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On the use of constitutive internal variable equations for
thermal stress predictions in aluminium casting
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The report discusses the use of constitutive equations with internal variables in
mathematical calculations of the thermally induced strains and stresses that arise
during casting of aluminium. Application of the so-calleld MATMOD (MATerials
MODel) constitutive relations for the viscoplastic deformation of the material is
first discussed in relation to the specific characteristics of the casting process. Some
numerical time integrations of the one-dimensional version of the MATMOD
equations that are relevant for aluminium casting are then presented. The evolution
of temperature and total strain are here chosen to be close to values experienced in
the direct chill (D.C.) casting process, and values for thermally induced strains and
stresses are calculated. The results are compared with predictions based on the
traditional approach, in which a set of representative stress-strain curves at different
constant temperatures and strain rates constitute the complete description of the
viscoplastic deformation.

1. Introduction

Mathematical models that predict the evolution of temperature, stress, and strain
fields in metals during industrial processing have become an important tool in
obtaining a better understanding of the processes and in optimizing them. An
important class of models is based on the mechanistic conservation laws for mass,
energy, and momentum, and the quantitative description of the mechanical properties
of the metal during processing is given through an appropriate set of constitutive
equations.

In recent years the concept of internal variables has become an important part of
modern constitutive theories. Internal variable descriptions have proved to be well
suited to account for temperature and strain rate cffects in a physically more realistic
manner than the well-established plasticity theory used in most mathematical models
of the above-mentioned class. The complete description of the viscoplastic deformation
is, in the traditional theory, based on a set of representative stress-strain curves at
different constant temperatures and strain rates, and no consideration is given to
physical phenomena involved. Central in the new theories, on the other hand, is a
constitutive equation that relates the total viscoplastic strain rate to the stress, the
temperature, and some internal variables that represent the microstructural state of the
material. Rate equations for the internal variables are also incorporated, and as time
proceeds these are integrated to imitate the development of the microstructure during
the processing of the material.
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One of the basic ideas of the modern constitutive theories is that they can predict
any kind of viscoplastic deformation without regard to any particular process for
permanent deformation of the metal. A typical example is the set of so-called
MATMOD (MATerials MODel) equations originally developed by Miller (1975).
These equations probably attempt to cover the broadest set of phenomena, and
different versions of them have been reviewed in Miller (1987). The breadth of
phenomena that are to be quantified within the unification concept, however, comes in
many cases at the expense of accuracy in the equations (Miller 1987, p. 139). On the
basis of these considerations, a thorough study of the process characteristics and their
impact on microstructural phenomena is necessary to select sufficiently accurate
constitutive relations for a mathematical model of the process.

This investigation has been directed toward the casting of aluminium. An
important problem in casting is the formation of thermally induced strains and stresses,
which can lead to defects during or at the end of the process. This report therefore
discusses the use of constitutive equations with internal variables in mathematical
calculations of thermal stresses. We will furthermore compare results obtained by an
internal variable description with thermal stress predictions based on the traditional
concept of representative stress-strain curves.

Central to most mathematical models for predicting thermally induced strains and
stresses is some functional dependence of the form ¢ =6(e®, T'), where ¢ is the flow stress,
e = [de® is the accumulated effective plastic strain, and T is the temperature. Examples
can be found (Mathew and Brody 1976, Moriceau 1975) in which D.C. casting of
aluminium is studied, and a review of this type of computations was presented by
Dantzig (1989). These models also incorporate creep by using the so-called overlay
concept (Owen and Hinton 1980), in which the total viscoplastic strain is subdivided
into a time-independent plastic part and time-dependent creep. An objection to this
concept is, however, that strain generated by creep is mechanically indistinguishable
from that resulting from time-in-dependent plastic flow. In particular, at higher
temperatures only the combined effect is experimentally observable (Thomas,
Samarasekera and Brimacombe 1987, Zienkiewitcz and Cormeau 1974). Another
method of incorporating the rate dependence of the flow stress is by replacing the
relation 6 =a(e®, T) by 6 =a(e®, &, T) (Perzyna 1966). € is now the accumulated total
viscoplastic strain, and & is the viscoplastic strain rate. A constitutive description
similar to this was used in a model for thermal stress predictions in D.C. casting of
aluminium billets developed by Fjar and Mo (1990).

In relationships of the form 6 =d(e®, T) or 6=a(¢", &%, T), € is tacitly regarded as a
state variable that is representative of the current microstructure, and this gives rise to
some fundamental problems. The relations are, in fact, only generalizations of the
assumption of a universal stress-strain curve (see, for example, Malvern (1969)), which
is a basic concept in the classical isothermal theory for isotropic work-hardening
plastic materials. For casting, where isothermal conditions are manifestly not present,
one cannot expect the effective plastic strain accumulated at some high temperature to
be representative of the microstructure at a lower temperature. Constitutive relations
based on this assumption should therefore be rejected.

Also, the isotropic hardening assumption is questionable in constitutive relations
for thermal stress modeling because the material in some regions of the casting can be
subjected to nonproportional straining. It can, for example, be clearly seen in
aluminium D.C. casting computations that all viscoplastic strain rate components
change sign locally in positions close to the water-impingement point, which is situated
a few millimeters below the mould (Fjer and Mo 1990).
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The solidification of a cylindrical casting was studied by Smelser and Richmond
(1988), who used the constitutive relations with one internal variable representing
isotropic hardening as discussed in Sample and Lalli (1987). Internal variables are,
however, not yet commonly used in mathematical models for thermal stress
calculations in aluminium casting, and no reports have been found in which results
obtained by internal variables are compared with predictions based on the traditional
concept of representative stress-strain curves.

The development of constitutive equations to be used in mathematical process
modeling consists of three parts. First, one has to find a pertinent set of equations
suitable for the particular process. The second part is the experimental determination
of the material constants, and the design of these experiments should be based on the
constitutive description itself. A second kind of experiment is needed for the verification
of the complete constitutive description used in connection with the specific process.
This is the third part of the constitutive model development. In the present report we
only deal with the first of these three parts. We do not, however, intend to give a detailed
review of all the internal variable theories and their applicability for our thermal stress
problem. Several of these theories have been discussed and compared (Miller 1987)
from a more general point of view.

In the second section of this report, aluminium casting is considered in order to
focus on the main characteristics that should be inherent in the constitutive equations.
On the basis we then introduce the MATMOD equations in the third section and
briefly discuss their application in thermal stress computations. In the last section we
have solved one-dimensional MATMOD equations in computations quite relevant for
the thermal stress problem. Comparisons with results obtained by a constitutive
description of the viscoplastic deformation based on the well-established concept of
representative stress—strain curves are also presented in this final section.

2. Characteristics of aluminium casting

The thermally induced elastic-viscoplastic deformation of metallic materials can
normally be described within the geometrically linear theory (Dantzig 1989). This
implies the necessity of a constitutive model with good accuracy for small strains. Also,
the strain rates are small, having maximum values of approximately 10~ 2 sec™ 1.

The constitutive relation between the flow stress and the (effective) viscoplastic
strain rate depends strongly on temperature and on the ability of the dislocations to
move. The development of the dislocation structure (i.e., the configuration and density
of dislocations) of a specific alloy is in turn modeled through the strain hardening and
recovery properties. The flow stress can furthermore depend on other microstructural
characteristics such as grain size, density or solute atoms, and the density and
coarseness of precipitates. We therefore proceed with a brief discussion of how the
microstructural effects alter the mechanical properties of an aluminium alloy during
casting and how these effects can be accounted for in the constitutive modeling of
thermally induced viscoplastic strain.

2.1. Temperature dependence

Aluminium alloys experience a large range of temperatures in casting. The cooling
rates vary from 0-1°C-sec™ ' in sand casting to 10°C+sec™ ! in thin-walled die casting
and D.C, casting, and in strip casting the cooling rate can even reach 1000°C -sec ™ 1. As
a result of relatively large temperature gradients, thermal contraction leads to
significant elastic-viscoplastic deformation of the casting. Computations carried out
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by Fjzr and Mo (1990) for a D.C. casting process show furthermore that considerable
straining is present for all temperatures from the coherency temperature, T, down to
room temperature, T,. (T, is defined as the temperature above which the metal is treated
as a liquid and below which it is treated as a solid. For a more thorough discussion of
this temperature, see (Claxton 1973).) One therefore needs a constitutive description for
the viscoplastic straining of the material that is valid in the entire temperature range
(i.e., T.< T < T,) and in which the microstructure development typical for the cooling of
the alloy can be accounted for.

The mechanical properties of heat-treatable aluminium alloys depend strongly on
the number and size of precipitates, and at temperatures below the solvus secondary
precipitation becomes important if sufficient time for diffusion of solute elements is
provided. A major problem in specifying the flow stress dependence on temperature is
therefore to quantify the effect of such solid-state reactions. By comparing typical
cooling rates for aluminium casting processes with a time-temperature-
transformation-diagram for precipitation of, for example, Mg,Si in 6000-series alloys
(Mondolfo (1976), p. 571), one finds that the cooling often is so rapid that the elements
remain in solid solution during the entire cooling. Consequently, we shall in the present
investigation simply neglect the effect of secondary precipitation because this obviously
leads to less complexity of the constitutive model.

The above sirfiplification restricts the description to non-heat-treatable alloys and
to heat-treatable alloys subjected to a sufficiently rapid cooling. In the latter case this
can lead to problems when numerical values for the coefficients in the constitutive
equations are to be experimentally determined because this kind of experiment
normally is carried out on time scales much longer than those characteristic for casting.
To ensure that neither precipitation nor Gunier—Preston-zone formation becomes an
important mechanism for the ‘destruction’ of the cast microstructure, the experiments
must therefore only be carried out at temperatures above the solvus or at temperatures
that are low enough to neglect the diffusion of elements.

As a result of these experimental considerations, we suggest the use of a constitutive
model in which the temperature dependence of the equations can be interpolated from
the upper temperature level to the lower. Mathematically this means that the
temperature dependence should be an explicit variable of the constitutive equations
instead of being introduced through temperature-dependent coefficients. Such equ-
ations have the important practical benefit of allowing predictions to be made of the
behaviour at any desired temperature on the basis of data for other temperatures.
Theories in which the temperature dependence is modeled in this manner have been
discussed and compared by Bammann and Krieg (1987).

In the mushy zone (T, < T < T,, where T, is the solidus temperature and 7, is the
liquidus temperature), the interplay of the stress field in the solid with the interdendritic
flow in the liquid is crucial (Smelser and Richmond 1988). Several authors have
discussed the mechanistic conservation laws in the mushy zone, and in a recent report
Ganesan and Poirier (1990) have derived macroscopic conservation equations for mass
and momentum during solidification. In their approach, the mushy zone is regarded as
two continuous, interpenetrating phases, and there is a general need for a constitutive
model for the mushy zone that is based on a similar two-phase approach. In most
mathematical models for thermal stress predictions only a one-phase model of the
mushy zone is considered, and the stress distribution is assumed to be governed by
Cauchy’s equations for all temperatures below some coherency temperature T.. This
obviously leads to somewhat inaccurate modeling for temperatures between T, and T,
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and the benefits of any two-phase constitutive model cannot be exploited. Develop-
ment of an elaborate two-phase constitutive model for the mushy zone is beyond the
scope of this report, but one can in the first instance simply extrapolate the explicit
temperature functional dependence of a one-phase model up to T,.

2.2. Strain hardening

Strain hardening effects are due mainly to the development of a dislocation
configuration. In constitutive models the phenomenon is normaily divided into two
different parts, namely isotropic and kinematic hardening, and these two parts are often
modeled by two different internal variables representing the current hardness of the
material. One variable is a positive scalar that accounts for the isotropic part, and the
other is a tensor representing anisotropic effects developed by kinematic hardening. In
many constitutive descriptions, only the isotropic part is taken into account. Such
descriptions are therefore best suited for mathematical modeling of proportional
straining of a material (i.e., processes for which the two hardening effects are
experimentally indistinguishable). Kinematic hardening has, however, a considerable
effect in processes at small strains because the number of mobile pile-up dislocations
then is relatively large compared to the total number of dislocations. In casting
processes where the strains are small and where the material, at least in some regions of
the casting, is subjected to nonproportional straining, it is therefore necessary to
discriminate between the two hardening effects.

2.3. Recovery

Whereas strain hardening represents an increase in the dislocation density and
movement of mobile dislocations, recovery phenomena are characterized by annihil-
ation of dislocations. This leads to negative terms in the rate equations for the internal
variables representing the hardness of the material. Because recovery is thermally
activated, these terms are functions of temperature and the current state of hardness. In
problems with large plastic deformations the dislocation density will become high, and
further straining of the material may enhance the annihilation of adjacent dislocations.
In internal variable models this phenomenon is called dynamic recovery and is
modeled through terms in the rate equations that come in addition to the static
recovery terms referred to above. Because casting is characterized by small strains and
thereby only a modest dislocation density, one can neglect dynamic recovery terms in
the constitutive equations.

Recovery is mainly governed by the self-diffusion of aluminium atoms and the
climb of dislocations. At lower temperatures static recovery is therefore slow, and one
might expect that dynamic and static recovery would be of the same order of
magnitude. Compared to the strain hardening effects at these low temperatures, the
recovery effects are, however, so small that a somewhat inaccurate modeling of the
phenomenon has no influence on the predictions of thermal stresses during casting.

2.4. Other microstructural considerations

The class of microstructural parameters that are constant during the deformation
can be accounted for in the material description through alloy-dependent constants in
the constitutive equations. From our discussion it should be clear that the flow stress
dependence on the density of solute atoms and the density and coarseness of
precipitates belong, or at least are assumed to belong, within this class. Also, the grain
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size is constant during casting, and neither recrystallization nor the formation of
subgrains occurs in castings as a result of the low strains involved.

Miller (1987) discusses the above mentioned strengthening mechanisms along with
others and suggests how several of them can be modeled with separate intrinsic internal
variables. (Intrinsic means that the internal variable can be calculated directly from the
current values of the temperature and the viscoplastic strain rate without any
numerical integration of a rate equation.) Compared to the uncertainty introduced in
the description by disregarding effects as the change of flow stress with density of solute
atoms and with the precipitation configuration, this kind of refinement will not give a
more accurate description in our thermal stress context. An introduction of more
internal variables does also lead to more material constants, which may complicate the
experimental procedures for constant determination.

3. The MATMOD equations

One set of constitutive internal variable equations in which our ‘casting-motivated’
requirements are fulfilled are Miller’s MATMOD equations, to which some references
already have been made. Several versions of the MATMOD equations exist, and the
original MATMOD equations are described in detail in Miller (1975, 1976). In his
review on MATMOD (Miller 1987), Miller discusses two main directions into which
the model has been developed further. MATMOD 1V is an extension capable of
representing strain softening (Lowe 1983, Lowe and Miller 1984). Four internal
variables are employed to provide separate representations of short- and long-range
internal stresses and separate representations of homogeneously distributed dislo-
cations and heterogeneous dislocation substructures. This complicates the constitutive
model with a large number of material-specific constants to be experimentally
determined. Because strain softening does not play an important part in casting, the
detailed material description inherent in these equations is not believed to be necessary.

The other extension in MATMOD is the introduction of intrinsic internal variables
accounting for mechanisms of general lattice strengthening and solute drag (Schmidt
and Miller 1982, Henshall and Miller 1989). Application of intrinsic internal variables
for thermal stress computations in casting has already received comment above, and
the original MATMOD equations are sufficient for our purpose. (A minor change has
been made by replacing the melting temperature T, in Miller’s equations by the
coherency temperature T, in accordance with the considerations described earlier.) The
selected version contains two internal variables representing kinematic and isotropic
strain hardening and recovery, and these will here be called R and D, respectively.
Although our investigation can be based on one-dimensional equations, the full three-
dimensional version of MATMOD is derived in (Miller 1975, 1987). The one-
dimensional MATMOD equation that relates viscoplastic strain rate ¢° to stress o,
temperature 7T, and the internal variables is

&#=B-O(T)- {smh [("’ DR')M]} sgn(o—R) )

where the sgn functionisequal to + 1 or —1 according to the positive or negative value
of its argument. Rate equations for the time derivatives R and D are given by

R=H,&®—H,B-O(T)-[sinh(4,|R[)]"sgn(R) 2
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and

. A

D=Hoi( Cat Rl -42 D°) ~H,C.B-O(D) [snh (4D

1
respectively, and the temperature factor ©(T) is related to the temperature by the
expression
[ Q [, (06T ,
exp {[ 0‘6-R5T¢:| [ln(—T- +1 for T<0:6-T,
(1=

cxp{—ﬁf-f} for T>20:6-T,

Ryis here the gas constant, and the material constants are Q (or (Q/Rg),n, B, H,, H,, C,,
Ay, and A4,.

3.1. Initial values

When used in process simulations, the constitutive differential equations that
govern the internal variables require initial values. A thermal stress computation in
casting needs initial values, which here will be called R, and D,, respectively, at the
coherency temperature T, (see §2.1 and Fjr and Mo 1990). Initial values applied in the
thermal stress problem are obviously not the same as those that are to be applied, for
example, in a simulation of a tensile test on a cast specimen at room temperature for
material constant determination. In the latter simulation the initial values for R and D
should reflect the current structure of the cast metal, and this is necessarily influenced
by the process history at the actual position in the casting from where the test specimen
has been taken.

Miller (1975) argues that R, in annealed metal is 0. This is likely because most
annealed metals have equal tensile and compressive yield strengths. A similar
symmetry argument is adopted for the casting problem. D, on the other hand, does not
start out at 0 inasmuch as the material has finite initial strength. In a material that
undergoes considerable strain hardening during a process, Miller (1975) discusses how
D, can be determined from measurements of the initial strength at the initial
temperature of the process and regards D, as an additional material constant for the
particular process in question.

3.2. Material constants

Experimental procedures for the determination of material constants in
MATMOD that include steady-state creep, cyclic stress—strain deformation, and
tensile testing are described in Miller (1975, 1976). Because MATMOD was originally
developed for the analysis of high-temperature structures, however, such as gas turbine
blades and nuclear reactor components, we believe that several modifications of the
experiments should be made. For casting, models need to apply specifically for the
small strain and small strain rate regime. Experimental information obtained, for
example, from cyclic stress-strain deformation with several cycles and large values of
the effective strain is then unlikely to be important. This kind of deformation history
does not occur in casting, and an accurate prediction of cyclic stress—strain deformation
is therefore not necessarily required.

Experiments for the determination of MATMOD material constants particularly
relevant for simulations of casting of an aluminium alloy have not yet been carried out.
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The material constants employed below are therefore identical to those proposed in
Miller (1975), which are valid for annealed, high-purity aluminium. Even though these
constants cannot be fully quantitatively accurate for the casting of an industrial alloy,
they are sufficient for demonstrating the qualitative capabilities of the MATMOD
internal variable description when this is applied in thermal stress modeling in casting
processes. Miller's MATMOD material constants for high-purity aluminium are
shown in Table 1.

4. Computations relevant for aluminium casting

Some numerical calculations relevant for aluminium casting have been carried out
to show the adequacy of the MATMOD constitutive model. In these examples we have
integrated one-dimensional constitutive equations with realistic evolutions of the
temperature and total strain as input. This corresponds to 2 homogeneous distribution
of the temperature, stress, and strain fields in uniaxial straining. This simplified one-
dimensional modeling gives qualitatively correct results that are sufficient input for a
meaningful discussion of the use of internal variables in casting simulations.

In mathematical modeling of thermal stresses, a finite element solution leads to a set
of equations in which the displacement field normally is taken as the primary unknown
(see, for example, (Dantzig 1989, Fizr and Mo 1990)). Thermal stress calculations are
carried out by a simultaneous solution of these equations and the time integration of
the constitutive equations. The finite element equations disappear when the tempera-
ture and strain fields are homogeneous, and only the constitutive (and the compati-
bility) equations are left. Because of the small deformation theory, the total strain can
be subdivided into an elastic, a thermal, and a viscoplastic (or inelastic) part, which in
one dimension leads to the expression (In formulations based on the overlay concept,
the inelastic part is further subdivided. See, for example, Dantzig (1989)).

e=c+e +e° (5)

where the thermal strain €" corresponds to the (known) thermal contraction of the
material. Letting B(T) denote the (temperature-dependent) coefficient of thermal
expansion, the thermal strain is given by

TC
= —I B(T)dT ©
T
Quantity Numerical value Units

Q/Rg 17865 K
n 4-04
B 1-25 % 10° sec !
H, 600 MPa
H, 10
C, 0-69 MPa
A, 099 MPa~!
A, 1-33x1073 MPa~3
D, 2-33 MPa

Table 1. MATMOD constanis for high-purity aluminium.
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where T is the coherency temperature defined above. The elastic strain ¢¢ is related to

the stress by Hooke’s law:
a

e ~ 7

E(T) @
where E(T) is the temperature-dependent Young’s modulus.

Time integrations of the constitutive equations given above and in Eqns. (5) to (7)
are carried out in our examples. The temperature dependency of § and E are found in
(Mondolfo 1976, pp. 61, 81-82), and the coherency temperature T, has been given the
value 913 K (640°C) as in (Fjzr and Mo 1990). Input values for the temperature and one
component of the total strain tensor as functions of time have furthermore been
produced by the temperature and thermal stress models described in Brobak, Fjer,
Jensen and Mo (1991) and Fj&r and Mo (1990). The D.C. casting process is here
considered, and approximately 100 sec of the intermediate part of the casting process
has been simulated. Evolutions of temperature and total strain are taken from two
material points in the casting, and these cases are referred to as A and B as indicated in
Fig. 1. We have chosen the radial component of the strain tensor in both examples.

The employed integration method corresponds to that used in Fjar and Mo (1990).
This implies an inversion with respect to the stress of the constitutive Eqn. (1), that is,

€

| épl 1/n7)2/3
c=R+D [Sil'lh -1 (m) :I Sgn (ép) (8)
Mould
Cooling
water __ Liquid melt
inlet

'.
|

Solid part of the ingot|

Starter block

V

Figure 1. Material points in D.C. casting from which evolution of temperature and total radial
strain are taken as input for cases A and B.




52 A. Mo and E. J. Holm

which is used instead of Eqn. (1) except when ¢ is close or equal to 0. The inversion is
due to the inherently stiff characteristics of the equations, particularly in the low strain
rate sensitivity regime, where the derivative of ¢ with respect to o attains large values.
(For more details, see (Bammann and Krieg 1987, Mo and Holm 1990).)

5. MATMOD results

Numerical predictions for cases A and B are shown in Figs. 2 and 3, respectively.
One sees that the temperature evolution (which is input to the predictions) reflects the
position in the billet: The temperature decreases more slowly in the centre of the casting
(case A) than in case B, where the effect of the cooling water surrounding the ingot is
stronger. In accordance with Eqn. (5) it should be noted that the total strain is
subdivided into an elastic, a thermal, and a viscoplastic part and that the latter two
parts have the same order of magnitude (maximum, 1% to 2% at room temperature).

Itis evident from Figs. 2 and 3 that different temperature and total strain evolutions
lead to quite different behaviour in viscoplastic strain and internal variables. For
example, in case A é° is almost negligible after approximately 60 sec casting time or,
accordingly, when the temperature is below approximately 230°C. This leads to almost
stationary values for R and D and thereby no strain hardening at lower temperatures.
In case B, on the other hand, &, and thereby R and D, have significant values in the
entire temperature interval during the process.

There is nonproportional straining in case B, which can be seen from the shift in sign
in é®. At higher temperatures it turns out that most of the strain hardening is due to
kinematic hardening. It should furthermore be noticed that the change of sign in R
reflects a Bauschinger effect in the material. Kinematic hardening plays an important
part also in case A, even though we here only have proportional straining. In both cases
the kinematic hardening comes in addition to the isotropic hardening.

All variables T, &, R, and D determine the stresses. It is also important to have in
mind that according to Eqn. (8) ¢ is proportional to D, whereas it is related to R in an
additive manner. It is therefore convenient to use different scales on the axis for Rand D
in Figs. 2(d), 2(¢), 3(d), and 3(e).

We finally notice that the sinh term and the term H,|é?|4,/A,D* in Eqn. (3) for D
both are negligible in the present calculations. This means that recovery in these
particular examples is governed by the hyperbolic sine term in Eqn. (2) for R, which is
the kinematic contribution to the recovery effects.

5.1. Comparisons with the classical theory

Our MATMOD predictions have been compared with results obtained by the
classical theory for elastic-viscoplastic materials based on representative stress—strain
curves at different constant temperatures and strain rates. Central to the traditional
description is a relation between the stress, the viscoplastic strain rate, the temperature,
and the accumulated effective viscoplastic strain (Perzyna 1966, p. 296). This relation
can in one dimension be written generally as

a=a(@,1&%), T)sgn (&%) where &= {|de?| ©)

We notice that the accumulated effective viscoplastic strain is used as a state variable
and that only isotropic strain hardening and recovery are incorporated in the theory.
MATMOD-produced stress—strain curves at different constant temperatures and

strain rates are shown in Fig. 4, and results similar to these have been used as empirical
input to the stress—strain curve-based constitutive approach. We have in Fig. 4 focused
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Figure4. MATMOD-produced stress—strain curves for temperatures 20°C, 200°C, 400°C, and
550°C and viscoplastic strain rates 10 >sec™*, 10™*sec ™!, and 10 ?sec™! (increasing
stress values for each temperature correspond to increasing values of viscoplastic strain
rate).

on the particular regimes of temperature, strain, and strain rate that are typical for
casting, and it is seen that the curves do not have the typical shape expected in uniaxial
straining up to 19, aluminium. We emphasize, however, that as long as the stress-strain
curves are qualitatively correct, and as long as the same curves are input to the classical
predictions as those that can be produced by MATMOD, our comparison will be valid.

In the thermal stress calculations, empirical stress—strain results are transferred to
Eqn. (9) simply by integrating the MATMOD Eqns. (2), (3), and (8) with the actual
values for T'and &P kept constant. ¢ is then obtained when the current value of & is
reached. The stress—strain curves used in the thermal stress modeling based on the
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traditional method have, in other words, been produced by MATMOD. Any
differences in the presented thermal stress results obtained by MATMOD and the
classical approach are consequently due to the theoretical fundament of the two
constitutive descriptions and not to any inaccuracy in a numerical interpolation
between different stress—strain curves. It should also be noticed that in the comparison
we implicitly assume that stress—strain results can be regarded as representative for all
actual temperatures in the casting process. As stated earlier, one cannot generally
expect this to be the case in the intermediate temperature regime when heat-treatable
alloys are studied. Consequently, the need for an internal variable model is then even
larger because an interpolation between high- and low-temperature experimental input
fot the material behaviour may be required.

From Figs. 2(f)and 3 (f) it is seen that the classical theory predicts larger absolute
values for the stresses than the MATMOD theory, and we notice that the differences in
stresses are largest at lower temperatures. This result reflects the flow stress dependence
on 2® in the description based on stress—strain curves. For example, in case A we see that
& has a negligible value below approximately 230°C, which means that €” has obtained
its value solely above this temperature. It should also be noticed that é* does not change
sign in case A, which means that the results have not been disturbed by any kinematic
recovery effects. In other words, as a result of the effect of thermal recovery at higher
temperatures, we cannot regard ¢ as representative for the state of the material at lower
temperatures.

The importance of incorporating kinematic hardening is revealed in Figs. 3 (d) and
3(f). During the first 40sec of the process in case B, the internal variable R passes
through a history of being positive, then having a negative value, and finally becoming
positive once more. This leads to smaller absolute values for the MATMOD-predicted
stresses than in the traditional, isotropic theory, and the importance of modeling the
Bauschinger effect in the material is clearly demonstrated.

Another kinematic effect can be seen by comparing the two cases A and B. In the
former there is proportional straining during the entire process, but in case B there is
nonproportional straining at higher temperatures. It turns out that the differences in
stresses predicted by the different theories are larger in the nonproportional case than
in the proportional case. This result is in accordance with the fact that kinematic and
isotropic hardening are experimentally indistinguishable in processes with nonpropor-
tional straining (as discussed earlier). Because the material description in the classical
theory is based solely on unidirectional tensile testing, one therefore expects that the
nonproportional case B should reveal the largest differences in stresses.

6. Conclusions

The use of a constitutive internal variable model for mathematical modeling of
thermally induced elastic-viscoplastic deformation in casting of aluminium alloys has
been discussed. The benefits of modern internal variable equations are emphasized, and
we have discussed how the MATMOD constitutive description can be applied in our
particular context.

In comparisons between predictions obtained by the traditional stress—strain curve
approach and the MATMOD theory, we have demonstrated serious shortcomings of
the former constitutive description of rate-sensitive plastic materials. The most
important of these shortcomings are that the accumulated effective (visco)plastic strain
is regarded as a state variable and that kinematic hardening and recovery are neglected.
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