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Singularity robust redundancy resolution with task priority can be implemented
using the extended Jacobian technique with weighted damped least-squares. The
resulting scheme is simple to implement and involves less computation than the task
priority scheme. The minimum singular value of the Jacobian can be estimated
reliably and accurately with little computation, and this estimate was used to
calculate an appropriate damping factor. A constant damping factor was also used
with good results. The scheme was successfully implemented in a simulation study
with a seven-joint manipulator with a kinematic design derived from the PUMA

geometry.

1. Introduction

Many applications of manipulators with redundant degrees of freedom are
conveniently described in terms of a primary end-effector task and a secondary task
specifying the position coordinates of the internal motion. This formulation has the
problem that artificial or algorithmic singularities are introduced.

Baker and Wampler (1988) solves the problem by using inverse kinematic functions
defined on a singularity-free workspace. However it is not clear how to use this method
for manipulators with seven joints of more. Baillieul (1985) included the secondary
constraints in the task coordinate vector in the extended Jacobian scheme. The method
is very simple, but it fails in artificial singularities where the extended Jacobian becomes
singular even though the end-effector Jacobian has full rank. Nakamura, Hanafusa and
Yoshikawa (1987) proposed the task-priority strategy which was further developed by
Maciejewski and Klein (1985). This method is more computationally expensive than
the extended Jacobian method, but it will always give a correct primary end-effector
solution as long as the end-cffector Jacobian has full rank. The artificial singularities
are apparently eliminated with the task-priority scheme. However, the solution is ill-
conditioned close to the artificial singularities due to the use of a pseudoinverse of a
matrix which becomes rank deficient in the artificial singularities. This is solved in
(Macejiewski and Klein, 1985) by calculating the efficient rank of the matrix, and
treating it as singular wherever it would yield unacceptably large answers. This will give
correct end-effector motion, while the internal motion is damped close to artificial
singularities.
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It would be desirable to have a solution which combines the computational
simplicity of the extended Jacobian technique with the priority handling of the task-
priority scheme and at the same time gives acceptable trajectories in singularities. We
propose to use weighted damped least-squares to achieve this. The damped least-
squares solution has been proposed for singularity-robust inverse kinematics (Naka-
mura and Hanafusa, 1986, Wampler, 1986). Damped least-squares could solve the
problem of artificial singularities in the extended Jacobian technique, but the end
effector position is not given priority in this scheme, so the error due to damping would
then just as well be in end-effector coordinates as in the internal motion. However, the
desired task priority property can be achieved in the extended Jacobian scheme using
weighted damped least-squares where the low priority internal motion is given lower
weight than the high priority end-effector motion. This will result in a computationally
inexpensive task-priority scheme with singularity robustness. The method is analysed
using the singular value decomposition, and the smallest singular value is used as a
measure of how close the manipulator is to a singularity. A problem with the damped
least-squares solution in inverse kinematic is to select the damping factor. Here there is
an added problem due to the scaling. We have investigated the use of a constant
damping factor (Wampler, 1986) and a damping factor calculated from an estimate of
the smallest singular value (Maciejewski and Klein, 1988).

Seraji and Colbaugh (1990) simultaneously developed a scheme similar to the
proposed method, focusing on the manipulability index (Yoshikawa, 1985) as a means
for observing if the manipulator is close to being singular. However, the manipulability
index does not necessarily give a good measure for the distance to a singularity (Golub
and van Loan, 1989).

The scheme was tested out in simulations on a simple planar manipulator and a
seven-joint manipulator derived from the PUMA geometry, and the results are
reported in this paper.

2. Kinematics

The n-dimensional vector of joint coordinates is denoted by ¢. Differential task-
space motion is described by 6x,= %6t where dt is a small time increment and %, is an
m-dimensional task-space velocity. The m x n task Jacobian J(g) is defined by

x,=J,(g9)g 1)

and incremental motion is given by

ox,= J,(9)dq @

where dg= §ot.

In configurations where the task Jacobian J, has full rank, the end effector has m
degrees of freedom. When the Jacobian is rank deficient so that rank (J)=r, r <m, the
end effector has only r degrees of freedom and the manipulator is said to be in a singular
configuration.

3. Internal motion

To specify the motion of the manipulator in all n degrees of freedom it is necessary
to specify n—m additional constraints. Here we use positional constraints by specifying
x, which is a vector of dimension n—m. The constraint Jacobian J, is defined by

ox.=JAg)oq G
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A n-dimensional task increment 5x can now be defined:

_| %
sx= [ mr,] @
and the n x n extended Jacobian J defined by (Baillieul, 1985, Egeland, 1987)
J
ox= :Rq)éq=[ J:{:;]éq )

The extended Jacobian solution (Baillieul, 1985) is to calculate the joint motion 3¢
from

8qe,=J '(g)ox ©)

using Gaussian elimination. If any of the rows in the constraint Jacobian J_ becomes
linearly dependent of the rows in the task Jacobian Jj, Jg) becomes rank deficient, and
no solution dg will exist unless dx is in the range space of J. If this happens in a
configuration where the task Jacobian J, has full rank which means that the end-
effector can move in m degrees of freedom, the manipulator is said to be in an artificial
singularity. The main drawback with the extended Jacobian technique has been its
poor performance with respect to artificial singularities.
In the task priority scheme (Nakamura et al., 1987), the solution is

3qrp=J10x+(I— I} (I~ J1I)] (6~ I T 6x;) (7)
which can be simplified to (Maciejewski and Klein, 1985)
Oqrp=J10x,+[J(I—- T} J)]'(Gx.— J T ox) ®)
From Eqn (7) it is easily seen that
JOqrp=10x, ©)

which means that if J; is full rank the end-effector motion is always correct
independently of J,. This apparently means that the problem of artificial singularities
has been solved, but this is only partly true. The scheme involves taking the
pseudoinverse of the matrix J(I— J{J) which is rank deficient in artificial singularities.
In fact, if the task Jacobian J, is full rank, this matrix is full rank if and only if the
extended Jacobian J is full rank. This can be shown as follows:

Proof
When J= [::‘] we have by the definition of the null space
M) =AIINA(J) (10)
which means
Jis full rank<> A (J)NA(J)={0} (11)

The matrix J(I—J1J,) is of dimension (n—m) x n, which means that it has full rank, if
and only if,
dim A (J(T—-J}I)=m (12)
Generally we have
A(AB)= A (B)+ %(B)n.A (A) (13)
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Since
RI-II)=H(J) (14
we now have
N(JA=TI)=AT—TIT)+ A (T)NA(J) (15)
When J, is full rank
dim A(I-J1J)=dim R(J)=m (16)
Egs. (15) and (16) gives
dim A (J(I— T} J) =m+dim (S (T)NA(J) (17
Combining Eqgns (11), (12) and (17) completes the proof. O

This means that the task-priority scheme as given by Eqn. (7) or Eqn. (8) gives the
same solution as the extended Jacobian scheme in Eqn. (5) except exactly in the
singularities. Close to the artificial singularities also the task priority scheme is ill
conditioned, and special routines have to be used (Maciejewski and Klein, 1985).
However, the scheme has the advantage that if the matrix J(I—J}J)) is properly
damped, the errors due to damping close to artificial singularities will be purely in the
secondary constraint directions.

4. Scaling of the Jacobian matrix

Whether the extended Jacobian Jg) is close to being singular or not must be
considered with respect to the order of magnitudes we are working with.

The conditioning number x of a matrix A is defined as

K=lAl A= =2* (18)

where o, and 6, are the largest and smallest singular values of A, and a large condition
number indicates that the matrix is nearly singular.

By scaling the Jacobian matrix such that o, is within the magnitude of one, also o,
will be a measure for how close J{g) is to being singular. Wampler (1986) suggested to
scale the Jacobian matrix with the length of the arm, which will constrain o, such that

212 g, <(2n)'? (19)
for a six-degree-of-freedom manipulator (n=6). We will show this as follows:
Proof
The Jacobian matrix for a manipulator with n=6 rotational degrees of freedom is
(Whitney, 1972)
J;=[ by by, ] -
4 4ap..8,,

where a; is the approach vector of the transformation matrix
‘R=[m s a] 21
from frame i to frame O, where | a,|| = 1. Further
b=a;,_, xI; (22)
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where
I; Z °pi (23)

and °p; is the offset from frame i — 1 to frame i in O-coordinates. If the Jacobian is scaled
by dividing all lengths with the maximum reach of the manipulator, I, ., where the
largest element is less than or equal to one.

The largest singular value of J(g) we get a new Jacobian J(g) is obviously never less
than 2'/2 since

oy = Il > 124,22, =2'72 (24)
Generally we have for a matrix A that (Golub and van Loan, 1989)
lAl<lAle (25)

where | Az=(} ; ;4%)"/? is the Frobenius norm of A. This yields

n 1/2
(5, w01

n 2Z1-2
g(n+l+(z I,-,,,ﬂl’,,) ) <(2n)'? (26)
i=2

where I; , is the maximum length from joint i —1 to the end-effector.
This finally gives

212 <6, <(2n)2 @7

and we can conclude that the smallest singular value, o,, is a sufficient measure for the
vicinity of a singularity, as o, is constrained to be within the magnitude of one. [J

Condition (19) was shown for a manipulator with six degrees of freedom. By using
similar arguments it can be shown that translational joints will further constrain the
attainable interval of ¢,. The arguments can also be used on the extended Jacobian J(g)
for manipulators with redundant degrees of freedom.

5. Redundancy resolution with task priority

The solution (6) is not possible in singular configurations, and the solution becomes
ill-conditioned close to singularities.

Nakamura and Hanafusa (1986) and Wampler (1986) independently proposed to
use the damped least-squares solution of Eqn. (6) in the inverse kinematics algorithm.
This method was further developed by Maciejewski and Klein (1988). The solution
minimizes

&L =|dx—JIbq||* + 2%| 6¢q| > (28)

Task priority can be achieved with the augmented Jacobian technique if damped
least squares is used with weighting. The constraints can be given lower priority by
using small weights for constraints and high weights for the primary task motion.
Weighted damped least-squares was proposed for inverse kinematics of nonredundant
manipulators in (Nakamura and Hanafusa, 1986), but it has not been used in
redundancy resolution.
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A weighted task increment is defined by

Sx= W, ox=Jbq (29)
where
J
J= WwJ:I:W,J;I (30)

where W, =1 is the weighting matrix of the constraints.
The weighted damped least-squares solution minimizes

L =|6x,— Jdq||> + w2 6x.— J.5q|* + | 5l *w; (31)
=(0x,— J0q)"(6x,— J,0q) (32)
+ W (ox,— J.0g)"(0x.— J.og)+ dq" W,dq

and the solution is again found from
(JTT+ W)og=J"5% (33)

which in matrix form can be written out as
5q=(J}'J; +JIWCJC+ AN ‘(J',’ﬁx,+J3Wc6xc) (34)

The singular value decomposition of J{g) is written

J=Y 60t (35)

oq= Z 5 Vil OX (36)
which in practice can be implemented as

n a“'i
84=3. =7 v (0x+ Ke,) 37

to ensure zero task space error after a period with deviation due to weighting, i.e. a
proportional term, Ke, is included in addition to the derivative term éx for convergence
purposes.

The singular values &; and the singular vectors ¥ and & will depend on the
weighting matrix W, This has no impact on the solution dq as long as 4 is zero, but
close to singularities where 1>6,,, for some r<n the solution can be shaped by
selecting proper weights.

We propose to do this as follows:

1. The problem is first formulated so that the maximum singular value is within the
magnitude of one as proposed in §4. The attainable region for ¢, can easily be
calculated exploiting Eqn. (26) or a similar one derived for the actual
manipulator.
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2. Then the weighting of Eqn. (29) is introduced. The weighting matrix W, is
selected as

W,=wi (38)

with w« 1. For full rank J; this will shape the output singular vectors & so that
span {u,,...u,} will tend to be in

ol

or in other words: The m first output singular vectors will mainly contain
components in the task directions. The motivation for varying w may be to
obtain smoother motion in the transition area when the manipulator
approaches a singularity and also the damping matrix W, is changed from
zero. However, this is handled by the continuously changing A.

3. The damped least-squares solution is used with i<w.

In the artificial singularities this will result in accurate motion in the task directions
spanned by &,,..., u, as 6> A% fori=1,...,mif W;= 2L The damping will only give
inexact motion in the directions spanned by i, ,, ..., @i, which are orthogonal to the
task directions. This is the desired task-priority property.

Another advantage with the scheme is that it will also work properly in true
singularities where J,(g) is rank deficient and the end-effector loses degrees of freedom.
This can also be achieved with the task priority scheme, but then a damped
pseudoinverse must be computed both for J/(g) and J(I— J}J)) which requires a lot of
computation.

6. The effect of weighting on the damping error

In the case of no damping, that is with 1=0, the solution with and without
weighting is obviously the same. However, with damping it is evident from Eqn. (31
that the solution can be shaped by weighting so that the errors due to damping are
mainly in the constraint directions. We have analysed this using the singular value
decomposition.

The error in joint coordinates due to damping is

n 2

& — - T
eq—i; FTEan Az)rjn, ox (39)

The error in % is then & = Je,, by inserting Eqn. (35) in Eqn. (39) this can be written

n ‘12 o
&=, 5o 010 (40)
which can be approximated by
n 11
&= Y 5 iiifok (41)

F3 2
i=n|-l-10'|‘z+j-

if it is assumed that 6;> A for ie{1,...,m}. It is clearly seen that the error will mainly be
in x, as the vectors &, ie{m+1,...,n} are orthogonal to the task directions in

1]
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7. Implementation aspects

In well-conditioned configurations the singular values associated with the task
directions will be close to unity while the singular values associated with the constraint
directions will close to w. This means that the damping factor A must be less than the
weighting factor w to give an accurate solution in well conditioned configurations. If A
becomes too small, there may be problems with the conditioning of the weighted
damped least-squares problem close to singularities. A good solution seems to be to use
a variable damping factor. We have therefore used the method proposed by
Maciejewski and Klein (1988) to estimate the smallest singular value.

7.1. Estimation of minimum singular value
The method is based on the fact that after repeated calculations of

y=Aayt! @)
where A is an n x n matrix and y* is the value of the vector y after kth iteration, the
solution will be dominated by the eigenvector corresponding to the largest eigenvalue

of A. This can be seen by first assuming that the initial vector y° is spanned by the
eigenvectors m; of A, i.e.

y° =‘21€ama 43)
The eigenvalues of A are denoted a;, and are ordered such that oy >0, >... 20 Thus
Aty
n
= Z copm;
i=1
~cyoymy (44)

and it is clear that unless ¢, =0, y* will be dominated by the element associated with the
maximum eigenvalue. An estimate &, of the largest eigenvalue can therefore befound as

(Y
““(clnm. ||) “3)

If the initial value y°am,, a good estimate d, can already be obtained after one
iteration remembering the eigenvector/eigenvalue definition

Am,=o,m, (46)

Similarly, an estimate of the smallest eigenvalue a, of A can be found through
inverting the above relation such that

yi=ATyt 47)
because the maximum eigenvalue of A~ will be the reciprocal of the minimum
eigenvalue of A.

The estimation procedure can be extended to the SVD case for robot control since
the singular values of Jare the square roots of the eigenvalues of J*J, or equivalently of
JJ™. If now the Cholesky decomposition has been performed for the calculation of é¢
from Eqn. (33), this can also be utilized for estimation of the minimum singular value o,
and the input singular vector ¥, from

(JTI+ Wa)":r=( ): (o?+»12)viv3)i':,= 74 (48)
i=1
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where ¥#% is the normalized estimate

9’
Vp=—1"" 49
A @)
from the previous sample, and W, = 421 The prime is used to emphasize that ¥, is not
yet normalized estimate of #,.
Now

(ﬁ:l(a.-z +4%y, Ff) (67 + A7)0, =v] (50)

(s )“2 ( 1 )m
6,=(—"-—12] =[——22 51
(irr..u 1ol 61

The proposed technique for maintaining an estimate of the smallest singular value
requires that v~ + vZ if there is only one small singular value. In the case of several
small singular values, #7 must mainly be spanned by the input singular vectors v?
corresponding to these small singular values. This is possible if the initial #, is set to ¥,
which can be calculated off-line from a full singular value decomposition. Then, when
the smallest singular value o, changes along the trajectory, the corresponding
estimated input singular vector ¥, will rotate so that a strong component always lies
within the subspace spanned by the smallest singular vectors.

which gives

1.2. Determination of weighting and damping factor
Utilizing the estimate of the smallest singular value, the damping factor then was
calculated from

0 when 6,>0¢
2= "= 52
{gz —6%  otherwise 2
which gives
~ . .
~za,, - /6, , when a‘,, >a (53)
6+ A é./a* otherwise

Whin

]
T
Tinin o On

Figure 1. Possible varying choice of weighting w as in Eqn. (54).
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It is also possible to use a varying w which is dependent on the size of the smallest
singular value. Inspired by the choice of the damping factor from Eqn. (52), w can be
calculated as

Wimax ifo<ao,
W — W .
w={ Ve Vnin g i im0, <0 (54)
0 OTpin
Wiin otherwise

The scheme is roughly illustrated in Fig. 2.

The simulations were performed on the four-degree-of-freedom experimental
manipulator shown schematically in Fig. 2. The manipulator consists of a translational
joint in the base and three rotational joints, with Denavit-Hartenberg parameters
given in Table 1. If the primary task is to position the end-effector in x- and y-position,

i.e.
x
= 55
* [J’] &3)

the only true singularity occurs when g, = g5 =g, =0. This means that the manipulator
is stretched out in x-direction, and is therefore an external singulatory.

For this manipulator, and the choice of primary task as in Eqn. (55), there are
several possibilities for additional coordinates in the augmented task space approach.

Yo

Lo

0.6 m
Figure 2. Schematic 4-DOF manipulator in its initial positions for the simulations.

Denavit-Hartenberg parameters

Joint 6 o a d mass
1 0 0 q 0 J3lkg
2 0 0 04m 0  2kg
3 0 0 02m 0 2kg
4 0 0 02m 0 1kg

Table 1. Denavit-Hartenberg parameters and link masses for planar experimental
manipulator.
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In the proceeding example the choice was

0
=[] 69

where 0=g, + g3+ q, is the end-effector orientation. The redundancy resolution was
simply chosen as

0=0 (57)
¢, =x—06m (58)

while the parameters in the weighted damped least-squares algorithm were w=0-1 and
g=01. The matrix W, was chosen as W, =21

Figure 3 qualitatively shows how the manipulator moved during the simulation
period, from the initial position

¢t=0=[0 05054 —1-8235 1-3181]" (59)
The references for the end-effector were

—t+06

- x

[ —005 ](m) if 065 s<t<13s

](rn) if 0 s<t<065s

0-65—t

It can be seen from Figure 3 how the constraints on x, were satisfied as long as this did
not conflict with the pimrary goal, which was to position the end-effector. However,
when x, and x, could not be achieved simultaneously, the secondary task motion got
less priority through the combined action of weighting and damping. This is more
distinctly illustrated in Fig. 4, where the reference from the redundancy resolution (58)
is shown together with the actual g,. It is clearly seen that as the artificial singularity
was approached, the reference tracking got reduced priority. The error was eliminated
when this again became feasible. The same was the case for the end-effector orientation
0 shown in Fig. 5. The smallest singularity ¢, and corresponding calculated 1 is shown
in Fig. 6.

Figure 3. *“Animation’ of planar manipulator.
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0

-0-2

-0-3

-04

—-0-5

—-08 | | 1 ] 1 |
0 20 40 60 80 100 120 140

Figure 4. Reference (dashed) and actual position for g,.

0-25

02

005~

-—0-05 1 | 1 L | 1
[0} 20 40 60 80 100 120 140

Figure 5. End-effector orientation 6.

0-016

0-0i14
0012
0-010
0-008
0-008
0-004

0-002

0 1 1 1 1
0 20 40 60 80 100 i20 140

Figure 6. The minimum singular value p, and corresponding damping factor 4.
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8. Conclusions

A method for handling artificial singularities for manipulators with redundant
degrees of freedom has been proposed and tested in simulations. The method includes
task priority based on a weighted damped least-squares strategy, which is a
generalized version of the ordinary damped least-squares method.
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