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Finite element modeling of the
hydrodynamic environment of a small ROV
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This paper addresses a practical problem, namely, modeling the hydrodynamic
environment of a small ROV. This has become the problem of solving time-
dependent incompressible Navier-Stokes equations with moving boundaries and a
new method is developed to solve it. Navier-Stokes equations expressed in a
moving-body-fixed coordinate frame with moving boundaries are derived and
solved by a proposed finite element method which is a modified velocity correction
procedure (Ren and Utnes 1993). The present method is implemented in the C
language on a SUN/Sparc Station. The algorithm and program are demonstrated
by solving a classic driven cavity flow problem and a simplified model of the
hydrodynamic environment of a small ROV, which is a moving boundary problem,
The results from the driven cavity flow problem are compared to previous work. A
definition is also given of the moving boundary problem (MBP) related to the
solution of Navier-Stokes equations.

1. Introduction

Itis important for an autonomous underwater vehicle (AUV) to have both a vehicle
model and an environmental model. Many published papers have contributed to the
vehicle model (e.g. Yoerger and Slotine 1985, Yoerger, Newman and Sloting 1986,
Fossen and Balchen 1988, Cristi, Papoulias and Healey 1990, Goheen and Jefferys
1990, Silvestre, Lemos, Sequeira and Sentiero 1990, Yuh 1990a, 1990b, Fossen 1991,
Triantafyllou and Grosenbaugh 1991). However, the literature has scarcely con-
tributed to the hydrodynamic environmental-model related to the control of AUV,
which is a significant step to achieve a high degree of autonomous control for such a
vehicle. This situation is remedied in the present paper. The task of modeling the
hydrodynamic environment turns out to be a moving boundary problem (MBP) which
is an interesting but difficult issue. The approach in this paper has been the
development of an experimental system (i.e. a small ROV system) and considering how
to model the hydrodynamic environment of the small ROV system.

Two kinds of hydrodynamic environmental models are classified. The first is of an
AUV moving far away from any structure. In this case, the environment can be
modeled as that of a body moving in an infinite domain. This kind of problem can be
solved by the methods proposed by, for example, Gresho, Chan, Lee and Upson 1984,
Kovacs and Kawahara 1991, Zienkiewicz and Taylor 1991, Ren and Utnes 1992. The
second is of an AUV near or inside a structure. The latter problem may be simplified as
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Figure 1. A moving-body in a fixed tank.

that of a body with a thrust moving in a tank, as shown in Fig. 1, which is a moving
boundary problem.

There are many methods to solve Navier-Stokes equations with fixed boundary
conditions as those mentioned above. However, only relatively few authors have
concerned themselves with the solution of Navier-Stokes equations with moving
boundaries. Harlow and Welch (1965) developed the marker and cell method to deal
with the free surface problem based on a finite difference approach. Viecelli (1971) used
a modified version of the marker and cell procedure to solve the same free surface and
‘flexible bag’ problems. Ogawa and Ishiguro (1987) derived the Navier—Stokes
equations expressed in general moving coordinates by using the concept of the Lie
derivatives and solved the equations by a finite difference method. Ramaswamy and
Kawahara (1987) developed a Lagrangian finite element procedure to solve a viscous
free surface fiuid flow problem. Demirdzic and Peric (1990) used a finite volume method
to solve flow in a channel with a moving indentation problem. Hayashi, Hatanaka and
Kawahara (1991) applied a Lagrangian finite element method to solve free surface
problems. Tezduyar, Behr and Liou (1992) developed a new strategy using the
deforming-spatial-domain/space-time procedure to solve moving boundary problems.
However, most of the solution methods presented in the cited references are only
applicable to a certain class of problems.

We propose a new method that will solve the Navier-Stokes equations with moving
boundaries in a more general fashion. We express and solve the Navier-Stokes
equations in a moving-body-fixed coordinate frame. Therefore, we can solve the
problem which includes a moving body with a complex shape. Since the most
interesting area for our problem in the computational domain is around the moving
body, we use a fixed grid in the area near the moving body and an adaptive grid in the
area far away from the moving body. A more accurate solution around the moving
body can be obtained by this treatment, because no interpolation error isintroduced in
this area. The present method is applicable to general problems of solving the Navier—
Stokes equations with moving boundaries.

It should be pointed out that the original problem is in three dimensions, however,
due to computing power limitations, we only solve the problem in two dimensions.

2. Definition
A general definition of MBP can be found in Cryer (1978) and Crank (1984). The

definition given here is related to a solution of the time-dependent incompressible
viscous Navier—Stokes equations.
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Definition

A problem described by the time-dependent Navier-Stokes equations defined on a
domain Q, if the domain Q is a non-trivial function of time, i.e. (d/dt)Q(t)#0, then the
problem is a moving boundary problem.

Remark

The driven cavity flow problem is not an MBP although the upper boundary has
velocity, because the domain of the problem is fixed. The simplified environmental
model of the small ROV is an MBP, according to the definition.

3. Navier-Stokes equations in a body-fixed coordinate frame
Newton’s law of motion for a fluid continuum takes the form

du

Py =~ VpHFE)+pg (1
where uis velocity, p is pressure, g is gravitational acceleration and F| (u) is the force. For
Newtonian fluid, like air or water (see Pedlosky, 1987)

F(u):,quu+§V{V'u) @)

where p is the molecular viscosity. It is well known that Newton’s law applies to the
inertial frame. For our applications, we assume that the earth is fixed by a star in space.
Now let r be the position vector of an arbitrary fluid element as shown in Fig. 2. We
derive r with respect to time and get the velocity as:

dr dr, dr,
(m)f(ﬁx )ﬁ(ﬁ)ﬁ“’“‘“ ®

where the subscripts e and b denote that the derivatives are carried out in the earth-
fixed coordinate frame and body-fixed coordinate frame, respectively. The velocity u,
=(dr/dt), is equal to the sum of u,, =dr/dt the velocity of the origin of the body-fixed

(© Particle

Figure 2. The earth-fixed coordinate system X_Y X, and the body-fixed coordinate system

Y X




148 Guang Ren and J. G. Balchen

frame observed in the earth-fixed frame u, = dr,/dt the velocity observed in body-fixed
frame, and o, x r the velocity due the rotation. We may write this as
Il¢=““+llb+wb><l’b. (4}
Since u,, is the velocity of the origin of the body-fixed coordinates expressed in the
earth-fixed coordinate frame, we should transform u,, from the earth-fixed frame to the
body-fixed frame by
Uy Xer Yor 2e) =T 1(P, 0, Y)os(Xs» Vs Z0) ®)

where

cpcd cysOsp—sycd cpsbed +syséd
J,(9,0,9)=| sycO® sysBsdp+cpcd sysbcd—cysd
—sb cls¢ clcg
is the transformation matrix through the functions of Euler angles (see Craig 1989).
rog (ﬁ’:pitl(:h (0), and yaw (), sy =sin (), cy =cos (). J; has a property of J I
]‘:k:lriving Eqn (4) with respect to time in the body-fixed coordinates, we get

du) d d d
(_dt) =T:;'L+d—?+2w,,xu,,+w,,x(wbxr,,)+-zﬁxr,ﬁw,,xuob )
Substituting Eqn (6) into Eqn (1), we have
d d
p(d:"%+—‘;:"+2mbxub+wbx(wbxrb)+ ;j" xrb+wbxuw). (7

= —Vp+F(u)+pg
For a Newtonian fluid, it is a simple matter to show that (see Pedlosky 1987)
F(u)=F(u,) (8)
and p and g are independent of the coordinate frame. Equation (7) may be writtenin a

conventional form as:

Ou v
—b+(u,,'V)ub+7p— vW2u, — 2w, X Uy

ot
; ; ®
u )
= —( d“’ﬁ—rw,,x(mb X 1p)+ dtb X T+ @y, ¥ uob)+g
and the continuity equation
V-u,=0 (10)

where the terms on the right-hand side of Eqn (9) are known source terms or known
functions, u, denotes velocity (ms~*) relating to the body-fixed coordinate frame, v is
the kinematic viscosity (m2s~'). The boundary conditions are

u,=b,(x,f) on I(t), with In-ﬁ,ﬁl"=0, (11)
r
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where @, (x,, t) is a known function on the boundary I'(t) of the domain Q(¢) expressed in
the body-fixed coordinate frame, and n is the outward-pointing normal vector on I'(t).
The initial conditions are

u,=uy(X, fo)=uy(x) in Qto)UT ()
(12)
with Veug=0 in Qt)ul(t,)

where u?(x) is a prescribed function.

Equation (9) including continuity Eqn (10), are the time-dependent incompressible
viscous Navier-Stokes equations in a moving-body-fixed coordinate frame. In the case
of w,=0 and u,,=0, Egns (9) and (10) are reduced to ordinary Navier-Stokes
equations.

4. Algorithm
Applying the modified velocity correction method described in detail by Ren and
Utnes (1993) to the moving boundary problem we have the following algorithm:

Step 1
Calculation of Runge-Kutta coefficients for an intermediate-velocity i omitting the
pressure (Vp") in Eqn (9):

K, = —Af(— W+ (u} - Vup +Sy) (13)

where S; is the source terms (du,,/dt + @, X (w, X 1,) +(dw,/dt) x 1, + @, X u,,) which are
supposed known functions.
i=up+K, (14)

K, = —Atf(— Wi+ (u*- V)i +S,) (15)

where the superscript n indicates the nth time step and At is the time increment.

Step 2
Calculation of the intermediate-velocity field:
K,+K
dup =2 (16)
Step 3
Solution of the pressure Poisson equation to satisfy the incompressible continuity
equation
vip'=( £ v-a) (17)
At
Step 4

Correction of the intermediate-velocity field:

utl =g —(%)Vp“ (18)
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5. The finite element method

The finite element discretization of Eqns (13—(18) is performed using the Galerkin
weighted residual method through the following expansions in the piecewise poly-
nomial basis functions associated with the finite element method:

u(x, t)= iiu,{t}q&,(x) (19)
0= Y. P09 20)

where N is the number of nodes for velocity and pressure in the discretized domain. The
weak form of Egns (13)<18) permits ¢,(x) to be discontinuous in the first derivatives
and introduces natural boundary conditions. Thus ¢(x) are chosen to be C° piecewise
linear basis functions defined on isoparametric triangular elements. Inserting Eqns (19)
and (20) into Eqns (13)(18) leads to a discretized system of equations, which can be
written in matrix form for the whole domain.

Step 1
MK, = — AtS"u) — AtA"s + AtMS; + AtT, @1
Mo =Mu} + MK, 22)
MK, — — AtS" — AtA" + AtMS, + At @3)
Step 2
M K
Mﬁ=Mu;',+(- KM *) )
Step 3
S,p'= —(i’t)(n,mn,m r (25)
Step 4
. (At
Mu;“=Mu—(p)Dp" 26)

Here u}* ! and uf are now global vectors containing all nodal values of (u,, v,) expressed
in the body-fixed coordinate frame at the (n + 1)th and nth time steps, respectively, @t is
the global vector for the intermediate velocity field, p” is the global pressure vector
containing all nodal values of p (pressure) at the nth time step (p is defined on the same
nodes as u), I} and I'} are the vectors of natural boundary conditions for velocity and
pressure respectively, M is the mass matrix, S” is the diffusion or Laplacian matrix, and
A"= A(u}) is the advection matrix.

The element matrices associated with Eqns. (21)—26) are evaluated on each element

as:
ad'T
o b “ax
e= T ¢= ] —_—
M J‘ad)(ll dA,S; JIA (é‘x’ﬁy) é‘lib: dA.
dy
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The diffusion matrix 8" has two forms. The original form is

G(DT
o 0 D\ | ox
S = J’A (E, a)" @r dA,
dy
and the other version has the balance tensor diffusivity (BTD) included:
N
Sﬂ'_ aE @ 2 bub 2 ubvb ax__ dA
Al \ex oy A v+mw oo ’
2 ] 2 b ay

where (i4,, v,) are averaged velocities in x and y directions on the element, respectively.

D;= J D(0D"/0x)dA,

— a(bT e __ D: 0 en__ T, aq)T T, aq)T
i [ (5 G e [l el o

where ®T=(¢, ¢,, ¢,) is the vector of basis functions for an element.

6. Numerical results
6.1. A simplified model of the hydrodynamic environment fo a small ROV

A simplification of the environmental geometry and boundary conditions of a small
ROV is shown in Fig. 3. A circular cylinder (i.e. 2 small ROV) moves in a rectangular
tank. The rectangular tank is reduced to 2 x 1-2 m, a moving body is a circular cylinder
sized d=0-2 m in diameter, and it moves in the x-direction with velocity u=0-1 m/s and
in the y-direction with velocity v=0m/s. The Reynolds number is chosen to be

du, 02x01
Re=="=Gooo1428 17>

It should be noted that there are two coordinate frames in Fig. 3; the body-fixed and
the earth-fixed coordinate frames. Here, the boundary conditions are given in the earth-
fixed coordinate frame.

The moving body is at a standstill relating to the body-fixed coordinate frame.
However, the tank including the fluid is moving relative to the body-fixed coordinate
frame. The advantage, here, is that a moving tank is easier to treat than a moving body
because: (1) A tank normally has a simple geometric shape. On the other hand, the
shape of a moving body may be complex; (2) The most interesting area in the
computational domain is the area around the moving body. There will be less
computational error in this area, if the computation is done in the moving-body-fixed
coordinate frame rather than the earth-fixed coordinate frame, because the grid in this
area is fixed with the moving-body, so that no interpolation error is introduced. Figure
4 shows that the subdomains numbered 2,3, 4 and 7 are always fixed with moving body.
On the other hand, the subdomains numbered 1, 5, 6 and 8 are adapted, which means
that the subdomains numbered, 1, 5, 6, 8 are always changing their sizes, when
computation is being performed.




152 Guang Ren and J. G. Balchen

Ay
u (X,Ye)=0, v (X, Ye)=0
¥b Moving body 4
u (xe.ye)=0 f u (xe,m=0-_lo m
Vv (Xe» Ye)=

V (Xe» Ye)=0 = 1.2m

' 02m u (%g.ye)=0

[) v (Xe Ye)=0
‘is-i'—-" 15m
- —| § T

u (x¢,¥e)=0, v (x¢ ye)=0
Figure 3. Environmental geometry and boundary conditions.
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Figure 5. The starting grid.

The grid where the computation starts is shown in Fig. 5. At the same time the body
in the tank starts to move with velocity u=0-1m/s and v=0m/s. A new grid is
generated at every time step. The values on the new grid are interpolated from a
background grid (the grid before one time step).

The following steps are used for the nodal value p, on the new grid to be
interpolated from a background grid in the adapted subdomains.
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Step 1:
Finding nodal point DPop Which is the nearest nodal point on the background grid to
nodal point p, on the new grid as illustrated in Fig. 6(a).

Step 2:

Finding the nodal points related to point Pop (the related nodal numbers are stored
in an array). Figure 6 (b) shows the related nodal points to node Pop- The nodal points
related to nodal point Pop are the points numbered 1, 2, 3, 4, 5, 6 and 8. Point 7 is not
related to nodal point Doy» because there is no direct link from point p,, to point 7.

Step 3:
Evaluating the value of point p, on the new grid usin g the nodal values of points p,,
2,3,4,5, 6 and 8 on the background grid by

1 1 1 1 1 1

= Yoot T uVit Vet t VetV (27)
" sum (dOp)z 7 (dy)? ! (dy z (d6)2 © (dg)? B)

where d,, denotes the distance from nodal point Po on the new grid to nodal point Pop

on the background grid, d, is the distance from point p, on the new grid to point p, on

the background grid, etc.

1 1 1 1
Sl.ll'l‘l—((d,—mq")2 +(d_l)2 +(d—2)2 ++(d6)—2+(d‘8?), Vop

is the value (pressure or velocity) on nodal point Pop» and V] is the value (pressure or
velocity) on nodal point p,, etc.

Figures 7-15 show the computed results and adapted grids. Figure 7 is the grid at
time ¢ =0-25s. The cylinder inside the tank is movin g in the x direction. Figure 8 shows
the velocity field at same instance. It should be noted that the velocity field is expressed
in the cylinder-fixed coordinate frame rather than in the earth-fixed coordinate frame
and that the movement of the cylinder can be seen from the data on the coordinates.
Figure 9 is the grid at time t=2-5s. Figure 10 illustrates the velocity field at time
t=2-5s. Figure 11 is the grid at time t=50s. Figure 12 is the velocity field at time
t=50s, from which we should note that two eddies are formed behind the cylinder.
These results are in good agreement with the experimental data (see Prandtl and
Tiejens 1934). Figure 13 illustrates the pressure field at time t = 5-0's. Fig. 14 is the grid at
time 1="7-5s. Figure 15 shows the velocity field at time t=7-5s. We note that the
cylinder has moved from a position near the left of the tank to a position near the right-
hand side of the tank.

Background grid
1 / 6 57

_-*;7#—*‘. == S 7 < P
: ,"'/ N B

g : 3 ‘\\ b2 ’
(@ grid NNewgid  (p)

Figure 6. Related nodal points to p,,
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6.2. Driven cavity flow
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As mentioned before, in the case of w, =0 and uy, =0, Eqns (9) and (10) are reduced
to the ordinary Navier-Stokes equations. In order to validate the computing results,
we chose the classic driven cavity flow problem as the second example. It seems that the
driven cavity flow problem is a standard test and documented data are available for
comparison. Reynolds number Re =u,L/v= 1000 is selected. A (32 x 32) grid is chosen,
the total number of nodal points are 1089, and there are 2048 clements. The boundary
conditions are: A square domain (1 x 1 m) with three walls fixed (zero velocity), and the
upper wall sliding with constant velocity u, = 1 m/s. At the two upper corners, =0 and
at the first node in from the corners, u= 1/2, as suggested by Sani, Gresho, Lee, Griffiths
and Engelman (1981). The time step is At=001s.
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Figure 18. y-Velocity distribution through geometric centre of cavity, Re=1000.

Figure 16 shows the computed velocity fields. The result compares well with other
calculations, e.g. Ghia, Ghia and Shin (1982), as shown in Figs 17 and 18. It should be
noted that the present grid is relatively coarse compared to the ones used by Ghia, Ghia
and Shin (1982) and Gresho et al. (1984).

7. Conclusions

A new method for modeling the hydrodynamic environment of underwater robotic
vehicles has been proposed, which is the solution of the time-dependent incompressible
Navier-Stokes equations with moving boundaries. The Navier—Stokes equations have
been transformed to a general moving-body-fixed coordinate frame. A definition has
also been given of the moving boundary problem related to a solution of Navier-Stokes
equations. The method presented has been implemented in the C language on a
SUN/Sparc Station, and has been demonstrated by a large number of numerical
examples. The code has been validated by comparing the computed results against
available experimental data.

Though the purpose of developing this method is to model the hydrodynamic
environment of underwater robotic vehicles, it can be seen that this method has a large
potential in possible applications to other problems.
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