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Frequency domain synthesis of trajectory learning controllers for robot
manipulators

TOM KAVLIY

Trajectory learning control is a method for generating near to optimal feedforward
control for systems that are controlled along a reference trajectory in repeated
cycles. Iterative refinements of a stored feedforward control sequence corresponding
to one cycle of the control trajectory is computed based upon the recorded
trajectory error from the previous cycle. Several learning operators have been
proposed in earlier work, and convergence proofs are developed for certain classes
of systems, but no satisfactory method for design and analysis of learning operators
under the presence of uncertainties in the system model have been presented. This
article presents frequency domain methods for analysing the convergence pro-
perties and performance of the learning controller when the amplitude and phase of
the system transfer function is assumed to be within specified windows. Experi-
mental results with an industrial robot manipulator confirm the theoretical results.

1. Introduction

Trajectory learning control is a method for generating near to optimal feed-forward
control for systems that are controlled along a reference trajectory in repeated cycles. A
recorded trajectory of the feedforward control corresponding to one cycle of the
reference trajectory is incrementally adjusted for each repetition of the control cycle
until it converges to a final value. The incremental adjustments are computed by a
learning operator that normally is implemented as a digital filter operating on the
measured control error of the last cycle. This article presents practical methods for
analysis and design of the learning filters based upon analysis in the frequency domain.
Criteria for analysing the convergence properties and performance of the iterative
learning algorithm when the amplitude and phase of the system transfer function is
assumed to lie within specified windows are included. The method has been used for
the design of a trajectory learning controller for a Trallfa TR4000 industrial robot
manipulator, and experimental results confirm the theoretical results.

The two most popular control schemes for advanced robot manipulator control—
model-based feedforward control and computed torque control—both require accurate
inverse dynamic models for the manipulator arm and actuators to achieve good
performance (Khosla 1988, An, Atkeson and Hollerbach 1986, Egeland 1986). To
compensate for nonmodeled dynamics and model errors, the trajectory learning
control scheme has been proposed (Craig 1988). For hydraulic manipulators, it is very
difficult to obtain good dynamic models due to unknown and not easily described
nonlinearities in the servo valve/actuator system (Kavli 1990, Williams and Mason
1990, Watton 1989). The model-based control techniques are thus less applicable for
this kind of system, and trajectory learning may show its full potential,
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The trajectory learning algorithm as initially proposed by Arimoto et al. (1984) had
the form

u* () =uH(t) + Cee)

where 1X(¢) is the feedforward control and éX({) is the time derivative of the trajectory
error after the kth iteration. I is a gain constant. This learning algorithm was proven to
converge to zero error when applied to linear time-varying first-order systems. This
learning algorithm was later generalised to include various lincar combinations of the
trajectory error and its first and second time derivatives, e(t), &), and &(t):

W () =uM(t) + (1) + Pé(t) +vEX(D) (1

where «, B, and y are learning gain constants (Arimoto, Kawamura, Miyazaki and
Tamaki 1985). Kawamura, Miyazaki and Arimoto (1988) proved the convergence of
this algorithm with y=0 for linear time-varying second-order systems. Hauser (1987)
proved the convergence of (1) used for a class of nonlinear time-variant systems with
linear input action and provided a measure for how close the model should be to the
actual system to guarantee convergence. Heinzinger, Fenwick, Paden and Miyazaki
(1989) extended this proof to more general learning operators that also include the
integral of the trajectory error in the update. :

Bondi, Casalino and Gambardella (1988) proposed to set the learning gains equal
to the corresponding closed-loop feedback gains. Oh, Bien and Suh (1988) used
parameter estimation techniques to identify the time-varying plant dynamics, and the
values of learning gain constants are computed so that the learning operator
corresponds to the inverse of the plant dynamics. Lunde and Balchen (1990) compared
the performance of variations of (1) in a series of simulation experiments. Bien and Huh
(1989) further generalised the learning algorithm (1) by updating the control trajectory
not only based upon the last recorded trajectory error but also including earlier error
trajectories in the learning algorithm, and by that achieved faster convergence and
increased noise immunity.

Craig (1984, 1988) chose to implement the learning operator in the more general
form

u** H(2) =uM2) + L2)e'(2) 2
where L(z) is a causal or anticausal FIR filter giving more freedom in the design of the
learning operator, and also argues for the necessity of low pass filtering the error signal
to eliminate the effect of unmodeled higher-order dynamics.

Atkeson and McIntrye (1986) argued that the complete nonlinear inverse model of
the manipulator dynamics should be used as the learning operator and showed
instability problems when a simplified model is used. In Hideg and Judd (1988), a
frequency domain analysis of learning operators of the form (2) can be found.

In all the referred work, the robustness of the learning controller is analysed under
the assumption that the order of the plant dynamics is known. Unmodeled higher-
order dynamics or unmodeled transfer delays in the system may introduce phase errors
in the iterative adjustments of the feedforward signal, and oscillations may build up at
frequencies with more than 90° phase error. Especially for hydraulic manipulators,
where the elasticity of the hydraulic fluid and the nonlinearity of the actuator system
introduce significant higher-order dynamics, serious problems with high-frequency
oscillations have been observed using learning operators of any of the forms given
above. A general analysis of the performance and convergence properties of the class of
learning operators given by (2) is presented in the next section.
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Moore, Dahleh and Bhattacharyya (1989) proposed a further generalisation of (2)
by adding a second filter that operates on the previously learned feedforward signal,
resulting in a learning operator of the form

u**1(2)= Bl2)u"(z) + L(2)é"(2) @3)

The new filter B(z) introduces new design flexibility that may be used to improve the
convergence properties of the learning operator, and simulation results show the
abilities of the system for controlling systems with unknown nonlinear dynamics.

This article presents in the third section frequency domain methods for designing
the two filters B(z) and L(z) of (3) and analysing the convergence properties under
consideration of anticipated model errors. Based upon these methods, learning filters
are then designed for a hydraulic robot manipulator, followed by experimental results
confirming the theoretical results,

2. Itcrative improvements of the control trajectory by learning

Consider a linear time-invariant sampled servo system as shown in the lower part of
Fig. 1. The plant having a transfer function, G(s), is controlled to follow a desired
trajectory in time, d[n], by means of the discrete linear feedback controller Fi (z) and
C(2). d[n] denotes the reference at time t=nT, n=1,...,N, and T is the sampling
period. Since the reference trajectory is assumed to be repeated in cycles, d[n] is
periodic with d[n] =d[n+ N]. The plant is also subject to a repetitive disturbance force,
v(t)=u(t + N'T).In the case of a robot manipulator, the external force would typically be
dynamic coupling forces between the axes and external forces generated by the robot
task process. u*[n] is a learned feedforward control signal generated by repeated
lookup from a time series table in the computer memory. The content of the
feedforward table is adjusted for each cycle by adding a correction to the old stored
values. The correction is computed by applying the learning operator (filter), L(z), on
the observed trajectory error from the previous cycle, é[n] =d[n]— ¢*[n], where q'[n]
is the measured response of the system and the superscript k indicates the training cycle.
The updating of the feedforward table is done offfine based upon logged values so that
the learning operator I(z) does not need to be causal.
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Figure 1. Block diagram of the trajectory learning system.
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The trajectory error after k training cycles, ¢[n], may be expressed by its
z-transform as

C(2)G(z)[d(2) +v(2)]+ G{z)v(z)
14 F(2)C(2)G(2) @

=d(2)— P(2)[d(2) + 1 (2)]+ Q(2)u(2)

Mo)=d(z) -

where
__ GG
= Focmce
and
G(z)

0B =1 F)C@)G)

G(z) is the discrete equivalence for G(s), and ©(z) is the z-transformed sampled
disturbance. If we apply a learning operator that updates the feedforward according to

u**1(z) = uMz)+ L(z)e¥(2) 5

we get an expression of the trajectory error after k + 1 training cycles asa function of the
error at the previous cycle

¢+1(z)=[1-L2)P(2)]ez)

If the feedforward signal is initialized to zero, and the initial trajectory error is &%z), the
trajectory error after k training cycles can easily be found to be

2)=[1-L(2)P)]'eC) (6)

For this iteration to converge for all frequency components of €°, we see that we must
have

1 —L@)P) <1, V oe—=, ] 7

A rigorous proof of this convergence criterion based on the Parseval’s relation may
be found in Craig (1988). We see that the error in (6) would converge to zero after one
single cycle if we were able to choose a learning operator equal to the inverse closed-
loop transfer function of the system, ie.,

Liz)=P(2)

There are several reasons why this is an impractical approach. First, the reason why we
want to use the trajectory learning scheme is that we do not have a good model for the
inverse transfer function; and second, the transfer function of all practical manipulator
arms falls rapidly toward zero as the frequency increases, implying that the learning
operator should have very high gain for high frequencies. Since we must expect the
recorded trajectory data to contain random high-frequency noise, this is a very
undesirable property. Finally, it may well be that we do not want to force the
manipulator to follow all the high-frequency signals in the reference since this might
put undesirable stresses on the manipulator arm and actuators.

To determine the degree of freedom we have in the synthesis of L(z), we must look at
the region of convergence for the iterative learning as given by (7) and illustrated in Fig.
2. The convergence criterion requires that the complex value [1—L{w)P(w)] is in the
interior of a unit circle in the complex plane. It can be seen that as long as L{w) is close to
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Figure 2. Convergence region for the learning operator.

P~ () in magnitude and phase, ie., L{w)P(w)~ 1, the system operates in the centre of
the convergence region. It is also evident that the larger the deviation in phase, larger
¢(w), the more accurate the amplitude will have to be and vice versa. More generally,
the system operates within the convergence region if (8) and (9) are satisfied for all
frequencies

[{w)P(w)l <2cos[Ppw)]  for Ylw)e[—n/2, /2] @®)
| L{w)P(w)| =0 for all other ¢(w) )]

where
Pw)= L [L{w)P(w)]

In practical situations, one would require a convergence margin to guarantee fast
convergence and safe operation. One way of setting such a margin is to say that

1 - L{w)P(w) <a<1, Voe[—mr, n]

where a is a chosen constant. The equations corresponding to (8) and (9) will now be a
function of a. If we choose the particular case a=1 /220707 (see Fig. 2), we get the
following equations:

cos[¢(w)] —{cos?’[ )] — 0-5}'/ < | L{w)P(w)|
<cos [d(w)]+{cos? [Pw)] —05}2  for P(w)e[ —n/4, n/4]  (10)
|L{w)P(@)|=0 for all other ¢{(w) (11)

For robot applications, we would normally want to compensate for all frequencies
up to about the bandwidth of the robot position servo and try not to compensate for
higher frequencies. To fulfil the requirements of (10) and (11), the learning operator
should thus have zero gain for the higher frequencies that we do not want to
compensate, and track the inverse dynamic transfer function for all other frequencies.

3. Tmproving robustness by introducing a second filter

Due to nonlinearities, higher-order dynamics, unknown time delays, etc., it is very
unlikely that an identified inverse model will be able to compensate the plants phase
and amplitude to the accuracy required by (10) for more than a limited range of
frequencies. The learning operator will therefore have to drop in amplitude to zero at a
certain frequency when the uncertainty in phase and/or amplitude exceeds the specified
limits. Due to the limitations in the transition rate between pass bands and stop bands
of digital filters, there will always be a transition zone where requirement (10) is
violated. Also, there will be side lobes in the stop band with nonzero amplitudes so that
requirement (11) is violated. To eliminate oscillatory problems caused by these effects,
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Figure 3. Modified learning operator. The added filter, B(z), gives increased robustness for
modeling errors.

we have chosen to low pass filter the previous learned feedforward signal before adding
the new corrections generated by the learning operator. This is shown in Fig. 3 as the
additional filter B(z). The updated feedforward signal now becomes

u**(z) = B(z)u*(2) + L(2)e"(2)
and the trajectory error update becomes

¢ 1(z)=[B(z)— L(2)P(2)]e"(z) + [1 — BE)][1 — P(2)}d(2) + [1 - B2)1Q(2)v(2)
For this iteration to converge for all frequency components, we must have that
|B(ew)— L{w)P() <1, Voe[—m, 7] (12)
for which case it converges to
e®(w)=[1+ L{w)P(w)— B(w)] ™"
{[1—B(@)][1— P(w)] d(w)—[1 - B@)]Q()(®)} (13)

As seen from (12), we are given extra freedom in the design of L(z) since we are also free
to choose B(z). B(z) is typically chosen as a low pass filter with zero phase and a cut-off
frequency wg. The effect of B(z) is to move the base of the vector shown in Fig. 2 along
the abscissa toward the origin as the frequency increases. We see that for high
frequencies when the vector base is close to the origin the phase error is of no
importance as long as |L{w)P(w)| is small. In the worst case when the phase error
$w)=+n, we have that |B(w)— L(w)P(w)|=|Bw)+ |L{w)P(w)], and (12) is only
satisfied if | B(w)| < 1 — | L{w)P(w)). It is thus still important that | L{w)P(w)] is much less
than one for frequencies where the phase error may approach +7.

With B(z) chosen as a low pass filter with cut-off frequency w, B~ 1 for ok wg
and we are back to egns. (5) and (6). For @> wp we have that B{w)~0 and we see from
(13) that

e“(w)~[1— P(w)] d(w)+ Q@)(w)

which corresponds to the error without feedforward, i.e., the trajectory learning control
will not improve the accuracy for high-frequency errors. For intermediate frequencies,
eqn. (13) must be used in its full form to evaluate the steady-state error.

A robot manipulator is a highly nonlinear and coupled multivariable dynamic
system, and the analysis carried out above cannot directly be applied to manipulator
control. Most industrial manipulaters are today controlled by single-joint linear PID-
type regulators. For robot manipulators designed for high speed and accuracy, it is
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becoming more common to use regulators with nonlinear feedback and model-based
decoupling of the axes. A linear or nonlinear feedback controller will have a linearizing
effect on the closed-loop transfer function. It is thus reasonable to assume that the
closed-loop transfer function may be approximated by a linear model in the
neighborhood of the reference trajectory. But, depending upon the degree of nonlinear
compensation incorporated in the feedback controller, the closed-loop dynamics will
change within certain limits as a function of the system state (arm position). The
learning operators must hence be designed for stable operation for all possible
variations of the closed-loop transfer function, also taking into consideration the effects
of the nonlinearities. The learning operator may also be made state dependent so that it
tracks the state-dependent transfer function. Although the previous analysis is strictly
valid only for time-invariant systems, the extra complexity introduced by the time
variable transfer function is not expected to have a significant influence on the results.

4. Synthesis of a learning controller for a hydraulic manipulator

A trajectory learning controller has been designed for and tested on the ABR
Trallfa robot TR4000. This is a hydraulic robot manipulator specially designed for
spray painting, and trajectory accuracy combined with high speed is of great
importance for high quality and high throughput performance. This article describes
only the synthesis of the controller and test results for axis one (the azimuth axis at the
manipulator base) although similar results were obtained for the other axes.

4.1. System identification

For the synthesis of the learning operator, it was necessary to have an approximate
model for the dynamics of the closed-loop servo system. This was obtained by
measuring the phase and amplitude of the joint movements when different constant-
frequency sine signals were applied on the input (the amplitude was 200 resolver units
for all signals). The same measurements were taken with the arm (joints 2-6)locked in a
centre position, fully retracted, and fully extended. Three different fourth-order
autoregressive models were identified by fitting the gain and phase to the respective
data points. The coefficients of the AR models are given in Table 1. Sampling frequency
is 100 Hz.

The gain and phase of the three AR(4) models are plotted in F ig. 4. Resonances can
be observed at approximately 4, 6, and 8 Hz for the different arm positions. These are
due to mechanical and fluid elasticity. Since the hydraulic servo valve and actuator
system have nonlinear torque and damping characteristics, the identified transfer
function will depend upon the amplitude of the sine signal, and the identified linear
models should only be regarded as coarse approximations. The inaccuracies are
especially large for frequencies above the resonance frequencies. When analysing the

Table 1. Coefficients for estimated fourth-order AR models given by the transfer function
P@)=z "faog+a;z ' +asz 2 +asz 3 +a,z %)

Arm position ag a, a; a, ag
Centred 3333 —11734 1596-2 —991-8 2367
Retracted 111-8 —3578 4550 —271-6 63-6

Extended 651-5 —2301-3 3093-2 —1871'5 4292
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-350 Phase

Figure4. Linear gain and phase plots for the identified fourth-order models for axis one of the
Trallfa robot manipulator. The plotted curves correspond to three arm positions. In the
convergence analysis are the curves assumed to be within the indicated windows for all
arm positions.

convergence properties of the learning operator, the closed-loop transfer function was
assumed to lie between the indicated lower and upper window borders in phase and
amplitude for all possible arm positions.

4.2. Learning filter synthesis

The synthesis of the filter L(z) was based upon the identified fourth-order AR model
for the arm in the centred position given in Table 1. By directly inverting P'(z), we get a
fourth-order anticausal FIR filter with gain approximately one at zero frequency and
increasing to very high values at high frequencies. To suppress the gain at high
frequencies, the inverse model was combined with a zero-phase 5 Hz low pass FIR
filter. This low pass filter was chosen to be the same as the filter used for B(z) in Fig. 3,
and is a 27 coefficient Hanning window filter with coefficients given in Table 2 and gain
plotted in Fig. 5. The gain of the resulting learning filter L(z) is plotted in Fig. 6.

To check the convergence properties, eqn. (12) was evaluated for the complete
frequency range and with P(z) at the extremes of the windows shown in Fig. 4. The
maximum and minimum amplitudes were combined with the maximum and minimum
phases, giving a total of four cases, all plotted in Fig. 7. In all cases, the function was well
within the convergence region, and extruding the 0-7 convergence margin for only a
small frequency range for the case with maximum amplitude and most negative phase.
In fact, the convergence criterion should be checked for all possible combinations of
amplitudes and phases within the respective windows, but since we know, referring to
Fig. 2, that the length of the vector is proportional to the amplitude, and that both
extremes are within the convergence circle, all intermediate values must also be within
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Table 2. Filter coefficients for the filter B(z).

bo =b26= —0‘00026
b, =byo= —0-00080
b, =bya= —0:00101
by =b,3= 0
b4 =b22= 0'00322
bs =b21= 0@948
bﬁ =b20= 0’01919
b, =bg= 003219
bs =blﬂ= 0'04764
bo =by,= 006412
b10=b16= (}0?982
bll _b15= 0‘09280
bis=bj,= 010138
b13= 010438

Gain
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Figure 5. Linear gain plot for the filter B(z).
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Figure 6. Linear gain plot for the learning filter L(z).
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Figure 7. Plots of the convergence criterion B{w)— L{w)P(c) for frequencies from 0-10 Hz and
for the four extreme combinations of phase and amplitude as defined by the windows in
Fig. 4. The curves should all be within the unit circle to guarantee convergence.
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& 8 Hz

Figure 8. Theoretical reduction of the trajectory error after convergence as a function of
frequency with the arm in the extended position.

the circle. We also see directly from Figs 4-6 that eqn. (12) is satisfied for all frequencies
above 10 Hz independent of the phase angle due to the low gain of all transfer functions
at high frequencies. For frequencies below 10Hz, we see from Fig. 4 that the phase
difference between the upper and lower window limits is always less than 300°, and
since the learning filter, L(z), equals minus the phase of the centred model that is inside
the window the combined phase of L(z)B(z) will always be in the range
—300° < £ [I{2)B(z)] < 300°. This means that the end point of the vector in Fig. 2 will
draw an arch inside the convergence circle when varying the phase from the lower to the
upper window limit at a given frequency, and convergence can be guaranteed as long as
the extreme values are within the convergence region.

Figure 8 shows the theoretical compensation of the trajectory errors after
convergence as a function of frequency given by eqn. (13). The extended arm model was
used for this computation. As can be seen, the error should be reduced to less than 19,
(—40dB) of the uncompensated error for frequencies below 025 Hz. For frequencies
above 4 Hz, the remaining error will be more than 50%, (—6dB) of the uncompensated
€rror.

5. Experimental results with the trajectory learning controller
5.1. Experimental set-up

The robot controller was connected via a serial link to an IBM AT where the
learning algorithms were run off-line. The reference trajectories were specified in joint
coordinates as a time series with 10 ms sampling period. The response of the robot was
logged from resolvers at the manipulator joints at the same sampling rate and
transferred to the IBM. The learning filters were applied on the 100 Hz data without
any preprocessing, and the new computed feedforward was added to the original
reference trajectory as an offset. The modified reference trajectory was then converted
into a continuous-path program with 50ms sampling period and transferred to the
robot for the next cycle. The continuous-path points were linearly interpolated in the
robot controller to get a 100 Hz reference signal.

5.2. Experimental results

The performance and convergence of the learning feedforward controller was tested
on two different test trajectorics. The first trajectory, shown in Fig. 9, is a fifth-order
polynomial given by

d(t)= — 1500+ 20480063 —245760t* + 78643-2¢>  te[0,1-25]
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Figure 9. Polynomial test trajectory.
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Figure 10. Trajectory error before and after first training cycle, for the arm in retracted, centre,
and extended positions. The larger error is for the extended arm and the smaller for the
retracted arm.
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Figure 11. Trajectory error after eight training cycles for the arm in retracted, centre, and
extended positions. Compare with Fig. 10.

where t denotes time in seconds. After half a second delay, the reference returned to the
starting position by mirroring the trajectory. The learning of this trajectory was tested
with the other joints of the robot arm in the centre position and the two extremes: fully
retracted and fully extended. The initial trajectory error without feedforward and the
error after one training cycle is shown in Fig. 10. After three cycles, the errors had
converged to their final values. To test the convergence of the learning algorithm, the
trajectory was trained for eight cycles with the arm in centre and extreme positions. The
resulting trajectory errors plotted in Fig. 11 are similar to the error after three cycles.
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There were only small and random variations between the cycles after the third
iteration, and there is no sign of oscillations building up. The convergence rate is almost
equal for all positions of the arm. The remaining error is about 1%, of the initial error,
which is in accordance with the theoretical values for signals of less than 0-8 Hz, the
dominant frequency of the error. Experiments were also carried out with the 5 Hz low
pass filter B(z) replaced by a 6 Hz filter. The bandwidth of the L{z) filter was also
increased correspondingly. In this case, the plot of B(w)— L{w)P(w) extruded the unit
circle for a frequency range from approximately 3-9Hz as shown in Fig 12.
Experiments also confirmed that oscillations of approximately 7 Hz were building up
after three to five iterations.

Finally, the results from a second test trajectory that involves movement of all
manipulator joints are presented. The desired path is specified in Cartesian coordinates
as shown in Fig. 13. The corner points are rounded so that accelerations are limited.
The path is in a horizontal plane giving rise to changing inertias and cross-coupling
effects including Coriolis forces. Figure 14 shows the reference trajectory of axis one

Figure 12. Plots of the convergence criterion B(w)— L{cw)P(w) for frequencies from 0-10Hz
using a 6 Hz low pass filter for B(z) and for high-frequency suppression of L{z). The curve
extruding the unit circle between 3 and 9 Hz indicates a possible instability in the iterative
learning operator. Experiments confirmed that oscillations were building up at 7 Hz.

)<

Figure 13. Top view of the test trajectory specified in Cartesian coordinates.
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Figure 14. Reference trajectory for axis one and the initial trajectory error.
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Figure 15. Trajectory error after fourth training cycle. Compare with the trajectory error in
Fig. 14.

and the error without learning. The trajectory error was reduced to a similar level as for
the first test after four cycles as can be seen in Fig. 15. The changing inertia and coupling
forces do not seem to cause any problems.

6. Conclusions

A new design method for trajectory learning feedforward controllers intended for
robot manipulator control is presented. The design of the learning operator is carried
out in the frequency domain and is based upon approximate linear models of the
manipulator dynamics. Practical methods for analysing the convergence and perfor-
mance under consideration of the uncertainty in the linear models are included. A
learning controller is designed for a hydraulic industrial robot, and experimental
results confirm the theoretical analysis.
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