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This paper contributes to multidiscipline simulation of elastic robot manipulators
in FEDEM. All developments presented in this paper are based on the formulations
in FEDEM, a simulation system developed by the authors which combines finite
element, mechanism and control analysis. In order to establish this general
simulation system as an efficient multidiscipline robot design tool a robot control
system including a high level robot programming language, interpolation al-
gorithms, path generation algorithms, forward and inverse kinematics, control
systems, gear and transmission models are implemented. These new features
provide a high level of integration between traditionally separate design disciplines
from the very beginning of the design and optimization process. Several simulations
have shown that high fidelity mathematical models can be derived and used as a
basis for dynamic analysis and controller design in FEDEM.

1. Intreduction

A central issue in multidiscipline dynamic manipulator simulation is to integrate
the separate design disciplines FEM analysis, mechanism analysis and controller
design. Commercial program systems do not provide these simulation features and
cannot serve as a common design tool for both mechanical and control engineers. The
mechanical and controller design process have therefore traditionally been treated
separately. This paper presents methodologies which are developed and implemented
in FEDEM in order to obtain a high level of integration between these separate design
disciplines.

This paper gives an introduction to the non-linear FEDEM formulation and a
description of the new multidiscipline simulation methodologies which are developed
and implemented. An application example demonstrates how FEDEM is applied in
modeling and simulation of a lightweight manipulator in the space station Columbus.

FEDEM is a general simulation system for flexible mechanisms with the option of
including control models (Relvag 1992, Hildre, Relvag and Waleen 1990, Relvag and
Aamnes 1991, Iversen 1989). It is based on a non-linear finite element formulation
utilizing component mode synthesis (CMS) for model reduction. Static equilibrium
solution, dynamic analysis, eigenvalue analysis and options for stress calculations are
available. The modeling tools consist of an extensive FEM library of 3D elements,
joints, linear and non-linear springs and dampers, gravity forces, external loads, motion
input and a number of other modeling options based on the finite element techniques. A
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library of general input functions is available for modeling time variation, for instance
for loading and input motion and for modeling non-linear springs and dampers. An
option for analog and digital control elements is included in the simulation model.
Control elements may be chosen from a library of general elements that may easily be
extended. FEDEM enables users to model the actual shape and elastic properties of
each link in a mechanism, and it provides users with all typical output from a dynamic
simulation such as displacements, velocities, accelerations, forces and moments, joint,
spring, damper and control variables and natural frequencies. In addition, the direct
coupling of FEM and mechanism simulation makes the presentation of resulting link
deformations and stresses a natural part of the system.

2. Basic mathematical formulation

The individual links/substructures are defined on one level, and the degrees of
freedom are divided into external (subscript €) and internal (subscript i) degrees of
freedom. The dynamic equation of motion for a substructure may then be written as:

Mee Mel‘ “e Cee Cel 34.' Kee Kei Ve _ Qe
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Mi+Cy+Ky=0Q, @

where M, C, and K, are the substructure mass, damping and stifiness matrix
respectively. The substructure matrices are assembled from conventional finite element
matrices.

Using component mode synthesis (CMS) transformation the nodal displacements v
may be expressed by the external degrees of freedom v,, and by the new generalized

coordinates y as:
0
L S0

where, B= — K;' K,,, and @ is a matrix of eigenvectors for a few of the lowest modes of
the substructure, selected for each substructure after eigenvalue solution (v,=0) of the
substructure model, and [ is the unit matrix. This method exchanges the internal
degrees of freedom v; for a substructure by a number of eigenmodes as uncoupled
generalized coordinates y. If all eigenmodes are included, the transformation is exact.
Usually, only a few of the lowest modes need to be included to get good results, and this
will give a substantial reduction of problem size.

Combining eqn. (3) and its first and second time derivatives with eqn. (1) and
premultiplying by H™ gives

V. v, v, _
m[j’]+0[y:|+k|:y]+p—0 )

m=HTMsH
c=mCSH (5)
k=HTKsH
p=—H"Q;s

or shorter,

where




Multidiscipline simulation of elastic manipulators 223

Before they are assembled into system matrices, the superelement matrices are
transformed relative to a global coordinate system. The general system dynamic
equation of motion at time ¢ may be written as [7]:

Fi{+F2+ FX0=Q(t,¥) (6)

where F', F” and F* are inertia, damping and stiffness forces, respectively, while
Q(¢,v, ) represents input loads. A change in force over time increment k on system level
may be written as:

(F£+1—FD+(FE‘+1_Fi))+(F§+1_F§)=(Qx+1_Qk) (?)
or
AFI+AFP+AF=AQ, (8)

This is the equation of motion in incremental form. In the following, the different
factors of (8) will be expanded.

The inertia, damping and stiffness relations are approximated by a linearization
around the starting position for each increment, and the incremental system matrices,
shown in the following, are generated for that position. The error introduced by this
approximation may be eliminated by equilibrium iterations. The exact incremental
system matrices, called the secant matrices, are a function of the unknown displacement
increments sought for here, and cannot be generated in advance.

The incremental inertia forces from eqn. (8) may be written

AF; =My, AF, ©)

where M,, is the system mass matrix at the beginning of time increment k and
A¥, =¥, — T, represent the change in acceleration during increment k. The system
mass matrix My, may be constant or a function of the displacement vector r, depending
on what kind of element mass representation is used. The super element mass matrices
m are constant, but undergo a geometric transformation (Relvag 1992) before they are
added into the system matrix. If lumped mass representation is chosen, the super
element mass matrix is diagonal and the geometric transformation has no effect. The
system mass matrix will then also be diagonal and constant during integration. The
incremental elastic forces from egn. (8) may be written

AF}=K, - Ar, (10)

where K, is the system stiffness matrix at the beginning of time increment k and

Ar=r,,, —r represent the increment in displacement for increment k. In mechanisms,

the system stiffness matrix is in general a function of the displacement vector .
The incremental damping forces from eqn. (8) may be written

AFP=C, - Ak, (11

where Cji is the system damping matrix at the beginning of time increment k and
Ay =iy 4 — i, represent the change in velocity during increment k. For this formul-
ation the system damping matrix may be constant or a function of the displacement
vector r.

As for the mass matrix, if the damping matrix is diagonal it will not be affected by
the geometric transformation, and will therefore be constant. Two different forms of
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damping are included in FEDEM. One is called proportional damping, where the
damping matrix is a linear combination of the stiffness and the mass matrices.

Cp.=a,Mp +a,Kpy, (12)

where the constants «, and o, are calculated to achieve desired damping. In addition
the system matrices and vectors may be modified from a number of linear, non-linear
and time-dependent springs, dampers and loads including masses on individual
degrees of freedom. The geometric transformation and the assembling of the system
matrices are shown in Relvag (1992).

The general form of the incremental (linearized) dynamic equation of motion may
now be written as follows.

M,kAf'k-I-K,kArK:AQ& (13)

In general M,,, C;, and K}, are recalculated for each time increment. Solutions of eqn.
(13) by a time integration algorithm (Newmarks method [Relvig 1992]) gives Ar,, Ar,
and AF,.

The total solution at the end of the increment is then:

vy =+ A
Fiy =h+AF, (14)
Fip1=r +AFR

The solution at the end of the increment (14) may be used to calculate Fy , {, F¢, ; and
F% . ,, and because of the linearization there will be unbalanced forces at the end of the
increment.

AR =Qu —[Fio + FP  + Fiyy] (15)
These residual forces may be added to the load increment for the next step, see eqn. (13).
AQ= Q11— QG +AF,
=Qk+l_[F£+Fl?+Ff]
Equation (13) may then be written:
My ATy + CpAn + KpAn = Qo — [Fy+ FP+ F7] (17)

(16)

This is an approximation for the equation at time ¢, ,,=(k+ )h where his the time step
length. To achieve equilibrium at the end of the increment, iteration has to be used to
minimize the error from the solution of eqn. (17). Iteration is accomplished by replacing
AQ, in eqn. (13) by AF, , ; and by solving for the correction A, for Ar, from:

My R+ ClA A K A= Qo — [ Fla + T R+ ] (18)
The super index to the left of the symbols indicates the iteration number. The
displacement increment is then improved from:
‘Ark=i'_lflr,‘+‘-&k (19)
and the total displacement vector is calculated from:

I"ic+1=i_l"'fcn +‘.Ak (20)
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Velocities and accelerations are calculated the same way. Then ‘FI, ,, ‘F2,, ‘FS,,
may be calculated and substituted into eqn. (18) to solve for the correction * 'A,, and so
on.

If My, C;, and K, are updated after each iteration, the process is called Newton—
Raphson iteration. If the matrices M, Cy, and K, are all left constant during iteration
or only updated after some iterations, it is called modified Newton-Raphson iteration
(Relvag 1992).

The following criteria of iteration convergence is established.

Al <e @1

where ¢ is a specified tolerance. The solutions of eqns. (17) and (18) are obtained by a
Newmark time integration algorithm (Relvig 1992).

3. FEDEM modeling of the EMATS manipulator
3.1. Introduction

A majority of ESA’s Microgravity Program is the Columbus Program. In this
spacecraft all testing is controlled by two robots. In order to achieve the required
working speed these robots have to be as light as possible and the robot movements
have to be smooth and practically without vibration. To satisfy these demands it is
necessary in arm design to compromise between lightweight construction and
rigidity/minimum structural flexibility.

The microgravity environment in an orbiting spacecraft like Columbus is not
obtainable on earth, and the robot operations in this environment must therefore be
simulated on a computer in order to verify the manipulator performance. [t was not an
aim to perform a deep analysis of the EMATS manipulators in this work, rather this
manipulator is used as an example to show the capabilities of FEDEM concerning
modeling and dynamic simulation of flexible manipulators. The general robot control
system developed during this work is used in order to ease the description of the
operation to be simulated.

3.2. The EMATS kinematic model

The Columbus robot is a redundant manipulator, i.e. it has dim (6)=8 axes for a
maximum required dim (X) =6 DOF of the tool frame { T'}. This means that the inverse
kinematics problem is mathematically indeterminate, and there are two additional
DOF that can be specified. One straightforward way to parameterize the solution
latitude is to treat the longitudinal and vertical sliding base separately. Wohifart,
Rothenburger and Mau (1989) define the 6 joint angles (8,, 8,, 65, 6,, 85, ;) and
consider the linear drives 8, and @, as known. The arm kinematics can then be derived
analytically. The EMATS kinematic model is shown in Fig. 1. The transformation
matrices relating the successive coordinate frames are given in Wohlfart et al. (1989).

The closed form solution of the inverse arm kinematics proposed in Wohlfart et al.
(1989), was first included in the FEDEM kinematic module. This approach suffered
from several singularity problems and didn’t perform well. The final approach which is
derived in Relvag (1992) is based on separating the EMATS manipulator arm into two
parts, the arm with the first three joints for the major positioning, and the wrist with the
last three joints for the major orientation. This approach is originally proposed by
Pieper (1969) for robots with three consecutive axes intersecting at a point.
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Figure 1. The EMATS kinematic structure.
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Figure 2. The EMATS FEDEM model displayed in MPGS.

3.3. The EMATS Finite Element Model

The manipulator on the right side of the spacelab is modeled in PATRAN (1991)
according to the mechanical description (Wohlfart et al. (1989)), and an evaluation of
motor and transmission for the linear vertical drive (Hildre et al. 1990). The
Longitudinal Rail Units (LRU) and the arm are modeled by beam elements and the

Gantry Unit (GU) is modeled by shell elements.
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The Longitudinal Rail Unit is fixed to the satellite by springs equivalent to the rail
support stiffness. The Gantry Unit is connected to the upper and lower LRU by two
prismatic joints. The 6 outer links are connected by revolute joints. These joints are
always kept in fixed positions while the gantry is moving.

3.4. Gear modeling in FEDEM

High gear ratios do not have a decoupling effect on FEDEM manipulator models
when rotor inertias are added to the activated joints (the output side of the gear trains).
Due to the finite element formulation of the mass matrix, additional masses (rotor
inertias) are acting on the absolute motion and not only on the relative (joint) motion.
The solution to this problem is obtained by using an implicit function (Relvag and
Aamnes (1991)) and a gear model proposed in Hildre (1991). The main result obtained
by this gear model is the possibility to add the actuator inertias on the high speed side of
the gear trains. The actuator inertias will then have the desired decoupling effect.

The gear model which is shown in Fig. (3), may also include the description of the
actuator dynamics and nonlinear friction effects. The input torque M,,, is acting on the
input link link,,, which is modeled as a substructure with mass and inertia J;
corresponding to the actuator no. { j. This gives the input link an angular acceleration
0., which is integrated for each iteration. The corresponding angle 0, is divided by the
gear ratio ; and transferred to the low speed side of the gear by using an implicit
function. The output angle given by the implicit function is added as a prescribed
change of the stress free length of the spring acting between the two robot links
(n,n+1). The spring stiffness k,; is representing the gear flexibility and backlash
(Relvdg and Aamnes 1991, Hildre 1991). The change in the stress free length of the
spring will then generate an input torque on the output side of the gear M, which will
cause the arm movement.

This torque M,,, is divided by the gear ratio # and transferred back to the high
speed side of the gear train by using another implicit function. This process is repeated
at each iteration until the input M,,, and output M,, moments are balanced and
equilibrium is reached. Nonlinear friction effects (Rolvag and Aamnes 1991, Hildre
1991) like viscous, coulomb and stiction friction may be represented by the damping
coefficient ¢, The input joint velocity ,,,, is then transferred to the low speed side and
the friction force back to the high speed side by the use of similar implicit functions. This
means that the gear model causes some more iterations on system level until the
input/output gear forces are balanced. The reduction gears and transmissions of the

M:’np

Figure 3. Gear modeling in FEDEM.




228 T. Rolvdg et al.

EMATS manipulator are modeled by this approach according to the evaluation results
in Hildre et al. (1990).

3.5. Computing arm inertias for controller design

The feedback and reference tracking can be perfect only if the time-variant arm
inertias are exactly estimated. If we consider a robot mechanism modeled in FEDEM,
the system mass and stiffness matrices are a function of the manipulator configuration.
Hence, we cannot select fixed parameters (controller gains) which will keep the poles in
a desired (critical damping) location if the gear ratios are low. Therefore a control law in
which the gains are time varying (as a function of the robot arm configuration) in a
manner such that the system is always critically damped had to be considered.

Based on the non-linear finite element formulation in FEDEM, algorithms are
implemented which provides very good estimates of the joint inertias at selected
positions during simulation. These inertias are added to the motor inertias used in the
controller design. The calculation of the effective inertia for each actuator is based on a
numerical method for the calculations of Jacobi matrices and the principal of virtual
work.

The reduced mass matrix m, for substructure s is written as

m_;:HTMH: [ml 1 le] (22)
My MMy,
where
r o
H= [B (D:I (23)
M, 0
ﬂ'll 1 _—-Mm + BTMiB
my, =m,, = B"M,® (25)
my, =®"'M,®

M, and M;; is a lumped or consistent mass matrix corresponding to the external and
internal nodes respectively. The influence matrix B= —Kj; 'K, gives the internal
displacements as a function of the external (super node) displacements, and @ is a
matrix of eigenvectors for a few of the lowest substructure modes. Equation (23)
transforms the substructure mass matrix corresponding to the internal (M) and
external (M,,) nodes/dofs, to a reduced mass matrix corresponding to external
(subscript 1) and generalized (subscript 2) nodes/dofs (Relvag 1992, Relvig and
Aamnes 1991, Newmark 1959).

Several test simulations showed that the substructure mass submatrix (m,,) is a
very good approximation of m,, unless the substructure is extremely flexible. This
approximation is equivalent with not including substructure modes in the CMS
transformation of the substructure mass matrix (static condensation) (Relvidg and
Aamnes 1991). For the purpose of estimating joint inertias for rigid body robot
controllers this approximation is obviously good enough.

The submatrix m, , is transformed relative to base frame { B} using the correspond-
ing corotated substructure frame at the current time incident. This geometric
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transformation is therefore configuration dependent and must be repeated each time the
joint inertias are computed. If i, , is consistent, the nodal masses are lumped by adding
masses on corresponding nodals dofs for each column (Relvag 1992) which give 6 x 6
diagonal nodal mass matrices M,,,,, referring to {B}.

Note that lumped masses added on system level are also taken into account when
computing the nodal mass matrices M,, .. This means that additional masses
representing sensors, actuators etc. will influence the calculated inertias including any
payload.

Each nodal mass matrix are then transformed to equivalent joint inertias by using a
Jacobian matrix. The Jacobian matrix which relates cartesian velocities of super node
{inode) to joint rates can be computed using a numerical formulation.

v .
Vmou:l: :|=[J]'9 (26)
o
where v are linear velocities, @ are angular velocities, 0 are joint rates and
JL] JLZ - JLn
[J]=[ @
JAl JAZ .. JA:!

where nis the number of manipulator joints which may cause a movement of the super
node {inode}). If joint number { j» is a prismatic joint, the corresponding column of the

Jacobian is computed as
Ji|_| %
I:JAJ':I-I:“] 9

and if joint number { j) is a revolute joint, the corresponding column of the Jacobian is

computed as
JLj _ Zi X T inode (29)
J Aj Zj

where x; and z; are unit vectors pointing in the direction of the prismatic and revolute
axes respectively. The r; ;.4 is a vector from the master node on the jth joint to super
node number {inode).

The lumped joint inertias Mg are most conveniently established by considering the
mass contribution from each super node M,,,,.. In order to make these joint inertias
equivalent to the nodal masses distributed on the manipulator model, a virtual
defiection field

My, inoac1" Oyirt=[Minae V1" Vo (30)

is imposed on the model. The M,,,,. is a lumped diagonal nodal matrix and Mg ;.04 1
the desired equivalent diagonal joint inertia matrix (the super node’s contribution to
the joint inertias).

Equating the virtual work done by the distributed nodal deflection rates and the
virtual work done by the equivalent virtual joint rates during the virtual displacement
and substituting for V=[J]- 0 in eqn. (30) gives

[Mo. :me]Tﬂvm = [MimdeJ ﬂ]TJﬂm
OTMG inose=0"T "M 00 (31)
M, inode = J Mnode‘-’
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The joint inertias caused by the manipulator arm (arm inertias) is then calculated as

Mo= 5 [ hicMiilins] ()

where index [inode) runs over all external super nodes on the manipulator links. The
effective joint inertias used in the controller design (Relvag 1992) are given as the sum of
these time-variant arm inertias divided by the square of the gear ratios (7> 1-0) and the
constant actuator inertias.

4. FEDEM simulations of the EMATS manipulator

4.1. Introduction

Several trajectories have been generated and simulated by using the general robot
control system implemented in FEDEM. These trajectories have been animated on
work stations and recorded on video tapes. Both joint and cartesian space trajectories
were generated and applied as inputs to PD controllers. The interpreter module
allowed easy programming of robot operations, and the interpolator and kinematic
modules performed satisfactorily (Relvag 1992).

The interpolated joint reference values are inputs to individual PD controllers,
which generates the motor torque acting on the high speed side of the gear/joints. The
high speed (input) side of a gear (the motor rotor and transmission) is modeled as a
single link with equivalent inertia.

The data flow between the different SIMULE modules for a single joint is
illustrated in fig. (4) where

6, =the joint reference position/angle computed by the robot control system
K, =the proportional (P) gain
K, =the derivative/velocity (D) gain
Juign = the high speed rotor inertia
Opign = the joint position/angle at the high speed (input) side of the gear
8,...=the joint position/angle at the low speed (output) side of the gear
O,ow. ;= the feedback joint position/angle at the low speed (output) side of the gear at
iteration no. (i)
k,=the gear stifiness represented by a nonlinear spring
n=the gear ratio

I
| fmmplicit || Integrating
|Function)) system ea- |

| Rebot
| Contral |

Lorstem S A

Figure 4. The data flow between the Robot Control System, the PD Controller and the
FEDEM mechanical model including the implicit functions which represent a virtual gear
and transmission system.
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r=the radius of the friction wheel (linear transmission 7 and 8)
J=the force/moment caused by a change in the stress free length (6,,,) of the
nonlinear spring, acting on the low speed side of the gear.
M,,q=theload (robot arm inertia) acting on the high speed (motor)side of the gear.
Mp;gn=the input motor moment computed by the PD controller

The parameters used for the individual PD controllers are given in Table 1. The servo
control systems are modeled/configurated in FEDEM as shown in Figure 5. Hence, 8
PD controllers are designed to handle the MIMO control problem.

Several simulations including the robot control system, gear models and PD
controllers were performed in order to verify the robot simulation capabilities of
FEDEM. Two examples which show the main new multidiscipline features are
included in this paper.

4.2. Example 1—Micro gravity simulation

Figures 7 to 14 show how the control variables 0. 1 (6,c), 4 (yigy), 5 (yigy) and 7
(01w) in fig. 5 are changing for each joint during the simulation when the gravity forces
are zero. The feedback values are tracking the references, and the steady state errors are
zero due to no gravity forces. No overshoot in joint positions indicates that the system
is critically damped or overdamped in all situations.

Joint J.,i,,5 Jiow™ Jere
no. [kgm?]  [kgm?] [kem®] n  1/nr/y

210E—4 101E+1 419E—4 260 385E—3
266E—4 1-86E+1 540E—4 260 3-85E-3
1-06E—4 4-89E+0 228E—4 260 500E—3
230E-5 558E—2 230E-5 160 625E—3
230E—5 194E—1 306E—5 160 625E—3
230E-5 540E—2 233E-5 160 625E—3
7  6S0E—5 318E+1 6S58E—5 50 510E—4
82  T62E—4 388E+1 772E—4 60 1-59E—4

—
L3
L

K, K,
10 S503E—3 3920
648E—3 5060
10 274E—3 1640
10 276E—4 0132
10 367E—4 0176
10 280E—4 0134
10 790E—4 4645
10 926E—3 17435

L= S R T S
N N == Eﬁ
—
=

) Computed according to the proposed algorithm.

2 Linear transmission.

 Critical damping is obtained in the initial position. The change in effective inertia is expected to
be negligible because of the high gear ratios, but the manipulator may be slightly under/over damped
depending on the manipulator configuration.

Table 1. Parameters used in the controller design.

SIMULE

=

Figure 5. PD controller configuration.
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Figure 6. Variations in joint inertias during simulation.
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Figure 7. Servo no. 1.
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Figure 8. Servo no. 2.
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Figure 12. Servo no. 6.
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Figure 13. Servo no. 7 (XSGU).
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Figure 14. Servo no. 8 (ZSGU).

Table 1 shows that the time varying inertias at the low speed side (J,,,) of joint no. 1,
2,3 and 5 are a significant portion (25-50%) of the effective inertia (J ). To ensure that
the EMATS manipulator arm never became underdamped, the value used for each
joint inertia is therefore the maximum of the range of values that J,,, takes on during
simulation. The maximum value of the low speed inertias are included in the effective
inertia (J ) prior to the controller design, and since the manipulator arm was never
underdamped, this indicates that the low speed inertias are well approximated by the
proposed algorithms (Relvig 1992).

Table 1 also implies that it’s not correct to make the assumption that the effective
inertias for joint no. 1, 2, 3 and 5 are constant. Figure (6) shows how the arm inertia is
varying ‘seen’ from each joint. The effective inertias (J ) at the high speed side of joint
no. 1 and 2 are increasing by 12% and 267, respectively, while the variations in inertias
for all other joints are negligible (of no importance).

To ensure that the robot arm is always critically damped, FEDEM must be able to
deal with time varying controller gains. This option is planned to be included in future
versions of FEDEM.

The feedback joint values 6, in figs. 7 to 14 are put together in Fig. 15, and the
resulting cartesian motion of the manipulator arm (TCP) is shown in Fig. 16.

Figure (16) shows that the resulting motion has been a straight line between the
initial tool frame { T’} represented by the vector y;=[43295, —0-161, 0175, 0-0, 00,
0-0] and the goal frame {G} given by the vector y&=[4-5295, —0-161, 0-175, 00, -0,
0-0].

4.3. Example 2—simulation with gravity

Similar simulations including gravity forces (g,=9-81), showed that the EMATS
manipulator will not perform well on future ground tests with the present choice of
servo and transmission systems. The results showed that only the X-Sliding Gantry
Unit (6,) and the Z-Sliding Gantry Unit (6,) performed as required in the specifications.
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The ZSGU (0,) which is carrying the weight of the manipulator arm caused an steady
state error of the TCP of less than 0-0002 [m].

The other servo loops didn’t perform well and caused a steady state error of the
TCP of more than 0-12 [m] in the global z-direction.

The static arm moment t,,,,,, the high speed inertia J,,,, and the gear ratio n are
given by the arm configuration and the choice of motor and transmission. The
bandwidth of the servo loops (@, = 1/T) were therefore increased from 6 [Hz] to 30
[Hz]. The maximum controller bandwidth should not exceed the lowest structural
resonance frequency [ 10 Hz), however, it was of great interest to verify if some of the 5
structural modes within the controller bandwidth (30 [Hz]) would be excited. Other
ways of improving the steady state error would have been to include an integral term in
the servo loops (PID control) or by increasing the high speed inertia J,,, by using an
additional flywheel as used for joint no. 8 (ZSGU).

The controller gains corresponding to the desired bandwidth (w, =30[Hz]) and
critical damping ({ = 1) were calculated, and the steady state error of the TCP position
in the z-direction was improved from 0-12[m] to 0-11[m].

Similar curves may be computed for the deflection in x and y direction, and the joint
trajectories. This output capability is not a standard FEDEM feature, and requires a
kinematic description of the manipulator and some postprocessing of the result files.

Figure 17 shows the deviations from the reference cartesian trajectory caused by
elastic deformations and limitations in the PD controllers. The deviations caused by
the elastic deformations (curve no. 1) are obtained by using the interpolated joint
reference values as prescribed displacements of the joint springs rather than inputs to
the servo loops. A major part of this deviation is caused by deflections in gear and
transmissions. The joint positions are measured on the low speed (output) side of the
transmissions so most of the elastic deflections will be compensated for by the
controllers. The remaining elastic deflections in the EMATS manipulator arm (curve
no. 3) are obtained as for curve no. 1, but the joint springs which are representing the
stiffness in the gear and transmission systems are modeled stiff.
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Figure 17. Z-deflection of TCP.
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The total z-deflection of the TCP caused by servo limitations and compliance in
arm and transmissions is shown in curve no. 2 (w,=30[Hz]). The difference between
curve no. 2 and 3 gives the deflection caused by servo limitations when each joint
position is measured at the output side of the gear/transmission. This curve gives
information about how much the steady state error can be improved by using other
controllers (00068 [m] according to curve no. 4).

Assuming perfect control, the minimum z-deflection from the reference trajectory is
given by curve no. 3. The arm deflection can only be compensated for by measuring the
cartesian TCP position.

Figure (17) also indicates that none of the structural modes within the controller
bandwidth of 30 [Hz] are excited. The reason may be the smooth reference trajectory
which is generated, and that no disturbances are included in the servo/manipulator
model.

5. Conclusion

For future space structures and lightweight robot manipulators multidiscipline
simulation will become increasingly important. This work contributes to the inte-
gration of traditionally separate design disciplines, €.g. structure and controller design.
Some of the results presented in this chapter may not be representative of the real
EMATS manipulator design, but it outlines the main new multidiscipline features
implemented in FEDEM.

The robot control system including the robot language interpretor module, the
interpolator medule and the kinematic module performed very well. The reference
trajectories and information needed for the controller design of rigid body motion were
easily specified by the robot programming language. The proposed algorithm provided
good estimates of the time varying low speed inertias which were a significant portion
of the effective inertias.

The PD controllers were designed according to the maximum value of the effective
inertias, but the bandwidth of the servo loops were not limited by the lowest structural
eigenvalue. The data flow between the robot control system, the controllers (servo
loops) and the mechanical FEM model performed well even if further integration
would improve the simulation speed (Relvag 1992, Hildre 1991).

The gear and transmission systems in the EMATS manipulator are modeled as
described in (Wohlfart 1989, Relvag 1992). The proposed modeling technique, based
on implicit functions, introduced the desired decoupling effect which enabled control of
the rigid body motion of the FEDEM model. However, more efficient gear models
should be developed, in order to improve the simulation speed.

All algorithms implemented in FEDEM during this work (Relvag 1992, Hildre
et al. 1990) perform as expected, and provide a high level of integration between the
different design disciplines. FEDEM offers a precision in multidiscipline dynamic
simulation and modeling within robot applications which hitherto has been impossible
to obtain. Commercial FEM like ANSYS, NASTRAN and ABAQUS do not include
options for mechanisms and control system modeling and could not have been used.
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