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Early fault detection and on-line diagnosis
in real-time environments

ANDREAS BYE{ and EYVIND NESS+

Keywords: Operator support systems, fault detection, fault diagnosis, quantitation
modeling, rule-based reasoning.

This paper describes an approach to fault detection and diagnosis involving the
simultaneous employment of quantitative and qualitative reasoning techniques. We
show that early identification of process anomalies by means of a separate fault
detection module paves the way for a fast and accurate follow-up diagnosis. The
diagnosis task is dramatically simplified because the diagnostic inferences can be
performed at the soonest possible time: when the detection module first spots
deviations between its calculated reference points and the corresponding measure-
ments from the process.

The approach taken has proved to be a successful division of work between the
detection and diagnosis tasks in a large, complex process. The fault detection
module, Early Fault Detection (EFD), has been implemented in our man—-machine
laboratory equipped with a PWR simulator and installed at the Loviisa nuclear
power plant in Finland. The diagnosis modules, comprising the Detailed Diagnosis
(DD) system, are currently running in our laboratory, where both DD and EFD are
integrated within the cooperating supervision and control environment concept
called ISACS.

1. Introduction

The main goal for the Early Fault Detection and Detailed Diagnosis systems, EFD
and DD, is to supervise a process, in the sense of detecting anomalies and diagnose
them on-line. The real time aspect here is not a time critical control problem, but a
surveillance problem, how to get secure information of process faults as fast as possible
out to the operator who is responsible for running the process. EFD/DD split the task
in two separate units, one detection part and one diagnosis part. The timing aspects are
then the internal timing problems in the communication between the quantitative and
the qualitative part, the detection part and the diagnosis part of the system.

When diagnosing a process a major problem in knowledge based systems is
handling a huge amount of knowledge, reflecting the complexity of the processes which
are going to be supervised and the intricate coupling between subprocesses. The basis
for the reasoning then becomes very wide and difficult to manage in an efficient way, see
Holmstrem (1989). With our system the searchspace is significantly pruned by reducing
the physical area in the process where a fault may possibly be, or where the cause of the
anomaly originates.

A conventional alarm system in an industrial process surveys pressures, tempera-
tures and similar physical quantitities and triggers if they get too high or too low. There
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are several problems with this approach to fault detection. To avoid false alarms for a
dynamic process, the alarm limits should be rather wide. This means that a disturbance
may develop quite a bit before it is detected and diagnosed. In order to get warnings
sufficiently early to avoid taking drastic countermeasures in restoring normal plant
conditions, the alarm limits should be put close to the desired operating points.
However, that would cause too many error messages during dynamic plant operation.
Another problem is the fault propagation in a complex process, where initiation of a
small transient in one part of the process may lead to a big transient in other parts of the
process. The fault may then originate from a point far from where.the first alarm
triggers. This makes it difficult for the operator to assess the cause of the alarm, since
several sections of the process might already have been disturbed. Similarly, building
diagnostic operator support systems which start their analysis only when an alarm is
triggered by a conventional alarm system, also turns out to be a hard task. It proves
difficult to write diagnostic rules which can be used in different plant states and can
distinguish between fault symptoms and normal consequence alarms.

As an extension of several years’ activity on alarm reduction methods, the OECD
Halden Reactor Project started in 1985 to develop a fault detection system based on the
application of reference models for process sections. Small, decoupled, mathematical
models which calculate the physical behaviour of process parts in situations without
faults, are running in parallel with the process. Certain key variables from the model,
so-called reference variables, are then compared with corresponding measurements
from the real process, and if there is a big enough deviation, an alarm is triggered.
Therefore faults are detected earlier than by conventional alarm systems, even in
dynamic situations. By a proper process decomposition scheme, the problem area can
be quickly confined to the faulty process part. In addition, the deviations between plant
measurements and the expected behaviour as calculated by the reference models, have
established an excellent starting point for a diagnosis system. The problem area is
already confined to a particular process section, thus reducing the search space of
potential fault hypotheses.

1.1. Typical transient scenario

The Early Fault Detection module, EFD for short, is continuously monitoring state
variables, calculating possible deviations between their measured and expected values.
Typically, one employs a set of mass and heat balance equations together with
information on plant topology and component characteristics. Whenever a deviation is
detected, EFD submits a message to the on-line diagnosis module, the Detailed
Diagnosis (DD) Runner. The message contains a reference to the plant subsystem in
which the error appeared together with the values of the associated deviations between
measured and calculated variable values in that subsystem. The DD Runner module
processes this message, possibly requesting additional information from EFD (typi-
cally values and time-derivatives of process variables), and finally comes up with a
conclusion about what might be the source of the disturbance.

1.2. Brief outline of the paper

This paper is divided into two main sections. § 2, Methodological Foundations, on
the underlying methods and concepts applied, and § 3, Technological Foundation, on
the technological issues related to our current system implementations.
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2. Methodological foundations

In this part of the paper we discuss general aspects of the theory and methods
employed in our research. Technical details and operational experience of the EFD and
DD systems are given in Ness (1989) and Serenssen (1990a, b).

2.1. Quantitative aspects—early fault detection

The quantitative part, EFD, is handling the detection aspect of the combined
EFD/DD system. In reasoning about process failures it is important to be able to see
the difference between the cause and the consequences of an anomaly in the process:
What is the process failure, and what are propagating consequences? In order to
answer these important questions one needs deep knowledge of the process, and in this
system simulation models provide this basis.

2.1.1. Conventional fault detection ~ As basis for the reasoning many expert systems use
the same input as the operators in conventional control rooms do, directly measured
state quantities in the process. These are typical quantities as pressures, temperatures,
flows etc. To detect anything abnormal, many of these variables have constant alarm
limits, where alarms are triggered when something gets too high or too low. Some
expert systems are then triggered by such static alarms, to diagnose the process to find
the anomaly.

But there are certain weaknesses with conventional alarms.

To avoid false alarms when the process is in normal dynamic transients, for example
when running a plant up or down, static alarm limits have to be rather wide. But
because of these wide alarm limits, alarms will trigger rather late when there is
something wrong. In certain cases malfunctions are not detected at all, when for
example a control valve stabilizes the level in a tank even if there is a leakage in the tank.

Another serious problem is false alarms. Worst case behaviour occurs when the first
alarm is false, and maybe far away from the cause of the problem, thus misleading both
the operator and the reasoning system which is trying to diagnose the failure. Another
problem is that after the first alarm has triggered, many other alarms trigger too,
because the failure transient propagates to other parts of the process. Shortly the
problem may be formulated: Which are the cause alarms, and which are the
consequence alarms? With conventional alarm systems one cannot distinguish
between them, and if a diagnosis system is triggered by such alarms, the search space of
possible fault hypotheses has to be rather large.

2.1.2. Model-based foundation for qualitative analysis The goal with this basis is to
detect failures at the earliest possible time, reduce the number of alarms in case of an
anomaly, limit the physical area where the fault may be, and thereby reduce the search
space for the reasoning module. In other words: We want to detect where the fault is at
an early stage, with no false alarms,

In EFD we use simulation models in parallel with the real process, running in real-
time. These are so-called reference models, which are small, decoupled, mathematical
models which calculate the physical behaviour of a process part assuming no faults.
Certain key variables from the model, so-called reference variables, are then compared
with corresponding measurements from the real process, and if there is a big enough
deviation, an alarm is triggered. Figure 1 illustrates the approach taken. In this way the
sub-model will follow the behaviour of the real process as long as there is nothing
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Figure 1. Schematic picture of EFD principles.

wrong in the process. Then we can set narrower alarm limits than the conventional
alarm systems, and in this way detect anomalies in the process far earlier, and also
detect small anomalies not discovered by traditional alarm systems.

The process models are small, covering as small a part of the process as possible,
depending on the instrumentation available. If more measurements are available, it is
possible to make smaller submodels. Each process submodel is decoupled from all the
others in the sense that it has only input from the real process. In our application the
models samples the process typically each third second, but the sampling interval must
be adjusted to time constants for the process considered. Each submodel will follow
and describe its corresponding process part in normal dynamic situations, even if the
state variables inside the model may deviate a lot from what is normal in steady state. In
case of a failure inside one sub-system, the calculated state variables will not match the
corresponding measurements. This decoupling makes EFD pinpoint the failure, where
in the process it is, in both steady state and in dynamic transients, without coming up
with false alarms, i.e., for each fault there is one and only one alarm.

One should have in mind that EFD is merely a detection system. If the behaviour of
a submodel deviates from the behaviour of the corresponding process subsystem, we
know that something is wrong, but not exactly what it is. It may be a process fault, such
that the model fails to mirror the corresponding process part, or it may be something
wrong with one of the inputs to the model, i.e. a measurement fault. But one thing is for
certain, the process area for the fault is located, making the search space for the
diagnosis much smaller. The diagnosis is then left to the DD module.

2.1.3. EFD implementation status EFD and DD are now running in our man-
machine laboratory, HAMMLAB. There they are acting as components in the
Integrated Surveillance And Control System, ISACS (Bologna 1991), and coupled to a
full scope PWR nuclear power plant simulator.

EFD as a self-contained unit has now been running on the Loviisa nuclear power
plant in Finland for over a year, see Serenssen (1990a). It is supervising the high
pressure preheaters in the feedwater trains and has detected internal leakages in the
heat exchangers, caused by fouling. The decoupling of this system makes it very easy to
focus on special problem parts of the process and survey these, not having to model the
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whole process. In Loviisa, where EFD runs stand-alone, the diagnosis is left to the
operator, who uses EFD and trend curves of key variables to diagnose what the
anomaly is. During one year of operation EFD has found two leakages. One of them
the plant personnel did not find before they shut down the plant and used a pressure
test on the tank in question. So EFD was the far most sensitive on-line tool they had to
discover small, slowly developing leakages.

2.1.4. Surveillance—not control Since this system is used for surveillance, and not
direct control of the process (unless seen in the loop with the operator), certain aspects
should be discussed. Robustness is in this case more important than accuracy, so if
there for example is a static deviation, this is not as dangerous as in the control case. In
the surveillance case one may allow static deviation, and use time changes of the
deviations to detect anomalies.

The time discretization method of the models is simple, first order explicit Euler is
applied. If a process model is used in direct control, with feedback to the process itself,
inaccuracies in the process model caused by the discretization may cause instabilities in
the whole system containing the process itself and the model. In our case we have no
feedback from the process model to the process. The models are coupled in an open
loop, so we have no amplifying effect demanding extreme accuracy in the process
models.

Noise on the input signals could have been a problem, because the current models
do not contain filters. In the practical use of EFD in Loviisa in Finland, this is solved by
using low-pass filtered input signals. This implementation concentrates on relatively
slowly developing phenomena, compared with the frequency of the typical noise in
signals from the process. It is then very good at detecting creeping faults at an early
stage, and also rapid changes resulting in static abnormal behaviour. It could, however,
be considered to include on-line filters in the models, e.g. Kalman-filters, to improve the
short-time model behaviour regarding noise influence.

2.1.5. Model validity For large disturbances in the process one may question whether
the models are valid or not. For certain systems it may be difficult to make models
which are valid in the whole operating range of the process. In this case a solution
would be to make many models, perhaps gathering them in a library, which are valid
under different operating conditions. Experience from our work shows that in many
cases the models are valid as long as the process topology is known. When the
automatics in the process intervene and actually change the process topology one may
then switch from one model to another.

2.2. Qualitative aspects—DD
In this section the inner workings of the diagnosis modules are put under the
magnifying glass.

2.2.1. Course of events in a typical diagnosis When a fault has been detected by the
EFD module, an alarm is sentt to the diagnosis module. The alarm contains two items:
a reference to a particular plant subsystem in which the alarm appeared and an error-
pattern, ie. a list of deviations, each of which in principle is the sign of the difference

T Possibly via a controlling agent like the Intelligent Coordinator in ISACS—see Bologna
1991.
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between a measured and an expected process variable value as calculated by EFD,
pertaining to this subsystem. Where a direct measurement is unavailable, we can let a
calculation act as one, using one equation, and let the expected value be the value as
obtained from another, unrelated equation (calculating the same quantity using two
different physical models, if possible).

When the fault-detection message from EFD arrives, a separate diagnosis
(computer) process is created to handle this particular event. Based on the preliminary
information from EFD the diagnosis process starts by inspecting the rules associated
with the given subsystem, collecting those with a matching error-pattern. These rules
become the hypothesis candidates for the remaining diagnosis.

Then the candidates are examined further by looking at their left-hand side, which is
a Boolean expression composed of general conditions for the rule to become a sclected
diagnosis hypothesis. These conditions may involve references to any process variables
or plant parameters, but typically they are expressions involving tests on the sign of
gradients. The diagnosis continues with an examination of the left-hand side of all
candidates, collecting all such references. Then a request for their current values is
submitted to the EFD data base module, which is supposed to be responsible for
looking up each process variable value and transferring the whole list of pairs {process
variable name, current value) back to the diagnosis module.

Now everything that is needed to complete the diagnosis is available. The
candidates with left-hand sides satisfied remain the resulting diagnosis hypotheses and
are presented immediately in a special history pane in the user interface of the on-line
diagnosis module, see Fig. 2.
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Figure 2. MMI of DD Runner.




Early fault detection and diagnosis 33

2.2.2. The man-machine interfaces Two user-interfaces have been developed, one for
the operator and one for the process-expert or knowledge engineer. These interfaces are
described in some detail below.

2.2.3. The operator interface The on-line diagnosis module, called DD Runner, has a
simple user interface. Figure 2 shows a screen dump of it.

As explained above, a diagnosis is triggered by an alarm from the carly detection
system and performed independently of operator input. Completed diagnoses are
collected in a stack, most recent on top, and appear in an overview window, called
History Pane, of the operator interface. The operator may then inspect any of these
diagnoses by clicking on the wanted item in this overview. The result of the selected
diagnosis is then presented in the big middle pane of Fig. 2, called Current Diagnosis.
Here the operator can find all data associated with that particular diagnosis. If a new
diagnosis completes while the operator is busy inspecting a previous one, he is not
forced to switch attention to the new one. Only the overview window is altered without
operator control. Also the operator can mark a diagnosis as ‘acknowledged” when he
has finished his inspection of it. When acknowledged the diagnosis item in the overview
window is shown in normal video, while unacknowledged diagnoses appear in reverse
video. This way the operator is provided a means by which he can easily distinguish
between new and old diagnosis information.

2.24. The developer interface The module called DD Rule Editor has a lot more
complex user interface. Figure 3 is a screen dump of a typical display configuration.

This module is used by the process expert to edit the contents of the diagnosis
knowledge base. As can be read from the menu pane in the upper right corner of Fig. 3,
he can add, delete and update rules and plant subsystem characteristics. A complete
functional description is outside the scope of this paper.

2.2.5. Rules and subsystems There are two main objects of manipulation interest to
the user: rules and subsystems. Rules are the fundamental building blocks of the
knowledge base. Subsystems are just collections of rules belonging to the same process
area, or otherwise related in some way. Common rule characteristics are defined at
subsystem level, while the details of each rule remain attached to the rule itself. The top-
level menu contains the functions necessary for creating, deleting and modifying rules
and subsystems, In addition the top-level menu has some auxiliary functions and
storage of the knowledge base.

22.6. MMI interaction principles Besides the functions available from the menus,
there are functions activated with direct mouse-clicks on so-called mouse-sensitive
objects. These objects respond to the mouse-clicks by performing some associated
action upon themselves. For instance, rule-objects presented in the pool pane (next to
the menus) respond to mouse-clicks by displaying themselves in the display pane, while
subsystem-objects respond to mouse-clicks by showing their associated rules in the
pool pane.

227. Verification and validation Simple provisions have been made for doing
automatic or manual consistency tests on the knowledge base. Manually, the developer
may request to perform a complete go-through of all the rules in the KB by using the
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Figure 3. MMI of DD Rule Editor.

Verify KB option in the menu shown in Fig. 3. Each and every rule is then scrutinized
by a testing procedure involving, among other things, verification of the validity of all
external references in the condition part of a rule (Left-Hand side), other syntax checks
on the condition part, and check for the validity of the error-pattern.

In addition to the manual testing, automatic rule checks are triggered whenever a
rule is modified or created. A field called Notes is associated with every rule. If the rule
passes the test criteria, it becomes immediately available to the on-line module, DD
Runner. If, however, some field of the rule fails the tests, a reason for it is given in the
Notes field and the rule becomes inaccessible to the on-line module.

This kind of meta-reasoning is easy to implement in LISP, because there is no
artificial barrier between code and data. The LISP code itself can be handled as data—
which is very useful in this connection—and vice versa, which we will see later is very
handy in communication connections.

2.28. The error pattern A field called Pattern is also associated with rules and
contains the characteristic fault pattern for the error hypothesis covered by the
particular rule. For every pattern element there exists a deviation between the value of
a process variable as obtained from a measurement and a calculation. The deviation
can be ignorable (0), negative (—), positive (+), or significant, but of unknown direction
(x)-

It is up to EFD to decide what constitutes a significant deviation, DD only
considers the qualitative value (i.e. the sign) of the deviations.
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2.29. Multiple conclusions or no conclusions Tn our system there may perfectly well be
more than one diagnosis hypothesis of a particular fault. This could be due to multiple
simultaneous unrelated faults, or insufficient number of sensors to locate the faulty
component. Also, we may end up with no hypothesis at all because of an incomplete or
inaccurate diagnosis knowledge base. However, the basic information about fault
location and detected deviations remains valid and is valuable in itself when the
operator is secking the cause of the fault. This makes the system robust to unexpected
and low-probability events.

2.2.10. Uncertainty In the current version of our system we have not included any
remedies for doing reasoning on incomplete or uncertain information. The rules
themselves are built on absolute knowledge (e.g. physical laws) and is certain enough,
but the input data to a diagnosis could be subject to further inspection. For instance,
the degree of deviation between a measured and calculated process variable value could
be reflected in the faith we assign to a particular hypothesis dependent on this
deviation. Currently, we just decide whether there is or is not a significant deviation,
and if it is, we only look at the sign of it when comparing it to the error pattern of the
rules. A possible extension to this approach could be to employ fuzzy logics for deciding
the significance of deviations.

A provision for uncertainty handling could also be sneaked in using the current
framework through extensions of the condition parts (Left-Hand sides), since there is
no inherent restriction on the content of a rule LHS as long as it can be treated as a
LISP expression returning true (not nil) or false (nil).

2.2.11. Fault categories We have distinguished between three different types of faults:
Measurement Faults, Control Faults and Process Faults. A measurement fault
involves sensor malfunction, a control fault implies an error in the control system, eg.a
dead valve controller, and a process fault amounts to everything else, e.g. tank leaks,
stuck valves and broken pipes.

This distinction only serves as a classification of hypotheses—there is no intricate
logic behind this scheme employed in any of the reasoning, but it could convey useful
information to the operator about the nature of the error he is faced with.

2.2.12. Real-time diagnosis Expert systems for diagnosis is by far the most common in
the field of artificial intelligence applications. However, almost all of them rely on a
static set of inputs and the analysis is often done off-line. While suitable and acceptable
in maintenance or other non time-critical situations, this approach fails when the
analysis is focused on the early detection and diagnosis of faults in a rapidly changing
process environment.

We have taken this non-monotonicity into account by using trend information
(e.g. gradients) and instantaneous values for process variables during a particular
diagnosis. Also, each diagnosis is an independent, time-stamped object completing
within seconds from the point of invocation. Parallel diagnosis invocations may exist,
facilitating the simultaneous analysis of multiple faults.

2.2.13. Explanation All relevant data used in a particular diagnosis is readily
available to the operator. By means of a simple click-and-display facility he can have a
look at the specific process variable used in the diagnosis.
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Theoretically, he should then be able to trace the course of events during the
diagnosis. As we have not provided support for a complete backtrace function in the
current implementation, we suspect however, that it would be too cumbersome a
project for the operator to carry out in practice. Before transferring the diagnosis
module to a real plant we will have to put more efforts into the design of a good
explanation facility.

22.14. Example diagnosis Using the high-pressure preheaters in the feedwater
process selection of a pressurized water reactor (PWR) as the subject for our example,
we can show how a diagnosis is made as seen from a qualitative point of view. It should
not be necessary to know the details of this particular process section to see how the
diagnosis is performed. The example illustrates how one can discriminate between
faults which give the same error pattern. Consider an error pattern, ep, for subsystem
RD10} where:

D_RN138001=0
D _RN21S001=0
D RN228001 -0
D_RN23S001=0
D_RN21F001=0
D_RN22F001=0
D_RN23F001 =+

Informally, we can then make the following statement: If the error pattern for RD10
is (000000+), ie. identical to ep above, indicating unexpectedly high outlet
condensate flow for the high-pressure pre-heater, we may have the following 4 fault
hypothesis candidates

(1) flow-sensor failure for the high-pressure outlet condensate

(2) temperature-sensor failure for the high-pressure outlet condensate
(3) temperature-sensor failure for the inlet feedwater

(4) process failure with leakage of feedwater into preheater tank

Next, we check the values of the process measurements of interest for the candidates
at hand. In this case one non-zero gradient were fetched—a positive value for a level
gradient:

A_RD13L001_GRADIENT=0.2

When there is a sensor failure (1, 2 or 3) the gradient of one particular instrument
has to dominate, while in case of a leakage (4) increased water-level in the tank should
be observed. This makes it possible to discriminate between process lailures and
measurement faults which is generally difficult in most cases. In this case it turned out
to be a leakage.

1 Note on the notation used in this example: The syntax ‘D_* is used to indicate a value that
is the (qualitative) difference between a measured and a calculated process variable. The syntax
‘A * refers to the direct measurement of a process variable. The process variables used in this
example are named according to the conventions used in the PWR simulator. E.g. ‘RN138001°
indicates that thisis a variable within the ‘RN’ subsystem (the High-Pressure Preheaters), the ‘1 ¥y
indicates the (component level) area with this subsystem, the °S’ indicates that this particular
sensor measures a valve position, and the 001’ is simply a sequence number for this sensor, to
keep it distinct from similar sensors in the same area.
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2.3. Where is the intelligence?

We would like to think of EFD and DD as intelligent programs, but it may not be
quite clear exactly where the intelligence is. DD without EFD is not much more than a
shallow, case-symptom based diagnostic tool, while stand-alone EFD is merely a plain
detection system. But EFD operating together with DD is definitely approaching
something which could be called intelligent by today’s computer program standards.

Due to the fault confinement provided by EFD, diagnosis is restricted to the
problem area identified by EFD. This means that the diagnosis becomes both simple
and efficient. Also, it becomes accurate because deviations are discovered by EFD at
the earliest possible time, before consequence alarms begin to play a role in the game.

In sum, the EFD/DD combination offers automatic, high-level analysis to the
operator through the use of model-based detection and diagnosis providing a synthesis
of detailed process knowledge and qualitative reasoning techniques.

3. Technological foundation

This part of the paper describes in more detail how EFD and DD are implemented
and how they are engineered into an integrated environment of cooperating software
modules,

3.1. Software framework

EFD and DD play the roles of components within a larger framework for process
supervision and control, see Bologna (1991). Currently, EFD and DD operate as
independent agents communicating with each other through message passing (T CP/IP
based), a common database (Sybase) and through remote procedure calling protocols
(RPC). Figure 4 shows how the main components of the on-line system are
(conceptually) interconnected.

Both EFD and DD maintain their own man-machine interfaces (MMIs), but also
volunteer information to the overall coordinating agent, the Intelligent Coordinator,

Figure 4. Main components in on-line system (ISACS configuration).
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which in turn controls how this information should propagate through to other
displays and to other software systems within the framework.

3.2. Software components

The EFD and DD software incorporate the application of a number of different
underlying software components. The following discuss the role of each individual
component and the preliminary experiences gained from employing them in our
context.

3.2.1. Sybase The Sybase relational database is storing process data and individual
component system data of common interest to parties within the ISACS framework.
EFD is among the software components which periodically feed the Sybase database
server with update requests of process variables, both their measured and calculated
values. Since there is no direct access from the EFD software currently running on an
ND minicomputer to the databases server module running on a Hewlett-Packard Unix
workstation, EFD sends its request using the only communication software library
common to both platforms, namely TCP/IP. The Sybase server operates surprisingly
fast and does not seem to pose problems as a bottleneck in this connection. The
communication system, however, gives rise to some more concern. TCP/IP is a
comprehensive, connection-oriented protocol with significant overhead and with
varying implementation quality. On occasions we have experienced performance
problems with this connection largely suspected to be due to TCP/IP implementation
anomalies.

3.22. G2 The G2 Real-Time Expert System Shell from Gensym Corp. has been
employed to implement the Intelligent Coordinator module responsible for controlling
and coordinating the activitiesamong the different operator support systems within the
ISACS framework. The coordinator has a variety of different tasks to take care of.
Relevant to our discussion here is that the coordinator monitors EFD operation and
decides when DD should be triggered with data from an alarm issued by EFD.
Furthermore, it compares the output from a diagnosis provided by DD with
informations obtained elsewhere—in our case a different diagnosis system.

Of course, EFD and DD may perfectly well run outside the ISACS context with no
coordinating module in between, with EFD submitting its alarm reports directly to
DD.

G2 has proved to be well suited for implementing coordination tasks. Only minor
problems have been encountered due to its limited flexibility in major software
reorganization and its lack of meta-reasoning capabilities.

3.2.3. Symbolics Common LISP To implement the symbolic manipulation and
qualitative reasoning so heavily employed in DD we have utilized the symbolic
processing power of a Symbolics LISP workstation running an exceptionally flexible
and powerful implementation of Common LISP. The kind of symbolic reasoning and
meta reasoning used in DD would be extremely hard to implement within less flexible
software environments. For instance, we have taken advantage of the meta-reasoning
capabilities of LISP to design an application independent communication paradigm.
The encoding and decoding of messages are left to the built-in LISP reader and printer
functions, which automatically convert between the internal and external represent-
ations of data objects.




Early fault detection and diagnosis 39

Also, we have employed meta-reasoning to make consistency checking and simple
rule validation. On-line testing, fine-tuning and modification of the knowledge base is
yet another attractive consequence of the inherent flexibility of LISP. The important
point is that the implementation tool should allow and encourage the development of
software which is powerful enough to put the developer in a position where he can not
only create intelligent programs, but also where he can easily extend his program to
make useful meta-reasoning upon its own program code.

The New Flavors object-oriented extension to Symbolics Common LISP have
been used to create clean and simple data structures and class hierarchies, but not much
more. As new standards for object-oriented programming are emerging we intend to
migrate the current Flavors-based software to CLOS—the Common LISP Object
System—now becoming the generally accepted standard for object-oriented pro-
gramming in the LISP community. We foresee no major difficulties in this process.

The Symbolics platform has proved to be convenient for real-time, process-oriented
applications. Independent processes are easily created, and they share the same data
space by default. No extra programming efforts are needed to invent and maintain
intricate schemes for dealing with interprocess communication.

3.24. X11 The X Window System, version 11, developed by the MIT X Consortium
is the underlying ingredient in all our user-interfaces. Because we are running our
applications in a heterogeneous hardware and software environment, and X11 is a
platform independent windowing system, we have taken advantage of the system to
create a common user interface for most of the software components involved in
ISACS. In the case of DD, which originally was designed and developed for running
under the platform-specific window system on the Symbolics LISP workstation, X 11 is
used to export the Symbolics screen out to the Unix workstations running the end-user
interfaces. No modification to the DD code was necessary to accomplish this feat.

3.25. TCP[IP Briefly mentioned above, TCP/IP is our main software and platform
independent glue between most of the components involved in ISACS. TCP/IP is the
Transport Control Protocol based on the Internet Protocol originally defined by
DARPA (Defense Advanced Research Projects Agency), an American government
organization. It has become a de facto communication standard endorsed by all major
computer vendors. TCP/IP is still the only practical means by which two pieces of
heterogeneous hardware can be connected in an application independent way. As
mentioned above, TCP/IP is a large, comprehensive protocol with significant overhead
related to error-checking and connection management. Originally developed to
support connections between highly unreliable hardware components, the TCP/IP
software make the communicating applications spend much time checking the validity
of each other’s data. With the kind of reliable, high-speed local area networks in use
today, this seems like a waste of time. Also, the (telephone) concept of connection
establishment, synchronization, maintenance, and hang-up seems archaic in the world
of computers where the traffic is typically of a ‘bursty’, short-term nature.

3.26. RPC The protocol for Remote Procedure Calis, RPC, as defined in the de facto
standard developed by Sun Microsystems, is replacing TCP/IP communication
whenever possible. The problem is that not all platforms run compatible versions of
this extremely efficient and simple communication software. The concept of remotely
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callable functions appears also more attractive to software developers not wanting to
spend too much time figuring out how to synchronize and maintain an explicit
connection between two cooperating agents.

3.2.7. EFFORT All EFD modules are currently implemented in EFFORT, for EFD
FORTRAN EFFORT is a locally developed extension to standard F77 syntax and
semantics, much in the spirit of the Unix utility called Ratfor (Rational Fortran). In
addition there is an EFD Database Generator making it possible to have pseudo
object-oriented F77 data structures, which is useful when one has to control the huge
amount of internal variables in a process model developed in FORTRAN.

EFFORT offers a range of convenience functions, where the so-called forall
construct has proved most useful in EFD connection. forall makes it possible to write
code that automatically iterates over a set of FORTRAN data base variables. If
EFFORT is meta-FORTRAN, then forall is a kind of meta-EFFORT. Typically forall
is used to generate EFFORT code.

3.3. Synchronization issues

The Sybase database server is getting current process variable updates from EFD
before clients are allowed access to the data. Read requests are supposed to queue up
while EFD runs its update process. This scheme is constructed to ensure consistent use
of process variable values in other applications like DD. It is a bit early to conclude
anything about the adequacy of this scheme, but all we can say so far, is that it seems to
work well.

At the time of writing, EFD runs in the ISACS environment synchronized with the
process simulator on a 3 second cycle. Sybase updates occur every third EFD cycle, i.e.
about each 9th second with about 400 process variable updates.

4. Conclusions

The EFD system based on decoupled reference models has been implemented and
tested in a variety of transients on a PWR simulator in our laboratory. EFD has been
installed at the Loviisa Nuclear Power Plant in Finland, and proved its usefulness as
the far most sensitive on-line tool to discover small, slowly developing leakages. The
DD module has been developed to make detailed assessment of the fault situation
within a limited process section of the PWR. DD has only recently become an
operational prototype and is currently running in our laboratory within the Integrated
Surveillance and Control System (ISACS) environment.

EFD/DD combines the power of quantitative and symbolic reasoning into a
coherent unit capable of fast, accurate detection and diagnosis of process anomalies.
Integration tests with ISACS, has shown that EFD and DD can operate as units within
a larger process control environment.
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