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Direct adaptive generalized predictive control

WEI WANGY and ROLF HENRIKSEN{
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This paper is concerned with the direct approach of adaptive generalized predictive
control. An implicit model with control law parameters is developed. A direct
adaptive generalized predictive control algorithm and an improved variant are
suggested. Global convergence of the algorithms is analysed under some
assumptions.

1. Introduction

Because of their flexibility and successful industrial applications, adaptive control
algorithms based on generalized predictive control (GPC) or long-range predictive
control strategies have recently aroused a great deal of interest in the control
community (Clarke, Mohtadi and Tuffs, 1987, Keyser, D¢ Van de Velde and Dumortier
1988, Kramer and Unbehauen 1988, Ydstie 1984, Lelic and Zarrop 1987). Nevertheless,
to the best of the authors’ knowledge, almost all the adaptive GPC algorithms
appearing in the literature are in the indirect or explicit form, i.. the plant parameters
are estimated on-line and controller calculations are carried out based on the estimated
plant parameters. The only adaptive GPC controller in direct form was reported in
Ortega and Sanchez (1989) by using the assumption that the first N, (N, is the
prediction horizon) coefficients of the plant’s impulse response are known. In addition,
N, parameter estimators were used at each sampling instant. One disadvantage of the
indirect form is that the computational load is quite heavy for on-line applications,
especially in adaptive GPC algorithms because multi-step predictions are involved.

In this paper the direct version of adaptive generalized predictive control is
considered. A direct adaptive GPC algorithm with a priori knowledge of the first N ]
coefficients of the plant step response is suggested, but only one parameter estimator is
used at each sampling instant. An improved variant without a priori knowledge of the
first N, coefficients of the plant step response is also suggested by using a normalization
technique and a parameter estimator with a dead zone.
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2. Generalized Predictive Control
Consider a time-invariant plant described by the following CARIMA model

Az~ Ay(©)=B(z"")Au(t—1) 2y

where A(z~ ') and B(z™") are polynomials in the backward shift operator 2z~ ! of the
form

Az YHY=1+a;z '+...+a,z"
Bz Y=bo+bz ' +...4b,z""

{u(t)} and {y(1)} denote the plant input and output respectively. A=1—z""1 is the
difference operator. Notice that the model (2.1) has the advantage that the controller
will naturally contain an integrator (De Keyser et al. 1988).

The cost function has the following form

J ={j21(y(t +i)—yAt +;’))2+A_21(Au(r+ j— 1))2} 22)

where {y,(t)} is a known reference sequence, N is the prediction horizon whereas 4is a
weighting constant.
Using the following polynomial equations

1=Fz YA HA+279G ") 2.3)
B(z 2WF{z~")=Efz" Y4z i Hz™") (2.4)
where j=1,2,...,N, and
Fj(z'1}=f0+flz‘1-|-...+fj_lz'1“ (2.5)
Gfz “=gh+giz "+...+giz""
Efz “)=eo+ez ' +...+e;_yz 7t (2.6)

H{z Y=hi+hz 4. bz
the plant (2.1) can be written in the form
yit+1)=EAu(t +j— 1)+ Gy(t)+ HAu(t—1) 2.7

where j=1,...,N,.
The equations (2.7) can be written in vector form as

y=Eu+ Gy(t)+HAu(t—1) (2.8)
where
y =Dt +1),...,(t+Ny)]
u'=[Auft),...,Au(t+ N, —1)]
G"™=[G,,...,Gy,] H'=[H,,...,Hy,]
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and where E is the N, x N, lower-triangular matrix

€o
€ [
E=]| ! o (2.9)
eNl_l eN'_z e a eo

Define
Yr=Dne+1),...,y(t+Ny))

From the definition of y,y, and u the cost function (2.2) can be written as
J={ly—y.) (y—y)+ u"u} (2.10)

Substituting (2.8) into (2.10) and minimizing J with respect to u results in the control
law

u=(EE+ i) 'E™[y, — Gy(t)— HAu(t — 1)] (2.11)

In order to avoid singularity of (E"E+ I) and to reduce the computational load for
large output horizons, the technique of imposing a control horizon N,, (N, < N,)is used
here, ie., when j> N, we put Au(t+j)=0. This implies a constant control after time
instant N, The vector u and matrix E in (2.9) then take the forms, respectively,

u' =[Aut),...,Au(t+ N, —1)]

€g -
€4 €o
E=| 212)
eN“_] eﬂ'u_z EERY eo
_'e~|—l eN;—Z A e”|—Nu-

where the dimension of E now becomes N, x N,
Writing the first row of (ETE + 2I) 'ET as

PT:[pl)---t.pN|] (2'13)
we define

Pz )=py,+Pn,—1z '+ pz ! (2.19)

Then, from (2.11) and the receding horizon strategy (Clarke et al. 1987), the control law
is given by

Au(t) =P"[y,— Gy(t) — HAu(t — 1]
=Pz )y (t+ N,)—olz” YJy0)— Bz~ )Ault —1) (2.15)
where
Ny Ny
oz )= _Z,IP,-G;(Z " ﬁ(Z“)=_le,H;(z Y

and where the degrees of a(z™ ') and B(z~') are n and m— 1 respectively.
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3. A direct adaptive algorithm

It is well known that, in the direct version of adaptive control, one has to rearrange a
model so that it is expressed directly in terms of the control law parameters. Thus, in
effect, one directly estimates the control law parameters. In this section an implicit
model is first derived, then a direct adaptive algorithm is suggested.

3.1. Implicit model
Let us denote the first row of (ETE+ AI)~* by

Q"=[gy,----qn,] 3.1
and define
0z =gy, +qn, 12 "+... gz ™! (32)
Multiplying by ET and adding AIu on both sides of (2.8) we have
E"y + Mlu=E"Eu+ AMu+ ET(G(t) + HAu(t — 1)) (3.3)
which results in
u=(E"E + A1) " '[ET(y — Gy(t) — HAu(t — 1))+ ATu] (34)

Using (2.14), (3.2), (2.16) and (2.17) the first row of (3.4) can be written as
Au(t)=P(z" ")yt + N,)+10(z" )Au(t + N,—1)

—alz”t)— Pz HAut—1) (3-5
Define
1+ N,)=Pz Yyt + Ny +A0(z " HAu(t+N,—1) (3.6)
Then (3.5) can be written as
e+ Ny)=alz” )+ Pz~ NAu(t— 1)+ Ault)

=X(1)"0 3.7
where
X)) =D(),..., ) (t—n), Ault),..., Au(t —m)]
0" =00, %15 2040 Ly Boy- - s Prn—1]

We know from (2.15) that equation (3.7) is expressed directly in terms of the control law
parameters. If we choose u(t) to satisfy

Pz™ ")y (t+N,)=X ()"0 33
it is evident that (3.8) is equal to the control law (2.15).

3.2. Direct adaptive algorithm

In the following direct adaptive GPC algorithm (3.7) is taken as a parameter
estimation equation, which implies that ¢(t) should be known at time t. From (2.6),
(2.12)2.14),(3.1)and (3.2) it is clear that ifeq, ey, ..., ey, —  are known and 1 is given, the
coefficients of P(z~ ') and Q(z ') can be computed off-line, and ¢(t) will be available at
time t. We know from (2.3) and (2.4) that the coefficients of E{z™ '), i.€. €g, €5,- .., €y, -1
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are simply the first N, terms of the plant’s step response. Therefore, under the
assumptions

Al: The polynomial degrees n and m are known.
A2: The first N, coefficients of the plant’s step response, i.c. €g,€,,...,€y, -1 are
known.

we have the following adaptive algorithm:

Data: Given the prediction horizon N,, the control horizon N,, the weighting
constant 4 and the first N, coefficients of the plant step response, i.e. eg, €4,..., €5, 1.

(a) Compute ¢(t) from
@)= Pz YW(t)+10(z" HAu(t+N,— N, —1) 39

(b) Compute 6(t) using the following estimation algorithm given in Goodwin, Leal,
Mayne and Middieton (1986).

_ pX(t— N ) (1) —X(t—N,)"0(t — 1))
b(e) =0t — 1)+ P XG—N XG—N) (3.10)

where 0<p<2.
(¢) Compute the control u(t) from

Pz ")y (t+ N ) =X () 6(0) @3.11)
(d) Increase t by one and return to (a).

In comparison with the algorithm given in Ortega and Sanchez (1989), our algorithm
uses only one parameter estimator at each sampling instant, whereas a bank of
interlaced estimators is used in Ortega and Sanchez (1989). The on-line computational
load in the latter algorithm is therefore quite heavy.

3.3. Convergence analysis

The following assumption is, in addition to Al and A2, made for the global
convergence analysis of our algorithm.

A3: The characteristic polynomial
T(z™")=P(z"")Blz™")+2z"M* M0z~ YA(z A
is stable, i.e. T(q)#0 for |g|> 1.

The assumption A3 means that when the plant’s parameters are known, the control law
(3.11) with suitable choices of Ny, N,, 4 and ¢; (j=0,..., N, —1) stabilizes the plant.

Theorem 3.1. Under assumptions A1-A3, the direct adaptive algorithm given above
leads to

S1) {y(t)} and {Au(t)} are bounded sequences.

$2) Lim|P(y(t)— y/{t) +1QAu(t+ N,— N, —1)|=0
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Proof: Define, respectively, the estimation error &(t) and the generalized tracking error
e(t) as

&0 =p(t)— X(t—N,)" 0t —1) (3.12)
e(t)=P()(6)— yAD) + AQAu(t+ N,— N, —1) (3.13)

Multiplying (2.1) by P(z%), (3.14) by AA(z "), and adding together we obtain
T(z YAu(t—1)=AA(z ™ Ve(t)+AAz” )Pz Iy (8) (3.14)

Multiplying (2.1) by AQ(z '), (3.13) by B(z "), and adding together we obtain
Tz~ ))O)=B(z"") e(t)+ Bz~ )Pz~ )y,(t) (3.15)

Using assumption A2, the boundedness of {y/(#)}, (3.14), (3-15) and lemma B.3.3 in
Goodwin and Sin (1984) we have

Iyt—N)I<K;+K, max |e(z)] (3.16)
0=T=1
|Au(t— N )| < K53+ K, max le(t)] (3.17)
0=T=t

From the definition of X(), (3.16) and (3.17) we have
IX(t—N )l € Ks+ K max |e(z) (3.18)
O=T=r

where K,..., K4 are positive constants.
Substituting (3.11) and (3.12) into (3.13) yields

elt)=e(t)+ X(t— N )"(6c— 1)~ 0(t—N,)) (3.19)

From (3.19) and lemma 3.3.2 ((2) and (¢)) in Goodwin and Sin (1984) we have

; 0] B
B =N XNy (3.20)

Using (3.18), (3.20) and the key technical lemma in Goodwin and Sin (1984), the results
S1 and S2 follow immediately.

4. An improved direct adaptive algorithm

The adaptive algorithm given in the last section is very attractive because of its
simplicity. The weakness of the algorithm is the requirement for a priori knowledge of
the first N, terms of the plant’s step response. In most cases, however, these terms are
hardly known exactly. A heuristic approach is simply to use their estimates. In this
section we will propose an improved direct adaptive algorithm which is based upon
that.
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4.1. Normalized model

Assume ¢}, j=0,...,N;—1 to be estimates of the first N, terms of the plant’s step
response and define

E=| “.1)

eN,—1 ©ON,-2 - €9

| en,-1 €ny-2 - Enon,

Furthermore, write the first rows of (ETE+ AI) " 'ET and (E"E + AI) ! as, respectively,

P'=[p,---.Pn,] (4.2)
Q'=[4--»4n,] (4.3)
and define
P ")=py,+Py 12"+ APz ! (44)
Oz =gy, +qy,—1z "+...4gz ! 4.5)
Using (4.4) and (4.5), equation (3.7) can be written as
d()=X(t—N,)'60+ (1) 4.6)
where
P1)=Py()+ AQAu(t +N,— N, —1) 4.7
) =(P—P)y(t) + 0 — Q)Au(t+ N,—N,—1) (4.8)

The term &(t) in (4.6) may be interpreted as unmodeled dynamics. Obviously, d(f) may
be unbounded since 4(t) involves y(t) and Au(t). The normalization technique suggested
in Cluett, Shah and Fisher (1987) and Cluett, Martin-Sanchez, Shah and Fisher (1988)
is used here to guarantee the boundedness of the unmodeled dynamics. Define

n(t)=max ( max [ (1), C) 4.9)
1=i=d
where

Y(t)" =[t),---, y(t—n—N,), Au(t—1),...,Au(t —m—N,)] (4.10)

and d is the dimension of y/(f). Let s (t) denote the ith element of y(t). C is any positive
constant and is used to prevent division by zero.
Using the following normalized variables

()= P(t)/n(z) (4.11)
Xt —N,)=X(t—N,)/n(t) (4.12)
0"(e)=&(8)/n(t) 4.13)
equation (4.6) takes the form
P(O)=X"(t—N,)'0+5(t) (4.19)
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It is easy to show that both §"(t) and X"(t — N,) defined by respectively (4.12) and (4.13)
are bounded. Let M be a known upper bound of [57(t)], i.e.

"I <M. V=0 (4.15)

4.2. Improved direct adaptive algorithm

The improved algorithm and our global convergence analysis of it are based on the
following assumptions:

B1. The polynomial degrees n and m are known.
B2. M is known.
B3. The characteristic polynomial

T )Pz ™")+ B e ™ i0( A )A

is stable, i.e. T(g)#0 for |g|>1.

Define the estimation error &) as

&t)=§0)~X(e—N )6t —1) (4.16)
Dividing both sides on (4.16) by n(t), the normalized &) can be written as
&"(0)="()—X"(t—N,)"6(t— 1) (4.17)

In order to handle the unmodeled dynamics &(t), the recursive parameter estimation
scheme with a dead zone given in Goodwin et al. (1986) is used for the normalized
model (4.14), viz.

PX"(t—N,)f(M,&"(t))

foy=0— 1)+ +X(t—N,)'X"(t—N,)

(4.18)

where
g—M ife"t)>M
SM,e"(t)= 0 if le"()<M (4.19)
E"+M iflE()sM

and where 0<p<1.
The above considerations motivate the following improved direct adaptive
algorithm.
Data: Given Ny, N,, A and the estimates of the first N, terms of the plant’s step
TESpONSse, i.€. €y,€;,...,€5, 4.
(a) Compute §(t) from
HO=Pz" )W)+ 20(z" )Au(t+ N,—N,—1) (4.20)
(b)) Compute (1) using the estimation scheme (4.18).
(¢) Compute the control w(¢) from
Plz™ ")yt +N,)=X(t)"0(t) (@21

(d) Increase t by one and return to (a).
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4.3. Convergence analysis
Lemma 4.1. The parameter estimation scheme (4.18) has the following properties:

. . e
@ B X — N X —N,)
(i) lim |6(¢) - 6t - K)|| =0

1—*a0

Proof: see Goodwin et al. (1986).
Define the generalized tracking error é(t) as

ét)=P((t)—y, () +1QAu(t+ N,— N, —1) (4.22)

Lemma 4.2. Subject to assumptions B1-B3, there exist positive constants C, and C,
such that

Cil¥@ll < max e(z) + C; (4.23)

Proof: Multiplying (2.1) by P(z '), (4.22) by AA(z '), and adding together we obtain

T~ )Au(t— 1) =AAz~ })e(t) + AAz~ P V)y, (1) (4.24)
Multiplying (2.1) by 20(z '), (4.22) by B(z™ '), and adding together we obtain
T(z~"y(t)=B(z™ ")e(t) + Bz~ )Pz~ Iy,l1) (4.25)

Using assumption B3, the boundedness of y/t), (4.24), (4.25) and lemma B.3.3 in
Goodwin and Sin (1984) we have

|yl < K| + K, max |e(t)] (4.26)
O<t=t

|Au(t —1)| < K’y + K, max |&(z)] (4.27)
O0stst

From (4.10), (4.26) and (4.27) it follows that

ANl < K's+ K max |e(z)] (4.28)

0sest
where K,..., K are positive constants. Thus (4.23) follows immediately from (4.28)
with C, =1/Kj and C,=K’/Kl.
Theorem 4.1. Under assumptions B1-B3, if there exists a constant C, which satisfies
B4 C,>M
then the direct adaptive algorithm given in this section leads to
S1) {y(t)} and {Au(r)} are bounded sequences.
S2) gng ILPOAD) — y () + 20Au(t + N, — N — D)]/n(t)| <M

Proof: Since X"(t — N,) is bounded we know from lemma 4.1 (i) that

lim f(M, &(t))=0 (4-29)

i+ oy
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Substituting (4.16) and (4.21) into (4.22) yields

e()=at)+X(t—N )6t —1)—6—N,) (4.30)
Dividing both sides by () yields
é")=&")+X"(t—N)"t—1)—0c—N,) (4.31)
Using Lemma 4.1 (ii), (4.19), (4.29) and (4.31) we have
‘limf(M,EWt})=0 (4.32)
which from (4.19) means that )
lim|e"(t)| < M (4.33)

1w
From B4, (4.9) and (4.33) we have

o)
C,>M=1
1= e )

e
% max ( max |dr,{t)|,C)

e
> X (WOI.0) e

If {||y(¢)||} is bounded, then S1 follows immediately. Therefore, assume the sequence
{ll¥()} to be unbounded. From lemma 4.2 there exists a subsequence {t,} such that

Gyl <le) +C, (4.35)

where
le(t,) = max |e(z)|
0=r=1

Dividing both sides of (4.35) by |y(t,)]l| we obtain

t C
P 2

[Z0M] I U7 (AT
Since [|y(t,)]| = oo as t,— oo, the last term on the right hand side of (4.36) tends to zero

which implies that (4.36) will violate inequality (4.34). Therefore an unbounded
sequence {|y(1)[|} cannot exist and S1 must hold. From (4.33) and (4.22) S2 follows

immediately.

(4.36)

From theorem 4.1 we observe that the improved algorithm guarantecs stability of
the closed-loop system and makes the generalized error ¢"(t) bounded. From (4.8) it is
obvious that the unmodeled dynamics §(t) comes from mismatch between e; and &;. If
this mismatch is smaller, &(t) will also be smaller, and the required upper bound M may
be decreased. In the matched case (6(t)=0), the generalized error converges asymptoti-
cally to zero. This illustrates the link between the first algorithm and the improved one.




Direct adaptive generalized predictive control 191

5. Conclusion

In this paper a direct adaptive GPC algorithm and an improved version have been
proposed. Global convergence of the algorithms have been analysed by using standard
analysis techniques under some reasonable assumptions. We have, for the sake of
simplicity, used a projection estimation scheme in our algorithms. Similar results can
be obtained for corresponding least squares schemes. The combination of the
normalization technique and the parameter estimation scheme with a dead zone makes
the global convergence analysis of the improved algorithm quite simple. The results
presented in this paper are conceptually important in that they fill a gap existing in
previous published papers on the direct version of adaptive GPC algorithms.
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