for low

and

Table 1. Viscoplastic material constants.

a,=160[MPa] a,=0-102 Po= 441x107°2

b= 089 b,=1:04 P=—416x10"* [K™!]
c.=108[K] ¢,=135[K] P,= 145x107° [K™ 2]
d.=487[K] d,=533[K] Py=—184x10"° [K 3]

P,= 108x10 '?[K 4]




200 H. G. Fjzr and A. Mo

values of 6, resulting in negligible viscoplastic strain. For a more thorough discussion,
we refer here to a recent paper by Lush et al. (1989).

It should finally be noted that in the mathematical limit of time independency (i..,
m=0 in Eqn. (15)), a yield criterion has to be incorporated into the constitutive
equations. This special case is further discussed in Section 3(C).

3. Numerical solution
3(A) Finite-element formulation

After some elementary algebra, the following expression may be derived from the
equations in Section 2:

j (B-éu)*-D-B*udQ=I (Ou)* - pgdQ
9] 4]

]

+ | (Su)*-tdl’
r

P
+ | B-ou* D-e"dQ
o 02

+ | (B-6u)*-D-¢da
Q

o
+ | (B-du*-D-erdQ (19)
0

Here, only the displacement field, u, and the viscoplastic part of the associated strain
vector, £°, are unknown.

The finite element formulation of Eqn. (19) leads to a set of equations which
formally may be written as

K, U;=F®+F?+FO+F?+F{ (20)

where K;; are the components of the global stiffness matrix containing information
about the elastic properties of the material and U; are the components of the
displacement vector in all of the nodes. The right-hand side of Eqn. (20) is divided into
five terms corresponding to the terms on the right-hand side of Eqn. (19). The first two
terms are given by the acceleration of gravity and the boundary conditions, and the
three succeeding terms account for the thermal, initial, and viscoplastic strains,

respectively.

3(B) The finite-element mesh

In the finite-element discretization, we have applied rectangular bilinear isopara-
metric elements with four nodes, and in the numerical integration of the shape
functions, we have applied only one integration point as in Liu, Ong and Uras (1985),
Liu, Belytschko, Ong and Law (1985). The efficiency compared to accuracy of different
2-D elements is discussed in Crook and Hinton (1987), where it is shown that the four-
node isoparametric bilinear element ‘stabilized” with one-point integration (ie., the
‘E41S’ element being applied in our present paper) is the most efficient.

An objection to using the rectangular shape is that it is impossible to obtain a close
fit between I's, which is the only skew boundary of the solution domain, and the finite-
element mesh. We believe, however, that the error introduced in ALSPEN by this
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inaccurate fit is of the same order of magnitude as the error due to the uncertainty in
specifying the coherence temperature T, (Section 2(A)).

Prior to an ALSPEN modeling of stresses and strains, the complete temperature
history at any position in the billet is calculated by the model ALSIM-2, which stores
the temperature field in prescribed time steps. Between these steps, the temperature
field is approximated by linear interpolation.

The stress and strain calculation starts at time t =t,, which is the first time step for
which the temperature field is calculated. The solution domain is then defined by all
elements where one of the following two conditions is fulfilled: (1) at least three nodes
are below the isotherm for the coherency temperature T, or (2) two nodes are below this
isotherm and the mean temperature of all four nodes is below T,. As time proceeds, new
elements are incorporated at each time step where one of the conditions given above is
fulfilled.

All new elements are given initial values for the viscoplastic, elastic, and thermal
strains in the midpoint due to the one-point integration formula of the shape functions.
The initial value of the viscoplastic strain is equal to zero, and the initial value of the
elastic strain, &, is generated by the hydrostatic pressure acting upon the billet by the
liquid zone of the metal. Since the temperature in the midpoint of new elements is
generally less than the coherency temperature, we also have an initial value of the
thermal strain, &f, which is given by Eqn. (8).

When a new element is incorporated in the mesh, the displacement in the new nodes
is preset to zero, and nodes shared with ‘solid members’ of the mesh are known from the
calculation for the previous time step. Since the initial value of the total strain, &g, is
related to the displacement u (Eqgn. (3), it is, in general, different from the sum of the
(nonzero) initial values of elastic and thermal strains defined above. This problem,
however, is easily solved by the introduction of a so-called initial strain component, as
mentioned in Sections 1 and 2. This strain component is given by

g=g, 85—t (21)
and its numerical value is usually much larger than the values of &} and &f. The initial
strain remains constant during the proceeding time steps of (Eqn. (7)), and we notice
that ¢ in some elements has the same order of magnitude as the total strain at the end of
casting.

Our approach to the problem of an increasing solid region has much in common
with a method used in Kristiansson and Zetterlund (1982), where the liquid zone is also
part of the solution domain. The ‘liquid elements’ here are given zero stiffness, and
nodes surrounding exclusively by such elements have displacements prescribed to zero.
Another method in which all elements in the liquid zone are given a ‘small’ stiffness is
used in Smelser and Richmond (1988), and Richmond gives a general discussion of the
problem in Richmond (1981).

In some cases, it turns out that some regions (in the upper part) of an already
solidified billet may remelt. We have modeled this case by resetting the strains and the
stresses in the actual element(s) to zero when both conditions (1) and (2) mentioned
above are no longer fulfilled and thereafter regarded these regions as part of the liquid
melt.

3(C) Time stepping procedure

As mentioned in Section 2( B), the total viscoplastic strain is traditionally divided
artificially into a time-independent plastic part and time-dependent creep. The
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numerical integration of these two components is based on different formulations of the
constitutive equations, and normally an initial strain method is used to integrate time-
dependent equations. This method, however, can give numerical problems due to the
inherent stiff characteristics when the constitutive equations are integrated in the low
strain sensitivity regime.

In our mathematical model, the constitutive equations are mathematically very
similar to those in Tanaka and Miller (1988), where a function similar to our f is
introduced. In Tanaka and Miller (1988), this function depends on the effective
viscoplastic strain rate and a ‘structure variable’ (playing the same role as our «) which
determines the strain hardening, and a forward gradient operator is applied to
integrate the constitutive equations. Similar noniterative integration methods have
been described in Agyris, Vaz and William (1987, Pierce, Shih and Needleman (1984).

Snyder and Bathe (1981) have developed a ‘unified’ initial strain algorithm in which
time-independent plastic strain and creep are treated in a similar manner. Their
constitutive equations, however, are based on overlay models of the generated
viscoplastic strain. In the present paper, we have developed a related, but more simple,
numerical integration algorithm in which the requirements for a unified formulation of
the constitutive equations are met. This algorithm, which will be discussed in detail
below, has obvious advantages in the DC casting problem, since both time-dependent
and time-independent material properties are present simultaneously in the solution
domain as a result of the large temperature differences.

Our scheme belongs to a class of iterative predictor-corrector algorithms in which
the global system of equations in solved several times on each time step (see, for
example, Tanaka and Miller (1988) and Agyris et al. (1978).). The iterations are
performed on the increments of the viscoplastic strain, which appears on the right-hand
side of the equation system, and the local solution of the constitutive equations is
carried out in an approximative, but noniterative, manner at each iteration step.

We denote all quantities at time t=t, and at time t=t¢, , , by subscripts nand n+ 1,
respectively. Assuming all quantities at ¢, to be known, we must at t,, ; =2,+At,,,
solve Eqn. (20) in order to obtain the unknown displacement field U, . The last term
on the right-hand side of this equation, however, is unknown since it depends on the
unknown viscoplastic strain tensor field, &, ;. The difference between this and the
known viscoplastic strain tensor at ¢, given by

A*‘3-'x’+1="‘£+1_'%': (22)

must simultaneously be calculated from the constitutive equations given in Section 2
with all strain increments approximated by finite differences as in Eqn. (22).

The equations are nonlinear in Az?, , and are solved iteratively. In the (i + 1)-th step
in the iteration scheme between two succeeding time steps, we first calculate the
displacement field (U;_, );+- The known ith value

(3£+ 1)5=¢+(A3:+ 1)& (23)

of the viscoplastic strain field is here inserted in Eqn. (20). When i=0), the increment in
viscoplastic strain at t,,,, is given by

At

(Aep 1)o= A"Ii(mﬂ)mx (24)
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where the subscript ‘max’ indicates that convergence is obtained in the iterations at z,,.
This is equivalent to assuming constant viscoplastic strain rate from one time step to
the next.

Keeping (U;,, )i+, and thereby also the total strain (e, );, |, constant, the next
step is to update the viscoplastic strain increment As?, ; and the elastic strain 2, ,.
From Eqn. (7), we obtain

(3n+1)i+1=(3§+1)i+1+5£+(Aa-‘:+1)1+1+3:‘+1+3i (25)

where all terms but (e] ;. ;); ;. , and (AeZ, ;); ;. , are known. Due to the incompressibility of
the plastic deformation, only the deviatoric part of the elastic strain has to be
considered, and the above equation can be reduced to

(Bf-n)h 1+(A¢’-£+1).'+1=C (26)

where C is known. The deviatoric component of the elastic strain is denoted by the
Superscript **’. According to Prandtl Reuss equations (Eqn. (11)), (AeZ, ,);,; has the
same direction as the associated deviatoric stress vector. From Hooke’s law (Eqns. (9)
and (10)), we then see that (g, ;);,; also has this direction. Hence,

@4 ivs HAS, )y, =C (27)

where the bar denotes effective values and where the first term on the left-hand side can
be related to the effective flow stress by Hooke’s law and the definitions of effective
quantities. When the effective flow stress is interchanged with f (defined by Eqn. (15),
we finally obtain

21+v _
3 E_(j;u'!-l)i+l+(A££+1 i+ 1=C (28)

(fas1)i+1 shall now be related to known quantities and (A&Z,,);,,. Here, we
approximate (f, ; ,);+, by the linear terms of a Taylor series around the value of the ith
iteration between time steps t, and t,,, ,. Hence,

s e 1 = (far 1
i)
+ (b{;)i[(“n+ Di+1— 0 1)

19 -
) @i —E) 09

where we have used backward differences for the effective viscoplastic strain rate

L o (AZ,),
@ed="p, (30
and
Une )i=fToe=0ps 1) =(E11)s T= 144l (31

Mathematical expressions for the derivatives in Eqn. (29) can be found analytically
since f is known, and their subscript i means that the ith values of «, , , and &, , should
be used in Eqn. (31). When T<T,,

Aoy y =0ty —o,= A, (32)
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in accordance with Eqn. (14), and it is easily seen that

(“n+1)i+1—(°¢n+1)i=(A§f}+1)i+l—(A§£+ i (33)

It should, however, be noted that when T > T, Aa,, , , is equal to zero, leading to a zero
second term on the right-hand side of Eqn. (29). The total viscoplastic strain is then
generated by creep.

When the above expression for (f,1);4, is inserted in Eqn. (28), we obtain an
equation which is linear in the unknown (AgX . ;); ;. In some cases when this equation
is solved, it turns out that (AzZ, ,);, , is negative due to the applied effective viscoplastic
strain rate being too large. In these cases, the calculated effective strain increment is
reset to the value calculated in the ith iteration divided by some suitable factor. To
obtain a rapid numerical convergence, we have found it convenient to choose this
factor to be 5.

To obtain the vectoral value of the associated viscoplastic strain increment, which is
the final step in the scheme, we apply the condition that the two terms (g2, ,);,, and
(Agf, 1);4 1 on the left-hand side of Eqn. (26) have the same direction. Hence,

C
(Agly )i 1= C‘(Aé£+ i+t (34)

As a stopping criterion for the iterations, we apply that the difference between two
successive values of the left-hand side of the above equation is smaller than a prescribed
limit everywhere in the billet.

It should be noticed that any function f containing any internal variable (in our
case called ) can, in principle, be applied in the above algorithm provided that its
derivatives with respect to o and £° are known. Furthermore, from a mathematical and
numerical point of view, it is very easy to introduce more than one internal variable into
our theory, leading correspondingly to more first-order terms on the right-hand side of
Eqn. (29).

With our specific choice of f,i.e., Eqns.(15) to(18), the derivative of f with respect to
&” approaches infinity when &° approaches zero, reflecting the inherent stiff character-
istics mentioned above. In our case, this problem is solved by giving each component of
&7 the value 10~ ¢s when an integration point is incorporated into the solution domain.

In the limit of time-independent plasticity, a yield criterion must be incorporated in
the mathematical description, and a minor modification of the numerical scheme is
required. First, the final term on the right-hand side of Eqn. (29) is omitted. Second, the
yield criterion is incorporated by checking whether the effective plastic strain increment
calculated by solving Eqn. (29) is positive or negative. In the former case, we have yield,
and we can continute the calculations immediately. In the latter case, the calculated
effective plastic strain increment must be reset to zero.

We have shown numerically that our scheme can handle a material description
where the plastic strain has a very small time dependency. For example, by letting m in
Eqn. (15) equal 0-01, which approximates to a time-independent case, the scheme may
still be applied without any modifications. Within the numerical accuracy, we then
obtain results equivalent to m equal to zero with the yield criterion implemented. Since
m>0-01 for the AIMgSi alloy AA6063, it has not been necessary to modify the
numerical code in the present study.

Two test cases have been carried out in order to verify the numerical scheme
discussed above. In these cases, we have used ‘simplified” material descriptions to which
other numerical solution algorithms apply. Otherwise, the two cases are similar to the
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stress problem which is defined in Section 2, and approximately 1 minute of the DC
casting process is simulated. Compared to the material data for an aluminium alloy, the
material properties in the ‘simplified’ material descriptions are erroneous. However,
these errors do not have any consequences for the adequacy of the tests, since the same
material description is used both in the test case and in the algorithm that is to be tested.

Implementing the yield criterion in the ALSPEN algorithm, a purely time-
independent case has first been modeled by setting m=0 in Eqgn. (15). The calculated
results are equivalent to those we have obtained by using a numerical solution
algorithm very similar to that described in Chapter 7 in Owen and Hinton (1980).

In the second case, a material model accounting only for creep in the generated
viscoplastic strain was applied (n=0 in Eqn. (15)). To verify the results obtained by the
ALSPEN algorithm, we also solved the equations for ‘pure creep’ using explicit (and, in
our case, very time-consuming!) time integration, as described in Zienkiewitcz and
Cormeau (1974). Also, in this case, a complete agreement was obtained.

4. Results
4(A) Casting conditions and thermal modeling

In the following case study of the DC casting of an AIMgSi alloy 6063, the billet
radius equals 97-5mm, and the casting speed is equal to 1-67 mm/s. Between the billet
and the mould and between the billet and the bottom block, air gaps may form as a
result of thermal contraction, and the results from the thermal modeling are locally
strongly affected by the extent of these air gaps. In the boundary conditions of the
model ALSIM-2, the development of an air gap between the billet and the bottom
block has been taken into account by implementing time-dependent coefficients for
surface heat transfer (Jensen and Schneider 1990). We have furthermore accounted for
an air gap between the billet and the mould when the temperature inside the billet in a
normal distance of 5mm from I, is below 908 K. By this criterion, the thickness of the
solid metal close to I, is assumed to be large enough to withstand the pressure from the
liquid melt, and the air gap is assumed to extend from the bottom of the mould to the
uppermost point along I'y in which the criterion defined above is fulfilled. A more
detailed discussion of this boundary condition can be found in Jensen (1980). In the
present versions of the models, there exists no mathematical backcoupling between
ALSPEN and ALSIM-2 to account for changes in the geometry of the air gaps as
computed by ALSPEN. For a detailed treatment of this problem, we refer to Kelly,
Michalek, O’Connor, Thomas and Dantzig (1988). Except for the influence that
change in the air gaps may have on the heat transfer, the calculation of the thermal
history is independent of the stress calculation (Weckman and Niessen 1984).

The numerical results show a discrepancy between the extent of the air gaps
calculated by ALSPEN and those accounted for in ALSIM-2. As an example, we may
notice that for stationary casting conditions, ALSPEN predicts an air gap along the
entire boundary I',, i.e., between the solid part of the billet and the mould. In the
ALSIM-2 calculation, however, the coefficients for surface heat transfer along I', reflect
an air gap only up to a point approximately 5 mm below the solidification front I's. The
discrepancies in air gaps along I", reflect the mathematical coupling not accounted for
in the present versions of ALSPEN and ALSIM-2. Most likely, however, there is
another and possibly more important source for the inaccurate result in the example
discussed above—namely, the constitutive description. Along the upper part of T',.
there are very high temperatures for which we believe that the material model needs
further development.
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For further details about the thermal modeling prior to the present stress modeling,
we refer to Jensen and Schneider (1990), and we refer to Vorren and Brusethaug (1987)
for a more detailed discussion of the different boundary conditions available in
ALSIM-2. Additional information necessary for the stress modeling, i.e., the boundary
conditions, the mechanical material description, and the coherency temperature, T,
have been given in the preceding sections and in references cited there.

4(B) Numerical accuracy

In the finite-element solution, we have applied 20 elements in the radial direction,
and the element mesh is shown in Fig. 1. The height of the elements and the time step are
chosen to be 3mm and 0-4s, respectively, and the limit defining the convergence
criterion for the iterations on viscoplastic strain increment discussed in Section 3 (C) is
set to 2x 1076,

The discretization gives a numerical accuracy of 2%, or better in all quoted values
for the stresses, displacements, and strains, except for quantities calculated in elements
at the boundary T 5. These quantities, however, are very close to zero, and the errors
have no influence on the accuracy in any other elements. To model 6 min and 20s
casting time, ALSPEN needs approximately 13 hours CPU time ona VAXSTATIONY
3100.

4(C) Stationary casting conditions

After a casting time of 6 to 7 min, approximately stationary casting conditions have
been attained, and the stress modeling can be terminated. At this time, the calculated
quantities in any given position from the mould are (approximately) unchanged as time
proceeds, and the lower part of the billet has reached a temperature below 50°C, i.e.,, the
temperature in the surrounding cooling water.

Figures 2 (a)-(d) show contour maps of the four components of the thermal stresses
under stationary cast conditions. (The corresponding contour map of the temperature
distribution is given in Fig. 4(a).) We note that the residual radial stresses, displayed in
the part of Fig. 2(a) where the temperature is below 50°C, are positive and increase
monotonically with the depth into the billet. The circumferential and the axial
components of the residual stresses, displayed in Figs 2(b) and (c), change sign for r
approximately equal to 40 and 60 mm, respectively. These results are in qualitative
agreement with measurements (Roth, Welsch and Rohrig 1942). Finally, we see that the
water impingement point at I';, 4 mm below the mould, has a significant effect on the
stress distribution, especially the circumferential component.

Contour maps of the viscoplastic part of the strain distribution at stationary casting
conditions are shown in Figs 3 (a)-(d). We see that the radial component is relatively
homogeneous and that the circumferential component changes from tension to
compression with r. It should be noticed that the relatively large compressive value of

+VAXSTATION is a trademark of Digital Equipment Corporation, Maynard, MA.

1 The apparent tensile radial stress at the solidification front I near the centreline is just an
artifact of the resolution of the applied numerical method. Compared to the considerable tensile
radial stress which is developed near the centreline immediately after the metal has solidified, the
small compressive hydrostatic pressure at I's from the above liquid melt is almost negligible.
Also, the apparent nonzero shear stresses along the lower part of the centreline I'; are an artifact
of the resolution of the applied numerical method. In accordance with the symmetry condition,
0, is zero at I',.
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Figure 2. Thermal stresses in MPa at stationary casting conditions. (a) Radial component, (b)
circumferential component, (¢) axial component, and (d) shear component. Solid and
dashed lines correspond to tension and compression respectively.
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the circumferential component near the outside surface of the billet accounts for an
important part of the total radial contraction of the billet during casting. '

The axial component of the viscoplastic strain in the lower part of the billet changes
from compression to tension with . This result may seem unexpected when it is
compared to the axial stress component of the stress tensor, which changes from
tension to compression (Fig. 2 (c)). Concerning the region near the centreline, however,
it is a consequence of a large compressive axial viscoplastic strain rate near the
solidification front I's. As will be further discussed in Section 4(D), almost all of the
viscoplastic strain is generated by creep at high temperatures near the centreline. In
other words, the compressive axial component of the (accumulated) viscoplastic strain
closely to I, in the ‘cold’ part of the billet reflects a relatively large axial component of
the viscoplastic strain rate, when this part of the billet was ‘warm’. Furthermore,
according to Prandtl-Reuss relations (Eqn. (11)), the si gn of the axial viscoplastic strain
rate equals the sign of the deviatoric axial stress component, which is given by

0,=0,—1/3(6,+0,+0,) (35)

and in regions near the corner defined by I's and I',, ¢, is negative since G,RGyg>0,>0
(Fig. 2(c)).

Also, in the region near the outside surface of the billet, the axial components of the
viscoplastic strain and stress have different signs, and this result may be explained by
studying the axial component of the viscoplastic strain rate.

4(D) Development of plastic yield

The development of plastic yield is examined in Figs 4(a)-(e). Here, we have
displayed contour maps for stationary casting conditions of the temperature T, the
effective viscoplastic strain rate &7, the hardening parameter a, the flow stress d,and the
accumulated effective viscoplastic strain [ dé”. We note first that there are both *high-
temperature regions’ (T > T, =700 K =427°C) and ‘low-temperature regions’ (7< Tp)
in the billet where £ is significant (i.c., larger than 107%). Hence, a description of the
plastic material properties is necessary at all temperatures. If, on the other hand, no
yield were present below, for example, T, (which may be regarded as the onset
temperature for strain hardening), the total viscoplastic strain would have been
generated by creep only. In that case, a general viscoplastic description valid in the
entire temperature range would not have been necessary.

The regions in Fig. 4(c) with a nonzero a value reflect the strain ha rdening generated
in the billet. One result of the strain hardening is seen in Fig. 4(d), where the residual
flow stress in some regions is greater than 70 M Pa, which is the (effective) initial yield
stress for aluminium at room temperature. We also note that in the centre of the billet
almost all of the viscoplastic strain is due to creep at high temperatures since « here is
very low. Finally, from Fig. (4(e), it is noted that the maximum effective viscoplastic
strain generated in the billet is approximately 2%,

In our material description, the temperature T, =700 K has been introduced as an
onset temperature for strain hardening, and the effect of strain hardening may therefore
be casily studied by changing the value of T,. In Figs (5(a) through (c), we have
compared the residual stress variations with radii in central regions of the billet at
stationary casting conditions with value obtained by choosing T, equal to 400 K. Tt is
seen that by neglecting the strain hardening in the temperature range between 700 K
and 400K, the maximum value of the residual stresses decreases by 7 to 8%,
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Figure 5. The effect of work hardening on residual stresses. (a) Radial component, (b)
circumferential component, and (c) axial component versus radius for two values of T,

4(E) Air gap formation, billet-bottom block

The development of an air gap between the billet and the bottom block can be
studied in Figs 6 (a)(c), where we have shown the displaced element mesh after 20 and
40 seconds casting time and at the end of casting. In accordance with observations
(Jensen 1989) it is seen that an air gap is formed when the cooling water starts to
impinge on the billet. Also, the curved bottom profile of the finished fillet shown in Fig.
6(c) is observed in castings (Jensen 1989).

In Jensen and Schneider (1990) it is discussed how this air gap has been accounted
for in the thermal modeling on which the present stress modeling is based.

5. Concluding remarks

In the present paper, we have discussed the mathematical model ALSPEN by which
we have calculated the thermally induced strains and stresses in a DC casting of an
AlMgSi alloy 6063. Our numerical results are in agreement with observations of the
casting process, and the calculated residual stresses are in qualititive agreement with
measurements available in the literature.
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At the present stage, it is of prime importance to establish a quantitative verification
of the calculated results by comparing them with measurements. Another important
topic for our research is to apply the numerical results as input to criteria for hot tearing
and cracking.
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