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Navigation by images
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A new navigation method based on measurements of image tokens and Kalman
filtering is presented. An image token is the central projection of a landmark, a point
on the terrain surface. This surface being described by an elevation map, a Kalman
filter processes the measurements to update estimates of camera position and
orientation, and landmarks. The method has been implemented for off-line
simulations of acroplane navigation. Preliminary tests indicate a performance at
least comparable to that of satellite navigation systems. The implemented algorithm
also seems to have high tolerance against noise and modeling errors.

1. Introduction

Navigation, absolute positioning, is an important task in many applications.
Traditional, inertial navigation systems (INS) measure accelerations and thus have an
increasing positional uncertainty. This problem can be reduced by increasing the
accuracy of the accelerometers, thus making today’s high-quality INS systems very
expensive.

The only possible way to eliminate the problem of increasing uncertainty is to
employ absolute position dependent measurements. This is done in radio and satellite
navigation systems such as Omega and Navstar GPS, but can also be done
autonomously in image-based navigation. Research on image-based navigation has
primarily been focused on motion estimation (Zinner et al. 1989), two- or three-degree-
of-freedom applications (Aguirre et al. 1990), use of stereo imaging (Blackman 1991),
and/or recognition of specific landmarks with a priori known position (Dickmanns
1988). The navigation method described in this paper is designed for use with a single
camera, the only reference data required is an elevation map, and it can be used for
navigation with six degrees of freedom (camera position and orientation unknown).

2. Basic concepts

Let each element in a set of static terrain points be called a landmark, and its central
projection an image token. As the landmarks are points on the terrain surface, one
component of a landmark is assumed to be a function of the other two. This function is
given by an elevation map m(-). A token is therefore a function of camera position and
orientation (called camera state), and two components of the landmark (called reduced
landmark).

We define the token flow as a function f: R* x R—[R? such that f(x, y; t) is the central
projection of the landmark (x, y,m(x, y)), at time t. The token flow is related to the
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optical flow, often defined as the apparent motion of brightness patterns in an image
(Horn and Schunk 1981).

3. Direct solution

If the imaged terrain is flat, the entire motion field (the token velocity field) can be
represented by 8 so-called essential parameters (Tsai and Huang 1984). These
parameters also relate the motion field to the camera motion (velocity by a scale factor,
and angular velocity) (Zinner et al. 1989). As any solution for camera position can be
arbitrarily translated and/or scaled, this method can not yield bounded-error position
estimates. Moreover, the results in a nonlinear terrain are unpredictable.

A generalized version of the above approach, here called the direct solution, can be
described as follows. A set of T tokens in each of F frames can be used to generate a set
of 2FT equations describing the token flow as a function of camera states (6F
unknowns) and reduced landmarks (2T unknowns). These equations are always
nonlinear, since camera orientations are unknown. With nonlinear terrain, the map
represents additional nonlinearity in the system of equations.

A closed-form solution to the equations cannot easily be obtained. However, it can
be shown that under certain conditions, one being a nonlinear terrain, isolated
solutions do exist (Hagen and Heyerdahl 1992). An isolated solution is such that a small
perturbation of it does not produce a solution. If F equals two, six landmarks can be
sufficient to yield isolated solutions. With more frames (and thus more measurements of
the same tokens), even fewer landmarks can suffice.

Note that this approach does not involve the computation of the essential
parameters, and that the equations are valid also in a nonlinear terrain. In a linear
terrain, the direct solution will be equivalent to the traditional optical flow/essential
parameters approach.

4. Proposed solution

Another approach towards obtaining camera position is using a Kalman filter
with a state vector including camera state and reduced landmarks, and with tokens as
measurements. The Kalman filter estimates are solutions to a different estimation
problem than that of the direction solution, as an estimate of the initial state is required
(and not solved for). If tokens can be measured exactly, a zero error estimate requires
the direct solution. The Kalman filter is advantageous when measurements are noisy or
when there exists more than one solution. This is very often the case, and the Kalman
filter then processes additional information in an optimal way.

In a nonlinear terrain, translation and/or scaling of the reduced-landmark—camera
system might give rise to different measurements. Bounded-error position estimation is
therefore (at least in theory) possible.

In a linear terrain (where the direct solution approach will fail), the Kalman filter
can estimate velocities with bounded uncertainties and thus position and orientation
(with lincarly increasing uncertainties). Furthermore, if the system does not lose track
of at least three initial landmarks, and if the camera-landmarks distance is bounded,
camera position can be estimated with bounded uncertainty even in a linear terrain:
Estimates of the initial landmarks are calculated from the tokens in the first frame, the
initial camera state, and the elevation map. The measured tokens in subsequent frames
are thus measurements of the central projection of ‘known’ landmarks. (As the
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landmarks are assumed to be static, their estimatc error covariances are non-
increasing.

An important part of the algorithm is the selection of tokens. Given a dynamic
model, the selected tokens must provide satisfactory or, failing that, (sub-)Joptimal
camera position estimate error.

When considered individually, the suitability of a potential token is determined by
three criteria:

1. The error when the token is measured (by image processing). The measurement
error is dependent on the image function around the potential new token.

2. The landmark estimate error. The landmark estimate error when selected
depends on the information in any extra reference data. There is, however,
always an upper bound to this error, given by the camera state and its estimate
error, the error in the elevation map, and the correspondence between token and
landmark.

3. The linearity in the terrain around the landmark. As the Kalman filter ideally
requires a linear measurement function, the terrain should be reasonably linear
within the landmark’s region of uncertainty.

Considered as a whole, the tokens should be distributed —ideally throughout the
image. The terrain function normals at the landmarks should also be distributed.

By using the predicted state estimate and its error covariance, search areas can be
computed to facilitate the token measuring. A landmark is typically deleted from the
state vector if it is outside the field of view, or after the corresponding token has not
been accepted as measured for a number of consecutive frames.

The general algorithm is outlined in Figure 1.

5. Implementation

The following sections describe an implementation of the algorithm in Fig. 1, for
aeroplane navigation. The algorithm is implemented on a Teragon image processing
computer using a microVax 3600 as host. The system consists of a Twin Otter aircraft
and a TICM II imaging IR (8-12 um) sensor, or a CCD TV camera, fixed to the

Get initial state estimate X and error covariance matrix P
FOR each frame DO
FOR each token DO
Measure token, calculate confidence
Calculate confidence threshold
Measurement vector dimension: =0
FOR each token DO
IF measurement confidence > threshold THEN
Include measured token in measurement vector
ELSE
Determine deletion of the landmark states
Reduce % and P as determined
IF measurement vector dimension>0 THEN
Update % and P
IF too few landmarks THEN
Select new tokens
Augment % and P
Predict ® and P for next frame time

Figure 1. The general algorithm.
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fuselage. Camera orientation relative to the aeroplane is fixed; the camera is tilted approx
imately 4-5° down.

Apart from an elevation map (DTED- Digital Terrain Elevation Data), no reference
data is used. When an image token is selected, an estimate of the corresponding
landmark is found from an inverse central projection function g(-). With camera state,
the token and the elevation map as input, this function returns the nearest intersection
between the projection ray and the terrain surface (Hagen 1992).

5.1. Kalman filter

The filter is an Iterated Extended Kalman filter with continuous-time dynamics and
discrete-time measurements (Gelb 1974). A factorized mechanization is used to ensure
long-term numeric stability. The system model is

x(t)=f(x(t), u(r) + w(2). 1))

The state vector x and the dynamics function f() are shown in Table 1,u=[u, u, us1"is
the control vector. u, and u, are rudder and elevator deflections, u; is thrust. The
process noise w is assumed to be zero mean, white, and Gaussian, with a diagonal
spectral density matrix Q. Only components 7-13 in w are nonzero.

The aeroplane is modeled to move along its principal axis, in an atmosphere
moving with the wind velocity. The dynamic model was roughly designed and not
systematically tuned.

The measurement model is given by

Z9i-1 F X; Uzj—q .
= =1,2,..
[ Zo: ] F+1§[Z,-]+[ . ], i=1,2,..,m, 2

State vector
Comp.
no  Symbol  Description Group Dynamics function
1 a Azimuth angle d
2 B Pitch angle Platform orientation [rad] f
3 ¥ Roll angle (e d—cauojg+7,
4 I Longitude —vsinocos f+ay
5 4 Latitude Platform position [m] veosocos f+w;
6 h Altitude vsin f+ay,
7 4 Azimuth rate —¢ G4Cauy
8 Jij Pitch rate Angular velocity [rad-s '] —c3f+cqu,
9 Ve Quasi roll rate —Cs¥—Celq
10 v Speed [ms™ 1] —e,v—gsin f+cglis
11 w, Wind East —Cyy
12 ; Wind North ~ Wind velocity [ms '] — €y
13 @y Wind Up —Coy,
14 1 Longitude 1 0
15 A Latitade 1 Landmark 1 [m] 0
1242m 1, Longitude m 0
13+2m A Latitudem  -endmertemiml 0

Table 1. Description of state vector and dynamics function. g=9-81 ms~2 is gravitational
acceleration.
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where F is the focal length of the camera, and

Xi IE - I
Y | =%, B, v R(a, B, ) =4 . (3)
z, mly 2~ h

() is a 3 x 3 rotation matrix, and (o, f, y.) defines the camera orientation relative to
the aeroplane. m(*) is the elevation map. Therefore,

z=h(x)+v. @

The measurement noise v~ N(0, R) is assumed to be white and uncorrelated with
the process noise w. The covariance matrix R is diagonal.

5.2. Token description

Pixel describing features are used in the measuring and selection processes. The
features are circle integrals (Heyerdahl 1991), defined by

2n
ei{p)=J Sf(py+ricosb,p,+r;sin6)do (5)
(1]

where p=(p,, p,) is a point in the image, fis the image function and r, is a radius. If fisa
step function, (5) reduces to a 2D FIR filter where each pixel weight equals the sector
angle of the part of the circumference enclosed in the pixel. This is illustrated in Fig. 2.

These features are invariant with respect to translation and rotation, but not to
scaling. Also, the summation of pixel values suppresses image noise effects (signal-to-
noise ratio is increased).

Several circle integrals are compiled in a feature vector, denoted e(p). In the
implementation, 5 circle integrals, with radii of 3,6,9, 12 and 15 pixels, are used.

5.3. Token selection

The selection of new tokens is performed in a two-stage process. Firstly, the entire
image is (sub-optimally) searched for points that maximize a uniqueness measure
(Heyerdahl 1991) under the side condition of a minimum distance to other tokens. The
uniqueness measure of a pixel p is designed to be small if there exists a pixel on a circular
disc with a given radius, centred at p, with large spatial distance and small feature
distance to p. This first stage thus returns a list of potential new tokens.

[J 00200
[] 00726
- [] 01463
Ny ] B 02003
B 02045

I W 02518
; =ﬁ\.p

Figure2. Tllustration of the circle integral with radius r =5 for pixel p. Summation is performed
over the hatched pixels, with weights as shown.
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In the second part of the selection process, the landmark corresponding to each
potential token is calculated, using the inverse central projection function g(). A
potential token is rejected if the landmark is too far away from the camera, or if it is
found to be near a strong non-linearity in the imaged terrain (e.g. near what isimaged as
the edge of a hill). This is determined by applying g(*) to a number of pixels near the
token. Enough tokens are selected to get a required total number.

Reduced landmarks are included in the state vector. Error covariances are found by
linearization of g(*), and included in an augmented estimate error covariance matrix.

5.4. Token measuring

For each token t, a search area S(f) which contains the token with a given
probability is calculated. Using the assumption that the state estimate error is
Gaussian, this area is found from the predicted state estimate and error covariance by
linearization of the measurement (central projection) function. S(t)is an elliptical region
in the image, centred at the predicted position of t.

A pixel peS(t) which minimizes the feature distance to the predicted features &), is
the potential measured position of t. The confidence ¢(p) is then calculated (Heyerdahl
1991). The token t will be accepted as measured if c(p) is greater than an adaptive
threshold, designed to ensure that a minimum number of tokens are accepted.

&(t) equals e(t) in the preceding frame if t is one frame old. &(t) equals updated
features at t in the preceding frame otherwise. Updated token features are calculated as
a weighted sum of e(p) and &t).

If a token is not accepted as measured, the corresponding landmark states are
deleted from the state vector. The estimate error covariance matrix is reduced
accordingly.

6. Test results

A data set (image sequences) was acquired with the aforementioned aeroplane/
sensor combination. The flights took place in southern Norway, mainly over rural
areas with hilly or undulating terrain. The aeroplane-to-ground altitude was typically
400-700 m. For system initialization and result evaluation, the trajectory of the aircraft
(position and orientation) was recorded from a combined INS/GPS navigation system.
Controls were not measured.

The implemented navigation system has been tested by various off-line simulations.
Due to an unexpected inconsistency between the images on one hand, and the recorded
trajectories, the imaging function and the elevation map on the other, a two-step test
has been devised. Firstly, the measuring process has been simulated (to determine the
magnitude of the measurement errors). Secondly, the navigation system is run with
simulated measurements (to determine the navigation errors).

The inconsistency is probably caused by an incorrect measurement model. More
specifically, we have strong indications of (1) significant discrepancies from the central
projection function, and (2) incorrect calibration of the camera as regards orientation.
Correction of these errors is straightforward, but time-consuming.

6.1. Measuring simulation

Simulations of the measuring process have been performed on both infrared and
TV image sequences in the data set. For the token measuring, a simple prediction
(constant image-plane velocity for each token individually) and circular search areas
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Figure 3. Measuring simulation (CCD TV images). Every 38th frame is displayed. (d) Start,

(b)(h) after 3, 6, 9, 12, 15, 18, 21 seconds. The images are contrast enhanced for this
display.
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(radius 15 pixels) were used. The resulting measurement error is approximately 1 pixel
in medium-quality images. Tokens that were actually in the image were accepted as
measured with more than 99-5% probability. With poorer images (c.g. in light fog), the
error typically rises to 2--3 pixels, and the acceptance probability drops to 94-98%,.

Figure 3 shows selected TV images from one simulation. The frame rate was
12-5Hz, and the displayed images are 3s apart. Image size is 500 x 720 pixels. By
manual inspection, the mean measurement €rror was found to be less than 1 pixel.
Similar results are achieved with IR images (Hagen 1992).

Even better performance must be expected with the complete system, as the
superior token prediction offered by the Kalman filter makes smaller search areas
acceptable.

6.2. Navigation simulation

In the tests utilizing simulated measurements, the first part of the ‘token’ selection
was governed by the side condition only. The corresponding ‘landmarks’ were found by
the inverse central projection function. Measurements were simulated by computing
the central projections of the landmarks, and adding Gaussian noise. In the projection
processes the recorded aeroplane trajectories and the elevation map were used. A 100%,
measurement acceptance probability was assumed for tokens in the image. Because
control measurements were not available, the constants c,, ¢4, and cg were set to zero.
The other constants are listed in Table 2. The nonzero elements of the process noise
spectral density matrix Q are shown in Table 3.

Results from one such simulation are shown in Figs 4 and 5. The duration is
160 seconds, i.e. 4000 frames at full video rate. An 8 x 12° field of view discretized into
1000 x 1000 pixels was simulated. 12 tokens are ‘measured’, with a measurement error
standard deviation (SD) of 1-2 pixels. The terrain-map deviation is modeled as
Gaussian with SD=2'5 metres.

The estimated position is seen to be within a few metres from the recorded. More
important still, the errors do not increase with time. This performance is at least
comparable to that of high-quality satellite navigation systems. Estimated camera
orientation is correct within 0:05° for azimuth and pitch, and 0-4° for roll. Other
simulations have shown satisfactory results with lower image resolution, lower frame
rates (as low as 2 Hz), larger measurement noise, and larger initial errors (Hagen 1992).

7. Possible applications

The implemented algorithm was designed for aeroplane navigation, in that the
dynamic model was assumed to roughly describe a trajectory of a light aircraft. For

Constant Cy,C3 Cs Ce cq Cg
Value 02s ! 00452 04s ! 0 001s!
Table 2. Model constants.
Diagonal
element no. 7 8 9 10 11,12,13
Value 00004 rad?s ¢ 00002rad%s * 00016rad’s * 036m’s™* 004 m?s~ 4

Table 3. Nonzero elements of the process noise spectral density matrix.
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Figure 4. Results from the navigation simulation. (a) Azimuth angle, (b) pitch angle, (c) roll
angle, (d) longitude relative to 11°E, (¢) latitude relative to 60°N, and ( f) altitude relative to
mean sea level. Horizontal axis: Time in seconds. Vertical axis: Recorded (black) and
estimated (gray) orientation and position. Angles in degrees, positions in metres.
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Figure 5. Results form the navigation simulation. (a) Azimuth angle, (b) pitch angle, (c) roll
anglc, (d) longitude, (e) latitude and () altitude. Horizontal axis: Time in seconds. Vertical
axis: Orientation and position estimate error (black) and +1 filter estimate error standard
deviation {gray). Angles in degrees, positions in metres.

4




Navigation by images 143

the general algorithm, a number of other applications are conceivable—missiles,
unmanned air vehicles, mobile robots, and ships in coastal waters. A navigation system
employing the presented method can be run with no other measurement sources than a
camera. Inclusion of other measurement sources, such as inertial platforms or
altimeters, will improve system performance.

For adequate handling of abrupt manoeuvring, actuator information will normally
be necessary. This information will, however, be readily available in most applications.

8. Conclusion

A new method for navigation (absolute positioning) based on image processing and
Kalman filtering has been presented. The method has been implemented for aircraft
navigation. Preliminary test results from this implementation indicate performance
comparable to, or better than, that of high-quality satellite navigation systems, and
high tolerance against noise and modeling errors. Several other applications of the
method are conceivable, including navigation in missiles, mobiles robots, and ships.

REFERENCES

AGUIRRE, F., BOUCHER, J. M., and Jacq, J. J. (1990), Underwater navigation by video sequence
analysis. Proceedings 10th ICPR, Atlantic City, NJ, 537-539.

Brackman, C. P. (1991), Robot vision for an autonomous land vehicle. Proceedings NATO DRG
Seminar on Battlefield Robotics, Paris, France, 1991, 330-341.

DICKMANNS, E. D. (1988), An integrated approach to feature based dynamic vision. Proceedings
CVPR 88, Ann Arbor, Mich., 820-825,

GELB, A. (ed) (1974), Applied Optimal Estimation (M.L.T. Press, Cambridge, Mass).

Hagen, E. (1992), BASIS image based navigation—method, implementation and results (in
Norwegian). FF1/Rapport—92/4008, NDRE.

HAGEN, E. and HEYERDAHL, E. (1991-92), On algebraic solutions to the navigation problem (in
Norwegian). Internal notes and discussions, NDRE.

HEYERDAHL, E. (1991), Circle integrals—simple, noise robust, translation and rotation invariant
features (in Norwegian). Proceedings NOBIM 1991, Skedsmo, Norway, 43-50.

Horn, B. K. P. and ScHunK, B. G. (1981), Determining optical flow. Artificial Intelligence, 17,
185-203.

Tsal, R. Y. and HUANG, T. S. (1984), Uniqueness and estimation of three-dimensional motion
parameters of rigid objects with curved surfaces. IEEE Transactions on Pattern.Analysis
and Machine Intelligence, 6, 13-27.

ZINNER, H,, ScHMiDT, R. and WoLF, D. (1989), Navigation of autonomous air vehicles by passive
imaging sensors. Guidance and Control of Unmanned Air Vehicles, AGARD Conference
Proceedings No. 436, 34: 1-14.




