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Dynamics and control of unstable distillation columns}

ELLING W. JACOBSEN{}§ and SIGURD SKOGESTAD}
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The fact that ideal two-product distillation columns may have multiple steady states
and unstable operating points has only recently been recognized. This paper
discusses the dynamics and control implications. It is shown that columns operating
with reflux and boilup as independent variables become unstable if the internal
flows are sufficiently large. An open-loop unstable operating point may be stabilized
by use of one-point control, ie., feedback control of a column composition or
temperature. If the control is not sufficiently tight, the column may go into a stable
limit cycle. Finally, it is shown that with distillate flow and boilup as independent
variables the operating points may become unstable if the level control is not
sufficiently tight. The column may also in this case go into a stable limit cycle.

1. Introduction

Distillation is undoubtedly the most studied unit operation in the process control
literature. However, in all previous studies the column dynamics have been assumed to
be asymptotically stable (with level and pressure loops closed). The main reason is that
most authors have considered dynamic models with constant molar flows (neglected
energy balance) and in addition assumed the inputs (e.g., reflux and boilup) to be given
on a molar basis.

For the case of molar inputs there are several papers on uniqueness and asymptotic
stability of the operating points in homogeneous distillation. Most papers treat the
constant molar flow case (neglected energy balance), for example Lapidus and
Amundson 1950, Acrivos and Amundson 1955, Rosenbrock 1960, 1962. Doherty and
Perkins (1982) provide a review of results published in this area, and conclude that, for
constant molar flows, multiplicity and instability is impossible for single-staged
‘columns’ and any multistage column separating a binary mixture. Sridhar and Lucia
(1989) include the energy balance in the model and conclude under certain assumptions
that also in this general case binary distillation columns will exhibit unique and stable
solutions. However, they only study a limited set of specifications, namely Q,Q, and
LB.

However, in a recent paper Jacobsen and Skogestad (1991a) report two kinds of
multiplicity which may occur in distillation.

(1) Jacobsen and Skogestad argue that only in rare cases do columns under
operation have all the manipulated inputs on a molar basis. For instance, fixing
the valve position will normally correspond closely to fixing the geometric
average of mass and volumetric flow-rate. As they show, the transformation
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from mass- or volume flows to molar flows is nonlinear due to the composition
dependence and may in some cases become singular, even for the binary case
with constant molar flows. A singularity in the input transformation will imply
that multiple solutions exist in terms of outputs (composition) for a given set of
inputs (flows). One of the solutions will be unstable.

(2) In addition, Jacobsen and Skogestad show that when the energy balance is
included in the model, even molar inputs may yield multiple solutions. Both
types of multiplicity and instability may be experienced in industrial columns
operated with inputs on a mass- or volume basis.

Jacobsen and Skogestad (1991a) treat the multiplicity from a steady-state point of
view only. In this paper we study the dynamics and control of columns with multiple
solutions. We limit ourselves mainly to discussing one control configuration (set of
specifications), namely the case where mass reflux L,, and molar boilup Vare used as
independent variables. This is the most widespread configuration in industry, and is the
configuration for which multiplicity and instability is most likely to occur (Jacobsen
and Skogestad 1991a). At the end of the paper we consider the D,,V-configuration, and
show that in this case there may exist solutions corresponding to stable limit cycles.

We only consider the multiplicity and instability caused by singularity in the input
transformation. The multiplicity and instability that may be caused by including the
energy-balance will have similar implications for the dynamics and control of
distillation columns.

2. Results on sieady-state multiplicity in ideal distillation

We give a brief review of the results on multiplicity caused by singularities in the
input transformation presented in Jacobsen and Skogestad 1991 a.

Consider the two-product distillation column in Fig. 1. If the feed to the column is
given there are at least four flows that may be specified: reflux L, boilup V, distillate D
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Figure 1. Two product distillation column.
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and bottoms flow B. However, for a given column there are only two degrees of freedom
at steady-state, that is, only two of these flows may be specified independently. A
specific choice of two independent variables is denoted a ‘configuration’.

Jacobsen and Skogestad (1991a) provide an example of steady-state multiplicity in
a column separating a mixture of methanol and n-propanol. The column has mass
reflux and molar boilup as independent variables, i.e., L,, V- configuration. Data for the
column are given in Table 1. Note that the energy balance is excluded, i.e., constant
molar flows are assumed. Some steady-state solutions are given in Table 2, and we
see that for a specification of mass reflux L,=50-0kg/min and molar boilup
V=2-0kmol/min we have three possible solutions I, III and IV in terms of
compositions. The multiplicity is graphically illustrated in Fig. 2.

The observed mutliplicity is caused by the transformation between the actual flow-
rates(mass) and the molar flow-rates which determine separation. For a binary mixture
the transformation between mass reflux, L,,, and molar reflux, L, is given by

L=L,/M; M=y,M +(1—ypM, (1)
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Figure 2. Methanol-propanol column with constant molar flows: Multiple steady-states for

L, V-configuration. Mass reflux L, is varied while molar boilup Vs fixed at 2:0kmol/

min. On the upper plot the corresponding maximum eigenvalue is shown at some of the
steady-state solutions.
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Here M, denotes the molecular weight of the individual components. One might expect
the molar reflux to increase monotonically with the mass reflux, that is, (8L/2L,), > 0.
However, because M is a function of composition, yp, and thereby of L,,, this might not
be the case. Assuming molar boilup Vfixed and differentiating L,,= LM on both sides

with respect to L yields
Ly _ o
(GL)V_M-'-L(MI_MZ}(@L)V 2

For M, < M,, which is usually the case (the most volatile component has the smallest
molecular weight), the second term on the right hand side of eqn. (2) will be negative and
the total differential may take either sign. The transformation from L,, to L will be
singular when (9L,,/0L), =0. A singular point will correspond to a limit point. Jacobsen
and Skogestad (1991 a) state that solutions with (JL,,/éL), <0 (middle branch in Fig. 2)
correspond to unstable operating points, but they do not prove this rigorously.

3. Open-loop dynamics and instability for L, V-configuration

The maximum eigenvalue in selected operating points of the methanol-propanol
column with the L, V-configuration are shown in Fig. 2. From the figure we observe
that the eigenvalues at the upper and lower branches are negative, implying stability,
while those at the intermediate branch (negative slope) are positive, implying instability
of the operating points. Note that the unstable operating points only have a single
eigenvalue in the right half plane. The maximum eigenvalues at the singular points are
zero as expected.

3.1. Conditions for instability

One-stage column. Consider the simple column in Fig. 3 with one theoretical stage
(the reboiler) and a total condenser. Of course, such a column will never be operated in
practice because the reflux is simply wasting energy and has no effect on separation.
However, we analyse this column due to the simplicity of the dynamic model. As shown
in Jacobsen and Skogestad (1991 a), even such a simple column with ideal thermo-
dynamics may have multiple steady-state solutions.

( ™
:% D’ Yp
| v
Vv L
4 ™
F, ZF B, XB
oA J
Qs

Figure 3. One-stage distillation column with total condenser.
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Assume binary separation, liquid feed, constant holdup in the reboiler (M;) and
negiligible holdup in the condenser. The dynamic model of the column becomes:

dxg
M d —lep DyD_BxB (3)

We have D=V —L and D+ B=F and with L and V as independent variables we get
dxg
My d——F(Zr xp)+ L{yp—xg)+ Vlxg—yp) @)

Linearization, Laplace transformation and introduction of deviation variables assum-
ing F, zp and V constant yields

SMAxg(s)= — DAyy(s) — BAxy(s) +(yp — x5)AL(s) )

Assuming constant relative volatility o yields the following relation between Ayy(s) and
Axg(s)

Ayb(s)_ o B
Axgls) (T lo— Tt K0a) ©
Equation (5) then becomes
Axys)= yﬂ xB AL(s) ;a=KD+B (7N

As ais always positive, the pole —~an 1. 1s always negative, implying that all operating
points are stable when molar reflux L and molar boilup V are independent variables.
Now consider mass reflux L, as an input instead of molar reflux L=L, /M. By
linearization we obtain for binary separations
1 M,—
AL=—ALW+L—KAxB (8)
M M
Substituting eqn. (8) into eqn. (7) we obtain the following transfer-function between
liquid composition, Axg(s), and mass reflux AL (s):

Yp—Xp AL,(s)
Yo~ % 9
A= e, M ©)
where
M,—M
a,=KD+B—(yp—xg)— —2LKL (10)

The operating point is unstable for a, <0. At steady-state eqns (6) and (7) yield

Oyp _ VYp—Xg
(6L)V_D+BH( 1
and from eqn. (2) we find that instability (a,, <0) is equivalent to a negative slope for
(0L,,/0oL),. This result is in accordance with numerical results.

Multistage column. Jacobsen and Skogestad (1991b) provide evidence for the instability
of multistage columns. Using certain assumptions they show that the maximum
eigenvalue A5 of a column operating with the L, V-configuration is given by

v AL 14 ( (ayD/aL)rL(Mz _ ﬂ)

Mhat =k, o (12)
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Here M is as defined previously and ALY is the maximum eigenvalue for the LV-
configuration. Jacobsen and Skogestad (1991b) show that instability, ilu >0,
corresponds to having a negative slope between mass and molar reflux. For details we
refer to Jacobsen and Skogestad (1991b).

3.2. Effect of operating conditions on stability

Jacobsen and Skogestad (1991a) provide analytical results on when a negative slope
between mass and molar reflux, i.e., instability, is most likely. They show that a negative
slope is most likely with large internal flows (i.c., large L and V) and with intermediate
purities in the top (i.e., intermediate L for given V). This corresponds to having L and
(@yp/OL)y large, and according to eqn. (12) this is the case for which instability is most
likely. On this basis Jacobsen and Skogestad (1991a) show that there may exist three
possible regimes of operation for distillation columns depending on the size of the
internal flows:

e Internal flows low: Unique stable operating points.
e Internal flows intermediate: Multiple steady states, one of which is unstable.
e Internal flows high: Unique unstable operating points.

Note that the analytical treatment in (Jacobsen and Skogestad 1991a) was based on
ideal separation with constant relative volatility and constant molar flows.

4. Effect on multiplicity and instability on column operation

It is obvious that the multiplicity and instability presented here may have
implications for the operation of distillation columns using the L, V-configuration. In
manual (open-loop) operation the multiplicity may be experienced as small changes in
the manipulated flows may cause sudden jumps in the product compositions.
Furthermore, one will experience inability to reach a desired product composition if the
separation corresponds to an unstable operating point. However, we show that an
unstable operating point usually may be easily stabilized by feedback control.

4.1. Manual operation

We will again consider the methanol-propanol column in Table 1. Assume that the
column initially operates with reflux L,, fixed at 50-0kg/min and boilup V fixed at
2-0kmol/min. For these values of L,, and V there are three possible solutions in terms of
the product compositions according to Table 2 and Fig. 2. Only two of these are stable,
namely operating points IT and IV. Assume that the column just has been started up
and that the product compositions corresponds to solution I1, i.e., yp=0-584 and x;
=0-0035, while the desired operating point is operating point I11 in Table 2, i.c., yp
=0+924. In order to increase the purity in the top the operator starts to increase reflux
L., in a stepwise fashion. The reflux is increased with 0-5kg/min every 40 min. This is
illustrated in Fig. 4 together with the response in the top composition. In the beginning

Zp F o N Ny M, M,
050 1 355 8 4 320 601

Constant molar flows

Feed is saturated liquid

Total condenser with saturated reflux

Liquid holdups are M, ;/F =0-5min, including reboiler and condenser.

Table 1. Data for methanol-propanol column.
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L D L, Yo Xg
kmol/min  kmol/min kg/min
I 1-064 0936 4800 0534 3-10e—3
I 1-143 0-857 5000  0-584 3-50e -3
i 1-463 0-537 5000 09237 T-80e—3
v 1-555 0-445 5000 09969 0104
vV 1-650 0-350 5300 09984 0-233

Table 2.  Steady-state solutions for methanol-propanol column with V'=2-0 kmol/min and L,,
in the range 48 to 53 kg/min.
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Figure 4. Nonlinear open-loop response of methanol-propanol column to changes in mass
reflux L. Boilup V=2-0kmol/min.

the top composition y,, increases slightly with reflux as expected. However, as the
operator increases the reflux from 52 to 52-5kg/min the top composition starts to
increase drastically. The reason is that the reflux has been increased passed the lower
singular point in Fig. 2, and the column goes through an instability known as a
‘catastrophic jump’. The operator observes that the top composition becomes too pure
and the bottom composition too impure, and reduces the reflux back to 52:0kg/min.
However, as seen from Fig. 4 this does not have the desired effect, and the operator
decides to reduce the reflux all the way back to 50-0kg/min. However, due to the
multiplicity the column now settles in operating point IV with y,=0-997, that is,
hysteresis is experienced in the operation.

The simulations in Fig. 4 demonstrate three different effects that may observed in
columns with multiple steady states:

(1) inability to reach open-loop unstable operating points by manual operation,
(2) catastrophic jumps as the column goes through a singular point and
(3) hysteresis in operation.
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4.2. Operation with compasition control

As we have seen, columns operating with mass or volume inputs may be open-loop
unstable, and will require feedback control (in addition to level and pressure control)
for stabilization. From control theory it is well known that unstable poles by
themselves do not present any bandwidth limitations; on the contrary they put a lower
limit on allowable bandwidth of the closed-loop system. Problems will therefore only
arise if there are bandwidth limitations like right half plane zeros at frequencies
comparable to the right half plane pole (‘The system goes unstable before we are able to
observe what is happening’) or if there are constraints (‘we cannot counteract the
instability’). For plants with a RHP pole pand a RHP zero z one must in general require
p<z in order to be able to stabilize the column. With a limited structure of the
controller, for example, a PI controller, the distance between p and z must be larger.

Good control of distillation columns usually requires two-point control, i.e.,
feedback control of both product compositions. However, in order to stabilize an open-
loop unstable column one-point control will suffice. This is also the way most industrial
columns with composition control are operated. An unstable column operating with
the L, V-configuration may be stabilized by controlling either top or bottom
composition, or any other variable related to composition, for example a temperature
inside the column.

For operating point III of the methanol-propanol column the RHP-pole is at
p=0-086min~! and we are unable to stabilize the column with a PI-controller when
the deadtime exceeds 11 min. (za2/6,=0-182 min "~ !). However, composition measure-
ments in industrial columns (GC-analysis) may typically have deadtimes up to 30 min,
and one should then use faster temperature measurements in order to stabilize the
column.

Nonlinear Simulations. Figure 5 shows nonlinear simulations of the methanol-
propanol column using a single-loop PI-controller* between top composition yj, and
mass-reflux L,, with a 1 minute measurement delay included. Molar boilup Vis kept
constant at 2:0kmol/min. The figure shows the responses to setpoint changes in yp
from operating point I1 (open-loop stable) to operating point /11 (open-loop unstable)
and then further on to operating point IV (open-loop stable). A logarithmic
measurement Y, =In(1 —y,) was used in the controller as this reduces the nonlinearity
of the initial response between different operating points (Slogestad and Morari 1988).
From the figure we see that the controller is able to stabilize the open-loop unstable
operating point 111 with a RHP pole at 0-086 min . The simulations also show that
the same controller may be used in these three widely differing operating points. The
reason is that the initial response (high-frequency dynamics) in terms of logarithmic
composition Y, is similar in all operating points. We would get instability if we used
mole fractions, y,, as is done conventionally. From the plot of mass-reflux against time
we see that the steady-state change in the input is zero, showing that the three operating
points are multiple solutions.

One should be careful about detuning a controlier in an open-loop unstable process
as the bandwidth may become lower than the minimum allowable and the operating
point becomes closed-loop unstable. This is illustrated in Fig. 6, where the controller
gain has been reduced by a factor of two compared to the simulations in Fig. 5.
Operating point I1I is now closed-loop unstable, and a small setpoint change makes

! Tuned to yield reasonably fast response. Note that Ziegler—Nichols tuning rules resulted in
a closed-loop unstable system.
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Figure 5. Nonlinear simulation of methanol-propanol column with one-point control of top-
composition yp, using mass reflux L,. Setpoint changes from operating point I'T to IIT and
from 11 to IV, Boilup ¥'=2:0kmol/min. Controller parameters: k=30 and 7,=11-0 min.
Gain is for logarithmic composition, log(1 —y,).
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Figure 6. Nonlinear simulation of methanol-propanol column with one-point contro! of top-
composition yp, using mass reflux L,,. Controller gain reduced by a factor of 2 compared to
Fig. 5. Left plot: Time as independent variable. Right plot: Phase-plane plot. Dashed line
shows steady-state solutions.

the system start drifting away. However, this does not imply that the column goes
globally unstable in the sense that physical constraints are violated. Since there exists
steady-state solutions above and below the unstable solution the column goes into a
stable limit cycle. If the controller gain is reduced further the limit cycle will continue,
but now with alonger period of each cycle and with higher peaks in composition. There
will also exist cases where there are no solutions either above or below the unstable
solution. In this case the column is likely to go globally unstable as either the condenser
(missing upper branch) or reboiler (missing lower branch) would run dry.

For a discussion of the implications of open-loop instability for two-point control
we refer to Jacobsen and Skogestad (1991b).

5. Other bifurcation parameters

So far we have only considered the manipulated inputs, for example, reflux L., and
boilup ¥, as potential bifurcation parameters. That is, in all studies we have assumed
the other parameters, feed flow F, feed composition z, feed liquid fraction g, tray
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efficiency and so on to be fixed. However, it is clear that these parameters will vary
during operation and may, similarly to the inputs, cause the column operation to go
from open-loop stable to open-loop unstable.

To illustrate this consider Fig. 7 which shows steady-state solutions for the
methanol-propanol column with L,,=50-0kg/min, ¥=2-0kmol/min and feed com-
position z; in the range 0-40 to 0-60. From the figure we see that there are multiple
solutions for z, in the range 0-46 to 0-54. This implies that disturbances in the feed
composition may cause the column to go through a singular point and thereby jump’
to another solution branch. This s illustrated in Fig. 8 which shows the response in top
composition y,, to a change in feed composition z, from 0-50 (operating point IVin
Table 2) to 0-46. The figure illustrates how the top composition jumps’ to the lower
solution branch and settles in operating point VI. When the feed composition returns
to z; =0-50 the solution remains on the lower branch and settles in operating point I1.

0.8}
Yp
0.8}
0.7}

0.6}

051

087 042 044 046 048 05 052 054 056 058 0.6
ZF
Figure 7. Steady-state solutions as a function of feed composition z; for methanol-propanol
column. Reflux L, = 50kg/min, Boilup V'=2-0 kmol/min.
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time [min]
Figure 8 Nonlinear open-loop simulation of methanol-propanol column for changes in zy.

Reflux L,=50kg/min and boilup ¥=2-0kmol/min. Roman numbers I1—IV refer to
Table 2 with z,=0-50. Operating point VT corresponds 1o z;=046.
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6. Instability with the D, V-configuration

We have so far only considered using reflux and boilup as independent variables,
ie. the L, V-configuration. This is also the most widespread configuration in industry.
However, there are many different configurations that may be used. For instance,
changing condenser level control from using distillate D,, to using reflux L,, results in
the D,,V-configuration. For all the examples we have studied this configuration yields a
unique steady-state solution in terms of compositions. Furthermore, we have assumed
perfect level control, in which the operating point is found to be asymptotically stable.
However, here we show that without the assumption of perfect level control the
operating point may become unstable also with the D, V-configuration. We start by
considering an example and will then explain the results thereof using analytical results.

Example. We will again consider the methanol-propanol column in Table 1. The
holdups in the reboiler and condenser are increased to M,/F =M /F=50min. We
consider the case with constant molar flows, and use distillate flow D,, and boilup Vas
independent inputs, ie., D, V-configuration. With this configuration the condenser
level is controlled by reflux L.,, and the reboiler level is controlled by bottoms flow B,,.
The nominal operating point we consider has D,,=18-36 kg/min and ¥ =2-0 kmol/min.
For these specifications we obtain y, =09237 and x;=0-0078, and the steady-state is
unique, Note that the operating point corresponds to solution III for the L, V-
configuration in Table 2 and Fig. 2, that is, the operating point is unstable with reflux
and boilup as independent variables.

We now consider the stability of the operating point for different gains K, in the
condenser level controller. A pure proportional controller is used, dL,/(s)
=Ky, dM), (s). We assume perfect level control in the reboiler. Figure 9 (a) shows the
response in top composition to a small increase in D, keeping V constant, with level
control gain K, =005. We see that the response is oscillatory but asymptotically
stable, i.e, a stable spiral. Figure 9(b) shows the corresponding response with K Mp
reduced to 003, and we see that the steady state now is an unstable spiral. However, the
response settles into a stable periodic solution, that is, a stable limit cycle.

The fact that the steady-state changes from a stable spiral to an unstable spiral as
the level control gain is reduced implies that a pair of complex conjugate eigenvalues
cross the imaginary axis. The fact that a stable limit cycle appears as the steady-state
becomes unstable, implies that the system goes through a dynamic bifurcation known
as the Hopf bifurcation.

6.1. Analytical treaiment

To understand why the steady-state for the D,,V-configuration becomes unstable,
consider the transfer function (dy,,/@D,.), (s) which may be written

ay D _ ay D QIZw
(2)o-(32) o)

Here the transfer function (fyp/dL,)y(s) expresses the effect of reflux on top
composition with the L, V-configuration, and we have seen that it may be unstable with
a single RHP pole. For simplicity we consider only the largest pole in the transfer

function
ayp k
“rp - 14
(aL..,)JS’ o (14)
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Figure 9. Nonlinear open-loop simulation of methanol-propanol column with D, V-

configuration. Responses to small increase in D,, with different gains K, in condenser
level controller. (a) Ky, =005. (b) Ky, =003. Boilup V'=2-0kmol/min.

Here a denotes the maximum eigenvalue for the L, V-configuration. The transfer
function (éL,/dD,),(s) may be computed from a material balance around the
condenser

dLfs)="42(d V. (5)~dL(5)— D (5) (15)

Differentiation of (15) yields

oL, Ko
(aD..,)p“"KM., (VM — )( )(s) ) (16)

Here y, denotes the composition of V;.. We assume negligible condenser holdup so that
@y /0D IAS)=(Cyp/OD W (s). Inserting eqns (14) and (16) into eqn. (13) yields

dyp Kok B
(3Du,)y() s+ (Kyp—a)s— Ky (a+kVy(M; —M3)) (7
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The poles of the transfer function (17) become
A= —H K, — Q) MKy, — 0P +4K (0 + KV (M, — M) (18)

Let us now use eqn. (18) to consider the stability of the D, V-configuration for the
two cases when the pole a of the L, V-configuration is in the LHP and RHP,
respectively:

() Stable L, V-configuration, a<0: In this case the first term in eqn. (18) is negative for
all values of K, >0. Furthermore, the second term under the root in eqn. (18) is
negative and the root will be real with a value less than (K, — a) or it will be imaginary.
This implies that both eigenvalues in eqn. (18) are in the LHP, that is, the D, V-
configuration is stable for all values of K, >0.

(2) Unstable L,,V-configuration, a > 0: In this case we have that the first term in eqn. (18)
is positive if K, <a, that is, at least one of the eigenvalues in eqn. (18) are in the RHP
with K, <a. The size of K ,,,, will determine whether the root in eqn. (18) is imaginary.
For Ky,=a, ie, the bifurcation point, we have that the root is imaginary if
kV(M; —M,)< —a, which is the case in all examples we have studied.

We conclude from the above analysis that a prerequisite for instability with the
D, V-configuration is that the operating point is unstable with the L, V-configuration.
This is not too surprising as the level control for the D,, V-configuration may be viewed
as a feedback effect on the L, V-configuration. If the feedback control is not tight
enough, we are not able to stabilize the column, which is similar to what we found for
the case of one-point control with the L, V-configuration. With a gain K Mmp=0,1e, no
condenser level control, we see from eqn. (18) that there will be a RHP pole at @ (in
addition to a pole at 0), and we effectively have the stability properties of the L, V-
configuration.

In our example we find that the L, V-configuration is unstable with a pole a = 0-047
(with M p/F = Mp/F =5 Mg/F =5min) and from eqn. (18) we predict instability for the
D, V-configuration with K., <0-047. From the full model we find that instability
occurs for K, <0:043. The deviation in predicted and computed value is explained by
our assumptions of first-order response in eqn. (14) and neglibible condenser holdup in
the analytical treatment.

7. Conclusions

Distillation columns operating with the L, V-configuration may have multiple
steady states and unstable operating points. The probability of instability increases
with increased internal flows.

The multiplicity and instability may cause problems for manual operation of
distillation columns. Three effects may be observed:

(1) catastrophic jump phenomena,
(2) inability to reach certain separations and
(3) hysteresis in operation.

An open-loop unstable operating point may usually be easily stabilized by feedback
control of a column composition or temperature. If the bandwidth of the controller is
not sufficiently tight the column may go into a stable limit cycle.

Columns operating with the D,,V-configuration (or the L, B, ~configuration) may
become unstable if the level control is not sufficiently tight. A stable limit cycle appears
as the operating point becomes unstable.
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Nomenclature (see also Figure 1)

B bottoms flow (kmol/min)
D distillate flow (kmol/min)
F feed rate (kmol/min)
L reflux flow rate (kmol/min)
M mole weight, usually of top product (kg/kmol)
M, pure component mole weight of most volatile component (kg/kmol)
M, pure component mole weight of least volatile component (kg/kmol)
N no. of theoretical stages in column
N, feed stage location (1-reboiler)
V boilup (kmol/min) (determined indirectly by heating)
xp mole fraction of most volatile component in bottom product
yp mole fraction of most volatile component in top product
zp mole fraction of most volatile component in feed

Greek symbols

_ Vil x;
Ta—wi=x)

A =Mmax; 1{A) maximum eigenvalue

relative volatility (binary mixture)

Subscripts
w flow rate in kg/min
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