MODELING, IDENTIFICATION AND CONTROL, 1993, vOL. 14, ~o. 2, 93-105
doi:10.4173/mic.1993.2.4

Automatic programming of grinding robot

TRYGVE THOMESSEN{, OLE JAKOB ELLE, JON LUND LARSEN,
TORGRIM ANDERSEN, JAHN E. PEDERSEN and TERJE K. LIEN

Keywords: Robotic grinding, force control, speed control, automatic contour tracking,
automatic path generation

A new programming method is developed for grinding robots. Instead of using the
conventional jog-and-teach method, the workpiece geometry is automatically
scanned by a contour tracking system. During tracking of the workpiece contour,
the robot position is continuously logged. Finally a robot program is automatically

generated.
This system is implemented and tested on a MultiCraft 560 robot. Experimental

results show that the programming time is considerably reduced when applying this
system. Thereby the robot can quickly and easily be reconfigured for working on
different products. This makes it profitable to apply grinding robots in companies
with small batch sizes.

In addition, the programming is simplified. Thus, the people in industry can do
the programming work without needing help from robot experts.

1. Introduction

Programming grinding and deburring robots is usually time consuming. This is
because the robot’s tool is in physical contact with the workpiece. In addition, the
workpiece geometry is often complicated. When developing new programs, one has to
do alot of programming and testing work before the program is running satisfactorily.

Several scientists have worked on the robot programming problem. Hirzinger
(1982) developed a special joy-stick for industrial robots. With this joy-stick it was
possible to control all the six axes of the robot using one hand. This turned out to be an
efficient way for programming robots but a lot of experience was needed to control the
joy-stick.

De Schutter (1986) used automatic contour tracking in some simple deburring
experiments. Programming of the robot was very simple because only the magnitude of
the contact force between grinder and workpiece and desired motion speed had to be
specified. The workpiece geometry did not need to be specified. Because the maximum
motion speed was limited, the system could not be used in industrial applications.

Schmid (1990) developed special sensors for deburring robots. The sensors were
designed with a geometry similar to the deburring tools, and they were used to improve
the teach-in programming. By connecting the sensors to the robot control system, the
contact forces were supervised during the programming operation.

Abele, Booley and Sturz (1985) developed a system for interactive programming of
deburring robots. Some characteristic points on the workpiece first had to be
programmed. Then the robot automatically tracked the contour between these points.
The weakness of the system was that many characteristic points had to be programmed

Received 25 January 1993.

TSINTEF Production Engineering, N-7034 Trondheim, Norway.

Presented at the 23rd International Symposium on Industrial Robots, Barcelona 9 October
1992, Barcelona, Spain. Reprinted with permission from Asociacion Espafiola de Robotica.

94 T. Thomessen et al.

if the workpiece contour was complex. In addition, tracking of the workpiece was time
consuming because the tracking speed was low.

This paper presents a project at the Norwegian Institute of Technology in
cooperation with the SINTEF Research Institute. A new user interface for grinding and
deburring robots is being developed. The objective is to simplify the robot programm-
ing and reduce the programming time so it becomes profitable to apply industrial
robots for grinding and deburring in small and medium batch sizes.

2. Conventional robot programming

The common way of programming grinding robots is the jog-and-teach approach.
In Fig. 1 the robot is moved to the desired locations (P,, P,,.. ., Py) on the workpiece
contour using joy-sticks. The coordinates to the points are stored in the robot control
system. During execution of the program, the path is generated by interpolation
between these points (Fig. 2).

After logging the points, the program has to be optimized. The objective is to reduce
the cycle time if the final workpiece quality is satisfactory. The optimization is done by
increasing the motion speed until the result is unsatisfactory. Usually the programmed
points also have to be adjusted during the optimization because overshoot occurs when
the acceleration forces become too large.

The advantage of the jog-and-teach approach, is that it is simple to use. Hence, the
user does not need thorough knowledge of robot programming. On the other hand, the
approach is time consuming. If the path is curved, it must usually be approximated by
straight line segments. Hence, lots of points have to be programmed, and the operator
must be experienced to determine the necessary density of points along the path.

In addition, optimization of the program often needs a lot of time due to limited
tracking capabilities of the robot. This causes large set up times which implies that it is
only profitable to apply the robot in grinding if lots of equal products are going to be

ground.

3. Automatic robot programming

A simple and rapid way of programming a grinding robot, is to apply automatic
programming. As opposed to the jog-and-teach approach, the robot automatically
scans the workpiece contour to be ground. Only a few locations have to be
programmed manually.

P

P

Figure 1. Teach-in
points along a contour.

Figure 2. Straight line
interpolation between
teach-in points.

Figure 3. Teach-in
point for automatic
contour tracking.

Automatic programming of grinding robot 95

3.1. Programming strategy

The workpiece contours to be ground are divided into contour elements. These are
parts of the workpiece that are only curved about one axis. The contour of these
elements is scanned using automatic contour tracking. This is shown in Fig. 3.

The robot is moved with the desired orientation to the starting point P, on the
contour to be tracked.The orientation of the contour is specified with respect to either
the tool coordinate system or the base coordinate system, Usually the tool coordinate
system is the most convenient to use because the normal vector of the contour is
parallel to one of the main axes in the tool coordinate system.

Then, the robot starts tracking the contour. The robot position is continuously
stored in the control system during the tracking operation. When the whole contour
has been tracked, the operator stops the robot, and a robot program on a standard
format is automatically generated. A robot program also consists of motions where the
robot is not in contact with the workpiece. For these motions, the conventional jog-
and-teach approach can be used.

If certain locations on the workpiece are to be programmed, sensor controlled
teach-in can be applied. The robot is moved towards the workpiece (like jog-and-
teach). Simultaneously, the robot control system supervises the contact forces acting on
the grinding tool. When physical contact comes into being, the contact force increases,
and the control system stops the motion immediately. The advantage of this is that one
does not have to concern oneself about damaging the grinding tool when it is close to
the workpiece. The robot can be moved faster, and the risk of damaging the grinding
tool is small.

The result from the teach-in operations points is stored in the control system in
form of sub programs. Finally, the sub programs are linked together to a complete
program for the robot.

3.2. Automatic contour tracking

Automatic contour tracking is a special control strategy for industrial robots. The
robot tracks an unknown contour without any information about the curvature. This
was developed by De Scutter (1986). The principle for automatic contour tracking can
easily be explained using the following example:

If a human being closes his eyes and lets his finger follow a contour (e.g. a table
edge), the following can be observed:

A certain force has to be applied against the edge to maintain physical contact.

The reaction force is approximately perpendicular to the edge. (Assuming low
friction coefficient.)

The finger is moved tangential to the edge. (This is perpendicular to the contact
force.)

These observations can be used as a foundation for making a control algorithm for the
robot.

3.2.1. The force control algorithm. To apply a certain force against the edge, a force
control system is necessary. The starting point to design a force control system is shown
in Fig. 4. The robot is commanded to the position P, but because of the wall, it is forced
to the position P,

96 T. Thomessen et al.

4

’/T//]
B
=

22

K

v

"
T =

Figure 4. Robot in contact with the environment.

Figure 5. The force control loop.

If the tool stiffness is k, the contact force F, between the tool and the wall becomes
F=k-x=k:(P,~ Py) 1)

From this follows that the force control system has to regulate the robot position
continuously to maintain a constant contact force. This is shown in Fig. 5. A force
control loop is closed around the conventional position control loop. The difference
between the reference force F, and the measured contact force F is input to the force
controller. From the control deviation, the force controller which usually is an I- or PI-
controller (De Scutter 1986) calculates a correction AP to the robot’s nominal position
P ... Hence, the reference to the position controller is given by

P, =P, +AP @

The position controller calculates the commanded motor torque = which moves the
robot to the position P. Due to the position of the environment P,,,, the contact force
F, comes into being, It is important to notice that the tool stiffness k, is included in the
force feedback loop. In fact, the magnitude of k determines the total gain in the force
control loop, and must be taken into account when designing the force controller.

Automatic programming of grinding robot 97

3.2.2. The automatic contour tracking algorithm. Figure 6 shows a wheel moving
along a contour. The normal vector of the contour is perpendicular to the paper plan.
The object coordinate system (x, yo) is fixed to the wheel with x,, tangential and y,
perpendicular to the contour. Assuming no friction in the wheel’s bearing, the contact
force F, is perpendicular to the contour and consequently, parallel to y,. The robot has
to move the wheel with a velocity v, parallel to x, if the wheel is going to track the
contour. But the curvature of the contour is unknown which in turn implies that the
orientation of the object coordinate system is also unknown.

The orientation of the object coordinate system with respect to the tool coordinate
system (xr, yy) is given by the tracking angle . The tool coordinate system is fixed to the
robot’s end effector, and its orientation is known. The contact force F, has the
components F,rand F,; along the x-and the yp-axis, respectively. Hence, the tracking

angle can be calculated from
F ﬂ')
a=atan (3)
Z(F ¥T

In the robot control system, the task coordinate system (x,, y,) is rotated the angle a,
with respect to the tool coordinate system. Consequently, if o is determined accurately,
the task coordinate system coincides with the object coordinate system. By giving the
robot a velocity v, in the x-direction and a constant force F, in the force in the
y-direction, the robot will automatically follow the contour.

The block diagram for the contour tracking system is shown in Fig. 7. Compared to
the force control system (Fig. 5), the contour tracking system is extended with the
transformation matrices Cf and C%. These matrices are continuously updated
according to the tracking angle @, calculated by the orientation estimator. C.
transforms the force measurements from tool- to task coordinates. The measured force
F,, is subtracted from the reference force F,., and the force controller calculates the
correction APy, The desired tangential velocity v, and the correction AP,, are
transformed to tool coordinates (by the matrix C{) and finally fed into the position
controller similar to the force control system.

Yoy
,
F AF,
¥
o
' X, X,
v
Wheel _____|
Xy
——— Workpiece contour
X

Figure 6. Detection of the tracking angle.

98 T. Thomessen et al.

Trajectory
penerator
Ve .
F. L AP P, F
= L"m ___c.:- “_-m -
-i AP,]
K,]
O | orientation
astimator [~
!
t
CT:

Figure 7. The automatic contour tracking system.

3.3. Automatic path generation

After tracking the workpiece contour, the data from logging the robot position is
stored in the control system. This amount of data is disproportionately large. In
addition, it is influenced by noise. Thus, the data has to be processed. The processing
includes the following steps:

Noise reduction
Point reduction
Robot program generation

The objective is to reduce the amount of data as much as possible while staying within
desired accuracy. From this follows that the point density is high if the contour is
curved and low if the contour is approximately a straight line.

Finally, the points have to be transformed to the standard format used by the robot
control system.

3.3.1. Noise reduction. The noise is removed from data by a two-step filtering
method. The measurements around sharp corners are often influenced by noise due to
high dynamic forces. This has influence on the contract force. By using a threshold for
the maximum and minimum acceptable contact force, the measurements influenced by
this type of noise are removed. This is called Force threshold filtering,

Due to small instabilities and inaccuracies in the control system, the measurements
along a straight edge are located on both sides of the edge as a small cloud. A Gaussian
window filter (Godtliebsen, Spjetvoll, 1990) was applied to remove this kind of noise.
This filter is designed on the assumption that the noise follows approximately 2 normal
distribution. The coordinates to the current point is calculated as a function of the
neighbouring points within a desired window. The window constant n, specifies the
number of points used within the window. If e.g. n is equal ten, the ten previous and
subsequent points are used when calculating the value to the current point. The new
value of the current point is calculated as the sum of the previous and subsequent points
weighted according to a Gaussian function.

Automatic programming of grinding robot 99
On mathematical form, the new value is given by
b= Z w;D;)
ieDy,

where p, is the estimated value for p,, p; is the value of point i, W; is a normalized

weighting for p;, D, is all the points within the window, b is the index of the current point

and i is the index of the point within the window. (The range of i is from b-n to b+n.)
The weighing w,, is given by

wy=exp(—1/ -2172(}7:'_%)2 ()

where p; and b, are the values of point i and the current point, and 7 is the filter constant.
The sum of the weightings has to be 1. Consequently, the weightings have to be
normalized by the following equation

()

The window is moved from the starting point to each of the measurement points along
the contour. The windows for the first and the last points are necessarily smaller
because there are no points before the first and after the least point. Consequently, these
measurements will still be influenced by some noise after filtering, but this has usually
no practical consequences.

3.3.2. Point reduction. The amount of data after scanning the contour is disproport-
ionately large, and it has to be reduced. This done by approximating the contour by
straight line segments. The approach is called the Deviation height method (Fig. 8). A
straight line is made from a certain starting point on the contour to the current point.
The deviation height is calculated between the line and each of the intermediate points.
The deviation height is length of the normal vector between the point and the line. The
current point is displaced along the contour until the deviation height exceeds a certain
limit. The previous point is then used as starting point for the next line segment. This
continues until the whole contour is approximated with straight line segments.

Deviation height

‘E"ocpm; Hne \) Rejected line

Deviation height limit

Figure 8. The deviation height method.

100 T. Thomessen €t al.

\\

R
7

Figure 9. Specification of the tool orientation.

The deviation height limit determines the accuracy of the approximated contour. A
small deviation height gives high accuracy but also a large number of straight line
segments. On the other hand, a large deviation height gives a large data reduction but
also a rougher approximation of the scanned contour.

3.3.3. Robot program generation. From the reduced data, a robot program is
generated. The user must specify tool definitions, desired path velocity and orientation
of the tool (Fig. 9). The orientation is specified by the angle f5, between the normal
vector to the contour », and the tool axis x,. This is equivalent to a rotation around the
tangent vector t, to the contour. Consequently, the tool axis has a constant orientation
with respect to the normal vector n, and it is not necessary to specify new tool
orientations for each line segment.

If desired, the path velocity can automatically adapt to the path curvature (dynamic
path velocity). Thereby path acceleration can be contained within desired limits. This is
advantageous both for the path accuracy and the process duration.

4. Laboratory experiments
4.1. Laboratory eguipment.

The experiments were performed using a MultiCraft 560 robot (Fig. 10). It has a
very rigid structure through the use of parallel actuators. It is therefore ideal for
grinding purposes. The control system is based on a VME-bus and uses the Motorola
68020768882 processor family at 167 MHz for the interpolation, force control and
coordinate transformations. A 125 Hz sampling frequency was obtained. The servo
controller runs on a EURO-bus with a Motorola 68008 processor. The sampling
frequency for the servo controller is 250 Hz. The user interface runs on a personal
computer (386sx PC).

A three axis force sensor from Kistler was mounted between the tool and tool-
fixture on the robot to measure contact forces. A specially constructued tool was used

Automatic programming of grinding robot 101

Figure 10. The Multicraft 560 robot.

during the tracking experiments. It consisted of a ball bearing mounted on a metal rod.
A teach box developed for this control system, was used during the testing. Three joy-
sticks were used to apply the jog-and-teach approach.

When automatic programming was used, the robot was first moved in contact with
the workpiece going to be tracked. The contour tracking was activated by simply
pressing a button on the teach box. The operator had to keep his finger on the button
until the desired contour was tracked. When the button was released, the noise
reduction, point reduction and robot program generation was automatically executed,
and a robot program on the standard format for the MultiCraft 560 robot was
generated.

4.2. Experimental results.

The performance of the force control system was tested. The force reference was
momentary changed from O N to 30 N, and the step response was logged (Fig. 12). From
the figure, the 63% rise time was found to be approximately

To.63=5Tms N

102 T. Thomessen et al.

Figure 11. The piece of wood used in the tracking experiments.

Then, the bandwidth was calculated to be

oo L1
b Toea 0057

This is equivalent to 2:8 Hz.

Experiments were performed tracking the contours along a piece of laminated
wood (Fig. 11). Along the edges there were both straight lines and acute angles. The
piece was therefore ideally suited for uncovering possible errors in the system.

The robot was guided to the piece of wood using the joy sticks, and the direction of
motion was indicated. From there the robot tracked the edges of the piece. A contact
force normal to the edge of 20 N was used, while the velocity was 30 mm/s. The robot
position was continuously stored in the control system, and is plotted in Fig. 13.

Near the sharp corners of the contour, the measurements were noisy (marked with
circles on Fig. 13) due to the limited tracking capabilities of the system. This kind of
noise was efficiently removed by force threshold filtering (Fig. 14) using a threshold of
13 N. It is important to notice that this filter did not smooth the contour.

sT1=17-545"1 ®)

Automatic programming of grinding robot

FIN]

50.00

40,00

10.00

©.00 T

T[ms}

10000
083

-]

Z00.00 300.00

400.00 = S00.00

Figure 12. Step response of the force control system.

i !
I i

———

P
Py
s

s
- - “.
j‘ l- A, \\
v N
r ! o
! g .I-'. b
. 7‘
:‘ ;. . ‘
§ i s
i]
(I
L
i
HE
(I
L]
1
1
L
i
!
P
P
i

S ar

Figure 13. Raw data after the auto-
matic contour tracking.

Figure 14. Removing noise from
the data using the force threshold
filter.

103

104 T. Thomessen et al.

_J -
Figure 15. Removing noise from Figure 16. Point reduction using
the data using the Gaussian the deviation height method.

window filter.

Using the Gaussian window filter on the data in Fig. 14 resulted in close
approximations and a smooth surface (Fig. 15). This simplified the following point
reduction to a desired degree of accuracy. Corners were rounded somewhat, but this
could be countered by optimizing the filter parameters and using higher point density
along the edge.

The point reduction technique was performed on the filtered measurements in
Fig. 15. The result is shown in Fig. 16. The corners were identified by using the
deviation-height method. A deviation height of 0-5mm reduced the 1091 points
originally recorded to 60 points. This corresponded to a reduction of more than 94%.

The reduction in programming time was also investigated using automatic
programming. To track the piece of wood, the robot needed approximately 50 seconds.
Similarly, a skilled operator needed about 6 minutes to program the piece of wood
using the jog-and-teach approach (60 points). This corresponds to a reduction in
programming time of at least 80% by applying automatic programming. In addition,
automatic programming was much simpler to carry out than manual programming,

The data processing time for automatic programming (approximately 3 minutes) is
not included in this comparison because it is dependent on the performance of the
microprocessor system. In the future, the system will be moved to a faster micropro-
cessor system with the Motorola 68040 processor. This will probably reduce the data
processing time with a factor between 5 and 10.

Automatic programming of grinding robot 105

5. Conclusion

A system for automatic programming of grinding and deburring robots has been
presented. The main modules are a module for automatic tracking of the workpiece
contour and automatic generation of the robot program. The system may be
implemented on most robot controllers provided that they have an open interface for
the connection of sensors. A sufficiently high sampling frequency will also be required
(larger than 100 Hz).

During scanning, automatic contour tracking was used. The system was capable of
following contours with varying curvature even at speeds approaching 100 mm/s. Even
acute angles were traced without difficulty. But the accuracy of the measurements was
reduced by high speeds because vibrations occurred due to large dynamic forces.
Speeds up to 30 mm/s gave satisfactory accuracy on the measurements.

The noise reduction was done using force threshold filtering and a Gaussian
window filter. This removed efficiently the noise from the measurements.

The amount of data was reduced by the deviation height method. This gave a good
approximation of the tracked contour presented by a minimum number of points. A
94%; reduction in the amount of data was obtained in the experiments (deviation height
0-5mm).

The programming of grinding and deburring robots is greatly simplified through
these measures. Letting the system determine the optimal grinding speed is also a
pronounced advantage. Compared wo the jog-and-teach approach, the experimental
results show a reduction in programming time more than 80%,

Using the automatic programming approach, the robot is easily reconfigured for
working on different products. This makes it profitable to apply grinding robots in
companies with small batch sizes.

ACKNOWLEDGMENT
This project is financed by The Swedish Foundries’ Association, The Nordic
Industrial Fund, MultiCraft a.s and Sperre Foundry A/S.

REFERENCES

ABeLg, E., BoLey, D. and Sturz, W. (1985). Interactive programming of industrial robots,
Proceedings of the 14th International Industrial Robot Symposium.

DE SCUTTER, J. (1986). Compliant Robot Motion, PhD. Thesis, Katholieke Univesiteit Leuven.

GopTLiBseN, F. and SPIeTVOLL, E. (1990). A Gaussian window filter, Division of Mathematical
Sciences, The Norwegian Institute of Technology.

HIrZINGER, G. (1982). Robot Teaching via Force-Torque Sensors, 6th European Meeting on
Cybernetics and Systems Research, EMCSR 82, Vienna, 1982.

Scumip, D. (1990). Sensor simulate tools, The Industrial Robot June 1990, 97-99.

