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A modified LQG algorithm (MLQG) for robust control of nonlinear
multivariable systems
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The original LQG algorithm is often characterized for its lack of robustness. This is
because in the design of the estimator (Kalman filter) the process disturbance is
assumed to be white noise. If the estimator is to give good estimates, the Kalman
gain is increased which means that the estimator fails to become robust. A solution
to this problem is to replace the proportional Kalman gain matrix by a dynamic PI
algorithm and the proportional LQ feedback gain matrix by a PI algorithm, A
tuning method is developed which facilitates the tuning of a modified LQG control
system (MLQG) by only two tuning parameters.

1. Outline of the MLQG-controller

In the traditional LQG algorithm which consists of an LQ controller combined
with a Kalman filter (Joseph and Tou 1961), it is often observed that the resulting
system has a low degree of robustness with respect to stability. Therefore there has been
a tendency to discard what is otherwise a very attractive control technique.

The source of this lack of robustness is not to be found in the LQ-control algorithm,
but in the estimator which has the structure of a Kalman filter. In the elementary
development of a Kalman filter (Kalman and Bucy 1961) the process disturbance is
assumed to be white noise. That leads to a proportional Kalman filter gain matrix (K)
which will become larger with increasing covariance (V) in the assumed disturbances.
In order to achieve a small covariance of the estimation error or, in other words, a small
innovation process, one is tempted to increase the assumed covariance of the process
disturbance and thereby increase the proportional Kalman filter gain matrix. Thereby
the robustness of the estimation loop is drastically reduced since the phase shift near the
estimator crossover frequency will change too steeply. Another way to express this is by
forcing the process model to follow the process behaviour to very high frequencies so
that the innovation process becomes white, the bandwidth of the estimation loop must
be excessive and therefore non robust.

But the real disturbances acting upon the process are obviously not white noise
sources. In reality it is better to assume that only a smaller portion of the disturbance
energy is associated with white noise and the rest at lower frequencies, even zero
frequency. This means that a major part of the disturbances may be regarded as slowly
varying constants. Thus assuming a zero frequency disturbance, the Kalman filter will
have an integrator in its feedback algorithm in parallel with the proportional gain
matrix as shown in fig. 1. (Balchen et al. 1973, Balchen 1984).
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Figure 1. The MLQG Control System.

Consequently the proposed feedback algorithm in the Kalman filter is a propor-
tional plus integral matrix algorithm.

The original LQG algorithm is based on the LQ-algorithm which takes the state
estimate (%) and produces a proportional feedback to the control vector. The result of
this feedback is 2 minimum variance-control system. In most cases of process control, it
is however desirable to define a property space (z) which has the same dimension as the
control vector space (1) and which expresses the variables which are to be controlled
towards certain setpoints. These variables will most often be fewer than those
constituting the state space (x), but are related to the state space through a
transformation z =g(x).

A multivariable PI algorithm is achieved as shown in Fig. 1 by means of an integral
loop controlling the property (z) in parallel with the proportional (LQ) control loop.

Also Fig. 1 shows that both the process model and the measurement model are
assumed to be nonlinear. Therefore we are dealing with an extended Kalman filter
where all the matrix calculations are based on Jacobian matrices.

The development of the MLQG-controller can be summarized as follows:

Assume the process state space model

x=f(x,u,v) (1)
with measurements
y=h(x)+w
and properties
z=g(x)

The LQ control is based on the objective function

L(x,u)=x"0Ox+ ; u"Pu )

where

2

1
={g;} =0 and g;=—
Q={4a} e
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1
P={p;}>0and p;,=—
{(pu} o

i

Ax? =acceptable variance of x,

Au? = acceptable variance of 1,
a=tuning parameter

By changing o, the magnitudes of the control variables relative to the state variables
will be altered. An increase in o will result in an increase in the magnitudes of the control
variables. Using elementary optimal control theory and introducing

_YC) L oC) o) . oh(-)
= P e P
the Riccati equation will become
R=—RA—A"R+«RBP 'B'R—-Q 3)

and the LQ control gain matrix
G,=aP7'B'R @

Thus tuning o will result in changing the G,-matrix.

Similarly the tuning parameter f is introduced to modify the assumed white noise
component of (v) of the process disturbance relative to the measurement noise (w).
Using the notation

V=cov v={?}
W=cov w={w?}
X=covx=E(x—%) (x—%)"

we get
X=AX4+XA"+BCVC"— XD™W DX (%)

and the conventional Kalman filter gain matrix
K,=XD"W™! (6)

Thus we see that by changing the tuning parameter § we will have a change in the
Kalman filter gain K.

2. The integral loops

The integral parallel branches of the control loop and the estimation loop can be
designed in a number of ways.

Both integral loops can be designed using extensions of the techniques applied for
the proportional loops. For instance in the Kalman filter design it can be assumed that
the process disturbance is the sum of two components, one being white noise (as before)
and another being the integral of white noise (uncorrelated). Thereby the Kalman filter
will contain an integral branch in parallel with the ordinary proportional branch.

The gain K, of the integral branch is computed by an extension of the Riccati
equation for the estimation error covariance which is now of 2n x 2n dimension instead
of nx n in original system.
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Another, and probable just as logical, way is to prescribe a certain dynamic
behaviour of the quantities appearing at the outputs of the integrators namely the
vectors ¢ and p indicated in Fig. 1. Inspired from classical SISO Pl-controller tuning
one can specify the eigenvalues of the integral loops as Ag; for the control loop and Ag
for the estimation loop.

Since the integral loops will be appreciably slower than the proportional loops, we
can arrive at the following differential equations which are good approximations for
the two integral loops.

§=G,G4(4A—BG,) 'Bg=Aq (7)
P=K2D(A_K1D)_1K1P=AKP ®)
where
_dg(*)
Gs= ox
These lead to the integral loop gain matrices
G,=A4G5(A—BG,) 'B)~! 9)
and
K, =AD(A—K,D)'K,)™! (10)

The choice of Ag and Ag may be done as in SISO-systems (Ziegler and Nichols 1942)
namely

Ag=kiAy— g6, OF Agi= =kl Aa-pe il (11)
and

A=k A4k py OF Ay= —kall A4k, myill (12)

where A, - pg,) and A, -k, p) are the dominant eigenvalues of the control loop and the
estimation loop respectively and the factors k, and k, could be of the order 0-1-0-2.
Many detailed arguments can be made in this respect.

In Eqn. (9) it is seen that the matrix G, (A—BG,)” "B must be nonsingular. The
choice of the property transformation is essential for the behaviour of the integral
control loop. A singular value decomposition of Eqn. (9) will reveal undesirable
choices of transformations. Similarly in Eqn. (10) it is necessary that the matrix
D(A—K,D) 'K, is nonsingular which in turn presents restrictions on suitable choices
of measurement locations (D) in the process.

When implementing the MLQG strategy it is assumed that all matrix calculations
are performed online. That is rather straightforward, but it requires a computational
capacity which will increase rapidly with the dimensions of the system. In terms of
necessary computer time only cases with fast processes with time constants in the range
of seconds will become critical. To increase computational speed it would be beneficial
to develop recursive forms of Eqns (9) and (10). The determination of Jacobian matrices
such as A, B etc. will mostly be done numerically, but in some cases this can be achieved
analytically which will require less computer time.

Open integrators as they appear both in the property control loop and in the
estimation have to be equipped with anti-windup precautions (AW) in case their
outputs reach amplitude restrictions. In the property control loop this is important
because the control vector (u) definitely has amplitude constraints given by physical
considerations.
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What will happen when such constraints are reached is another matter. Usually
nothing but a degradation of the system performance will take place. But since the
behaviour of a multivariable feedback system is complicated, undesirable effects may
also occur. If an open loop unstable multivariable process has been stabilized by means
of feedback the system may again become unstable when one or more control variables
reach saturation levels. This particular problem is not dealt with in any detail here
because it deserves a much broader treatment than space permits (Balchen 1993).

3. Consequences of nonlinear modeling

Asisseenin Fig. 1, the estimator contains a nonlinear model of the process. This will
be essential in most cases of process control with the rare exception of when a linear
model can describe the process behaviour over the entire operating range that is
required. The original LQG-algorithm assumes a linearized model around the
operating point in the state space, but most often it is just as easy to implement a
nonlinear model. Nevertheless the linearized description (Jacobian-matrices) has to be
found in order to calculate the feedback matrices both in the control loop and in the
estimation loop. The importance of using the nonlinear model in the estimation loop
lies in the need to determine the correct operating point. With the inclusion of an
integral term in the feedback of the estimator, the expected value of the innovation
process (E(g)) will be forced to zero.

This also causes a problem which has to be taken seriously. In cases when the
process disturbance is a parameter variation rather than an additive signal, as assumed
in the model structure of Fig. 1, it is evident that the integral action of the estimator may
force the process model to erroneous steady state operating conditions.

Care should be taken in modeling the most relevant disturbances properly to avoid
such behaviour. From the conditions for observability it is easily derived that the
maximal number of disturbances which can be compensated for is m=number of
measurements. Also it may be fruitful to regard the quantity p as an estimate of the
mean of the process disturbance as indicated by a dotted line in Fig. 1. Furthermore it is
necessary to set limits to the integrator output amplitudes by means of anti windup-
mechanisms,

Another obvious way to tackle the undesirable consequences of modeling errors is
to employ a parameter estimation scheme around the nonlinear model. Many methods
are available for this purpose, but it is beyond the purpose of this paper to discuss such
methods in detail.

4. Discussion
The algorithm developed above and shown in Fig. 1 has the following very
attractive features:

1. It is based on a state-space model depicting the real behaviour of the process.

2. It takes realistic limitations in the state and control variables into account and
considers process disturbances and measurement noise.

3. Tt only has two tuning paramecters which is the same number as with SISO
Pl-control. This is possible because the a priori knowledge of the relative process
excitations and process responses has been utilized.

4. The a-parameter adjusts the low and medium frequency behaviour of the
control loops whereas the f-parameter tunes the high frequency rolling off
behaviour of the control loops.
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5. Applications

Numerous applications of the MLQG have already been suggested and tested.

For the control of the production process for polypropene the MLQG has been
shown to give superior performance compared to a number of other control strategies
including a variety of conventional P structures with different pairings of variables ‘Lie
1990, Lie and Balchen 1992).

In Jalving, Balchen and Strand (1993), the MLQG has given excellent control of a
simulated Fluidized Catalytic Cracker. Conventional multiple PI-control structures
with different pairings are known to give unsatisfactory control of this process.

In Amundsen (1992), an MLQG-control system for a rotary kiln is studied yielding
very satisfactory results.

Furthermore it is suggested the MLQG-technique is excellent for the control of
industrial processes described by models with a large number of state variables relative
to the number of control variables e.g. the ferrosilicon process (FeSi) (Valderhaug and
Balchen 1992) and the thermomechanical pulping process (TMP) (di Ruscio and
Balchen 1992).

6. Conclusion

Model based control techniques like the MLQG are attractive for the design of
multivariable control systems because they are systematic and logical. With modern
inexpensive computer systems the calculations required can be implemented without
difficulties.
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