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Accuracy of some robust estimators based upon prefiltering
of the input/output data}

ROLF HENRIKSEN{
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By prefiltering the input/output data and employing certain decentralized estim-
ation techniques, it is possible to improve the robustness of some estimators
significantly. Earlier papers on these techniques have been focused on local
convergence properties of four bootstrap estimators, a LS variant and three IV
variants, global convergence properties of the LS variant, and convergence rates of
the LS variant and two of the IV variants when the underlying system is stiff. This
paper is devoted to the accuracy properties of the LS variant and one of the IV
variants.

1. Introduction

Parameter estimators based upon standard estimation techniques, viz. least
squares (LS) methods, instrumental variable (IV) methods, etc. do occasionally have
difficulties with systems that have a somewhat ill-conditioned nature, e.g., stiff systems.
By prefiltering the input/output data and employing certain decentralized estimation
techniques, it is, however, possible to improve the robustness significantly. Previous
papers on the methods presented herein have been focused on robustness properties,
local and global convergence properties, and convergence rates when the underlying
system is stiff, see Young et al. (1987), Henriksen (1988, 1989), and Henriksen and Weyer
(1990).

The paper is organized as follows. In Section 2 we present a brief outline of the
system and a resume of previous results concerning local convergence properties,
global convergence properties, convergence rates, and robustness. Section 3 is devoted
to analysis of accuracy properties of two of the estimators, the LS variant and one of the
IV variants.

2. System description and previous results
We consider a system described by the linear discrete-time model
A(q_l)J’r‘:B(q_ l)ul+vl (1)

where y, is the output at time ¢, , is the input, whereas v, is the disturbance or residual.
{v,} is assumed to be a zero-mean stochastic process with a rational nonsingular
spectral density matrix. The processes {u,} and {v,} are assumed to be mutually
independent, and the system is assumed to be asymptotically stable.
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In the previous papers by Henriksen (1988, 1989) it was originally assumed that the
model (1) could be MIMO (multi-input, multi-output). The most neat and interesting
results were obtained, however, by assuming the system to be SISO (single-input,
single-output). We will therefore, for the sake of simplicity, also assume that in this
paper. It should be noted, however, that the analysis can be brought quite far without
making this additional assumption.

The polynomials A(g~ ') and B(g™") are factored as, respectively,

Alg )=Aslg Y420 @)
Blg ")=By(a ")Baa™") G)
where
Ag~Y=1+alg ' +alg 2 +...+ajqg ™ @
Afq Y)=1+dlq  +alg P +...+alg ™ ©)
Bi(g )=1+blg ' +big 2+...4+bLg™™ ©
B¢ ")=biq '+blq +...+bl g™ @

and where n, +n, = n, the degree of A(q™!), whereas m, +m, =m, the degree of B(g™").

Assuming the two polynomials 4,(g~')and B,(q ~!) to be known, we can define two
new variables which are moving averages of respectively the output and input of the
system, viz.

w=A,(a" s r=Byg" M, ®)
(1) thus takes the form

Ay(@ Yw=Bilg" r+v, ©)

which is a reduced model of the system. We shall refer to it as model M,.
Similarly, assuming 4,(g~") and B (¢~ ") to be known, we can define

z=Aq Ws S=Biq W (10)
which leads to the reduced model
Axg Vz,=By(g s+, (11)

This model will be referred to as model M,.
Equations (8)(11)form the basis for the estimators considered in this paper. We can
rewrite (9) and (11) as, respectively,

w,=yB+r +v, (12)
z,= IO+, (13)

where
Ye=[—We-1s--os =WimmpTe— 15> Femmy ] (14)
p=[ai,....a,b1,....bn 1" (15)
q’t=[_zl—l""?_zl—npsr—li“"st-m;]T (16)

0=[di.....a%.b,....b2,1" (7
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From (12) and (13) we can derive the following LS estimator:
po=|~ 3 wur| [ L3 1
N — N = |3 N;Zl d’:(w:_rl) ( 8)

LS g T ! 1 X
GN =[ﬁ ‘; ‘Pt(on:l [K, :Z'l ‘?’tzt] (19)

Since neither of the true values f* and 6* generally are known beforehand, the two
estimators (18) and (19) will have to be employed ina bootstrap fashion by replacing w,,
I, z,, and s, with, respectively,

w=A,a" " Pye 7=Big L P, (20)
£=A,0a""0)y; $5=Byg ", 0, @y

where f is short for S} etc. For more details, see Henriksen (1988, 1989), and
Henriksen and Weyer (1990).
From (18) and (19) we can also immediately derive an IV estimator of the form

N -1 N
-l L iR in=—) | @)

1 N -1 1 N
6= I:ﬁ z ‘;5:(93] I:_ E @,Z,] (23)

=1 =1

where

!F:=[—W":-p---, —ﬁ"_m,l"‘_l,...,l“_m']-r (24)
Ww,=A1 (g ")Blg ")y, 25
G=[—Z-y--- _Et—u_;!st—lv“’st-mg]T (26)
Z=A4;"(q ")Blg ")y, 27)

A couple of other IV estimators have been suggested in the earlier papers by
Henriksen (1988, 1989), and Henriksen and Weyer (1990), e.g., a symmetric variant of
the form

v [V & T &
ﬁﬁ =[N r=21 'Fad’r] I:'ﬁ ‘; :(Wr-rt):l (28)
1 N -] N
giw = [ﬁ ‘; ‘ﬁt@?] [E ‘Zl @lzt] (29)

but the consistency and accuracy properties of these variants are doubtful, see
Henriksen (1988, 1989) or Soderstrém and Stoica (1983). We will therefore not pursue
any of these other variants any further.

The convergence properties of the above estimators have been thoroughly
investigated in a couple of papers by Henriksen (1988, 1989), and in a paper by
Henriksen and Weyer (1990). Provided certain standard consistency conditions are
satisfied, ¢.g., (1) the polynomials A(g~') and B(g ~") are coprime, (2) the input process
{u,} is stationary, ergodic with respect to second-order moments, and persistently
exciting of order n+m, (3) the input u, and the disturbance v, are independent for all ¢
and s, etc,, see Henriksen (1989) or Soderstrém and Stoica (1983), some neat results
about the convergence properties of the above estimators can be given. These results
will be summarized in what follows.
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After some elaborate computations it can be derived that local convergence (about
the point (8*,60%) of the LS variant can be determined from the eigenvalues of the
matrix

F=[EY!1 ' EY.0{[E@ipi1 ' Ep] (30)

whereas local convergence of the IV variant can be determined from the eigenvalues of
the matrix

F=[EyJ7] EVGI(EG.G(1 ' EGdT (31)
where E denotes the expectation operator.

Fact 1

If 1 is an eigenvalue of F (or of F), then A is real and 0< A< 1. Moreover, A=1is an
eigenvalue of F (or of F) of multiplicity k=i+jifand only if 4,(q" 1yand 4,(g ') have
exactly i common zeros, and By(¢ ') and B,(¢~ ") have exactly j common zeros.

Fact 2

The above bootstrap estimators converge locally if both the polynomials Ag™Y)
and A,(g”*) and the polynomials By(g~") and B,(q ') are coprime.

These two facts were essentially shown in Henriksen (1988, 1989). Some further
results were obtained in a recent paper by Henriksen and Weyer (1990).

Fact 3

The LS variant converges globally if it converges locally.

Furthermore, as the stiffness of the system tends to infinity, all eigenvalues of F (or
of F) tend to zero, i.e., local convergence of the two estimators tends to becoming
instantaneous.

3. Asymptotic distributions of the estimators

In this section we will evaluate the asymptotic distributions of the two estimators
(considered as bootstrap estimators). We start with the accuracy result for the LS
variant.

Theorem 1 (Accuracy of the LS variant)

Assume sufficient conditions for consistency of the LS variant are satisfied and that
the processes {u,} and {1} are stationary (and mutually independent). Then the
parameter estimates f}° and 0% are asymptotically Gaussian distributed in the sense
that

distribution
N—oo

(N85 —B*] W (32

(W0 — gy SN0, s (3)
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where y;° ~ N(0, P§®) and y§° ~ N(0, P5%) and where the covariance matrices Pg’and PgS
are given by, respectively,

PP=R,R;'(0*); P{*=R,R,'(f*) (34)
where
R6*)=EY(0*W(6%); R, (B*)=Ep 8%l (B*) (35

whereas R, = E(v))%.

Proof. See the Appendix.

By assuming the input process {u,} to be white we will make some further
refinements of the above result (the noise process {v,} has to be white in order to satisfy
the consistency conditions). Define the series

1 1

l;)h}z" A}‘(Z'I); Zoh,? = ANz Y (36)
& . BT) &, B¥z)
59 ey B9 e @7

where
Az N=A,z71, %), Az )=Aaz 1, 0%,

B*(z"')=B(z"', *,0%)=B,(z"", f*)B,(z ", 6%).
Furthermore, define the matrix
H' 0
Hy= [ g ] (38)

0 0
where the submatrix Hj' is given by
Hp'=[hs%], i=1,...,ny,j=1,...,n, 39)
with entry hg’; given by

hpi= Z hihiayi-j 40)
We also define the matrix
Gll Gu
G={ ¢ °°F 41
where the submatrices Gj* are given by
Gp'=[gp};), i=L...,n,j=1,...,m, 42)
Gg? =[gm =l,...,nl,j=1,...,ml (43)
G3'=[g3%), i=L...my,j=1,...,m, (44)
G§z=[g‘§‘2‘j], =l,...,m1,j=l,...,ml (45)
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and where the entries g§%; of these submatrices are given by, respectively,

o0 "2
gll!.ll‘j': Z GkGi+1i-ip> b= — 1) Gh-i+ bk (46)
k=0 k=0
¥ 2 22 _ % p2p2t
9:23.1&'—' _xzo g;+l—jbk > Gﬁ'jj=kzo by by yi- i )]

Note that g =0 for k<0 and that b7" =0 for k> m,. Furthermore, bi" means the true
value of b7.
In a similar fashion we define the matrices

H* ©
Hy= 48
\ [ ’ 0] 48)
G;! G,}Z]
G =[ )
e
where the submatrices are given by
Hél= hl;,lij s i=1,...,n2,j=l,...,nz (50)
Git=[gi}], i=L,...,npj=1,....n, (51)
Gi?=[gs2], i=L,....,nj=1,...,m, (52)
Gl =[gd%;), i=1,....myj=1,...,ny (53)
GZI=[gg:~; H] i= l)-“)m27j=ls°“,m2 (54)
with entries given by, respectively,
W= 3, Wb (55)
o=y Glkei-i 9= — ) Gi-ieb (56)
k=0 k=0
Qg.lu= —*Zogfu-,-bi‘; gg.%j=kzobl%*b;:|i—}| (57)

Note that g2 =0 for k<0 and that b}* =0 for k>m,. Furthermore b;" means the true
value of b;.
With the above definitions we are now able to present what follows.
Corollary 1
Assume the input process {u} to be white with R, = E(u,)”. Then the covariance
matrices P§* and Py* of the LS variant are given by, respectively,
PF=R/R,G,+R,Hp) '; Pe*=R/R,Gp+R,He) o (58)

Proof. See the Appendix.

We now proceed with the IV variant. In this case we do not have to assume the
disturbance to be white; it is instead assumed to be of the form

w= C(q - 1)51 (59)

where the process {¢ is white and stationary with R,= E(g)* and where C(g~ ") is a
filter such that both C(g~!) and C~ (g~ !) are asymptotically stable whereas C(0)= 1.
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Theorem 2 (Accuracy of the IV variant)

Assume sufficient conditions for consistency for the IV variant are satisfied and that
the processes {u,} and {v,} are stationary (and mutually independent). Then the

parameter estimates f} and Y are asymptotically Gaussian distributed in the sense
that

disibu
(N — ] S Y (60)
vy gy —or SStTbUOn 1)

where 3’ ~ N(0, P}y and 7)Y ~ N(0, P¥) and where the covariance matrices Py’ and Py¥
are given by, respectively,

Py =Ry (B*, 0%)04(8*, 0*)R; \(*,0%) (62)
Py’ =R, '(B*,0%)Q,(B*, 0*)R; (*,6%) (63)

where
Ry(B*, 0%)=E/(B*, 0* W[ (6%) = EJ(B*, 65 T(5*, 6*) (64)
R5(B*,6%)=EG(B*, 6%)p; (B*)= EG(p*, 0*)5] (8*,6%) (65)
Qy(B*,6%)=R.EC(q~ "W {B*,6*)- Clg~ W T(B*, 6% (66)
Qa(B*,0*)=R.EC(q™ ") {B* 6*)- Clg~ ") (B*, 6%) (67)

Proof. See the Appendix.

By assuming the input process {u,} to be white we can also in this case make some
further refinements. Of course, the noise process {v,} does not have to be white in this
case, but we will for the case of simplicity and for the purpose of making a direct
comparison also make this assumption.

Corollary 2
Assume both the input process {u,} and the noise process {r,} to be white with
R,=E(u,)* and R,= E(v,)?. Then the covariance matrices Pg’and Py of the IV variant
are given by, respectively,
» =R.R,'Gy'; PY=R,R;'G;! (68)
Proof. See the Appendix.

The two matrices Gg and G, are the same as defined before, i.e., as defined by
Eqns. (41)-(47) and by (49), (51)-(54), and (56)(57), respectively.

We will now make a comparison of the above asymptotic properties with the
asymptotic properties of more ordinary LS and IV variants. For this purpose we
consider a system of the form

Ay(@™)ye=By(@ Y+, (69)

where the polynomials A,(g~*) and B,(q ™ !) are the same as before. Assume the input u,
to be an MA process of the form

u=Dlg™ "), (70
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where {n,} is a white process with E(7)’=R, (it is, furthermore, assumed to be
independent of the white process {1}). The asymptotic covariance matrix of this
estimator is given by

PQS=R/R,Fg+R,Hy)™* (71)
where the matrix H,is the same as before, i.c., as defined by Eqns. (38)+40), whereas F
is defined by
F' Fp?
Fﬁ:[Fﬁl F2 (72)
where the submatrices F§? are given by
F}l=[f5.l'_ s i=l,n-)"l) j=11'“)nl (73)
F}z=[fé‘z‘j N i=l,...,nl, j=1,...,ml (74)
FR=[f24], i=l...m,j=1,...,n (75)
.F%z:[f%,zij 3 i=1,...,ml,j=1,...,m1 (76)
and where the entries f5%; are given by, respectively,
oo ]
f;.llj=kzof;f:+|i—'ﬂ; f;li,zij= —kzofé—u,dx (77)
[ [
f§.1u= _*Zofkl+i—1dk; ff,zij=kzo dkdkﬂi—jl (78)

Furthermore, the series f3, f1, f3,...is defined by
© -1 -1
§ e B0

¥=0 _A?(Z_l) -

9

and we have assumed that
Dz Y)=1+dz ' +dyz 2 +...+dz”? (80)

From (71) and (58) we see that our LS variant has the same accuracy as an ordinary
LS estimator for the system (69) with input u,= B,(g~ "), and with E(,)* = R, A similar
thing applies to the estimator for the parameter 0.

With the same assumptions as above we find the asymptotic covariance matrix of
the corresponding ordinary IV variant for the system described by (69) to be

PRV =RR; 'F; @)

When we compare this with (68) we see that the above conclusion also applies to the IV
variant, i.c., the accuracy is the same as for the corresponding ordinary IV estimator for
the system (69) when the input is u,=B,(q '), with E(7,)*=R,.

What has been shown above is not very surprising. Our prefiltering of the
input/output data simply amounts to, as N tends to infinity, removing known
dynamics, and we are left with the problem of estimating a reduced-order model with
input B,(q~")u, or B,(q™ ")u, respectively.

It is easily verified that the above conclusion also holds when the input process {u,}
is not white. We summarize this in what follows.
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Fact 4

The accuracy of the LS and IV variants with input u, is the same as the accuracy of
the corresponding ordinary LS and IV variants, respectively, for the reduced-order
models M, and M, with inputs given by B,(¢~')u, and B,(g™')u, respectively.

4. Conclusion

We have considered the problem of evaluating the accuracy of certain robust
estimators based upon filtering of the input/output data and employing certain
decentralized estimation techniques. These estimators have in some earlier papers, e.g.,
Young et al. (1987) or Henriksen (1988, 1989), been shown to have superior robustness
properties in situations where ordinary parameter estimators often fail, in particular
when dealing with stiff systems.

The accuracy analysis presented herein reveals that the loss in accuracy may be
small or even nothing compared with the corresponding ordinary LS or IV variants for
the whole system. This is due to the fact that the variants herein are faced with a lower
order model which should be expected to yield higher accuracy in the estimated
parameters for a fixed sample size N. On the other hand, the estimators have to deal
with inputs which are moving averages of the original inputs and this should lead to
lower accuracy. The net outcome of these two effects could depend upon the actual
system. However, the estimators have proved to be useful when the underlying system
has anill-conditions dynamics, €.g., when the underlying system is stiff. For stiff systems
it has been shown that the convergence rate of the estimators will be very high, see
Henriksen and Weyer (1990). This surely makes the estimators more attractive from a
user’s point of view.
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Appendix
Proof of Theorem 1.
For N large enough we can clearly write the LS variant in the form

(N)”z[ﬁ}qs—ﬁ‘]=R;,}v(g'ﬁs) _”2- z Y0, [{1+0(1)} (A.1)
(N) =

(NY2[0% — 6% = REMA™) oy 3 «o.(ﬁ%,]{wom} (A2)

2
where
R, 03)=: 3. WOSWECR) (*3)
1 N
RonB¥)=y, 3, 0dBRIHAR) (A9

Expanding the right-hand sides of (A.1) and (A.2) in Taylor series about 6* and f*,
respectively, we obtain

(N)”z[ﬁksﬂﬁ*]ﬂ;,h(ﬂ*)ﬁi I e L PR

(N)”z[éhs—ﬂ*]=R;_h(ﬁ*)(—N-;,—n‘=il 0B+ ONBILAE— 6" +...  (AS)

where

¥,(0*)=R, ,..{e*){ ‘3R‘“”w*)[f®[n 1 5 )m 5 w,(e*)v,]]

N;uz ) %”1( *)U:} (A7)
OB*)=F;, Mﬁ*){ w*)[@[kgmﬂm%ﬂ'i «»m*)v‘]]
1 ,
(N)m ¥ %‘“—(ﬂ*}v,} (A9)
OR, Y,

205 %)= _N' Z [55— (O @Y (O] + ¥ (0%) 207 (9“)] (A9)

=1

%ﬁ%(ﬁ*) h [%&(B*)[I@’d(ﬁ*)]w,(ﬁ*)?—(ﬁ‘)] (A.10)

In the above, where partial derivatives with respect to f* and 6}° appear, these vectors
have to be interpreted as row vectors. Furthermore, ® denotes the Kronecker matrix
product, see Vetter (1970, 1973).

As N tends to infinity, f<° and 05° tend to f* and 6* respectively, and we obtain

WP -y R;,h(e*)m)ui .; VA0, (A1)
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(N)'?[0%°— P15 RenB) N)”Z Z @dB*)w, (A.12)

By Lemma A4.1 in Séderstrém and Stoica (1983) (which is a variant of the central limit
theorem due to Ljung (1977))

l N
W)T;E '___Zl n}r,(ﬂ*)v,
and
1 N
M7, Z odB*),

are asymptotically Gaussian distributed with zero means and with covariance matrices
given by, respectively,

00 = lim - 3 3 Ey0"n 6" (A13)
LR o
Oup=lim =3 3. Ep(0*uol(s (A14)
It follows that
vy g g SoONIOR (A15)
distribution

(N) [0 - 6+ S K00y (1)

where y5° ~ N(0, P55 and y§° ~ N(0, P5®) and where the covariance matrices Pg®and P§S
are given by

=R,UOMQUOMR, '(O%);  Pi®=R,(B*)Q, (6*)R, '(5*) (A.17)

where
R(0%)= lim R, \(0%)=Ey(6*)](6%) (A.18)
N—ow
Ry(B%)= lim Ry n(B*)=EY{F*Wi(F*) (A19)

The matrices Q (6*) and Q,(f*) can be evaluated somewhat further. Since the
process {v,} is white, only terms where t=s will be nonzero in (A.13) and (A.14). We thus
obtain

0,(6%)= lim Z RAYL6* W (0%)=REY(6*)[(6*)=R,R(6%)  (A-20)

N"IID

Qw(ﬁ‘)=13ijn F,.—Zl R.odB*)=R.Ee(B*)p:i (B*)=R,R (5% (A21)

which completes the proof.
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Proof of Corollary 1.

‘We have
ron—| _B@)
‘bl(9 )_[ Af(q_l)u‘_b”

1
+[If{q“_‘) e

co.(ﬂ*)=[ B )

1
+| =5 -
[A;‘(q net

CUANGTY

_hﬂﬁu""""

1
ooy Dg s 0,0,...,0
Afg ") ]

R. Henriksen

_B*g™")

! 0,0,...,0]

veey ——1 Vt—ny»
Afg™H ™

_Ba)
A¥q™Y)

From this and the definitions preceding Corollary 1 we find that
R(0%=R,Gy+RHy R,(F*)=R,Go+R.H,

which completes the proof.

Proof of Theorem 2.

For N large enough we can write the IV variant in the form

(N)'2[BY —B*1=Rg M(BN, ON)

e X, VAR, O, (1-+o(0)

(N)2[0 — 041 =R MBY, ON) (7\’;"‘” f‘,l GUBY, O, [{1+0(1)}

where

N
Ro MR- 00) =3, 3. AR, ORWEOR)
Ro B 0N =3, 3. GABN.ORHBY

The proof is now carried out in detail for the estimator of .
Expanding (A.25) in a Taylor series about (f*,6*) yields

(NI ~ BT =R P 0 i 3, VB0,

+ W, (B, OFBY — B*]+ Yo n(B* O1OF —0*1+...

Uy —ny» B;(q-l)“r- 13=72 B‘z‘{q_ l)“:—m.]

(A22)

u,-.,,,B’f(q“)u,-p---,Bf(q“)u.-...,]

(A.23)

(A29)

(A.25)

(A.26)

(A-27)

(A.28)

(A.29)
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where
Wy, MB*, 0) =R MB*, 6“‘){ %?-" " 9*,[1@[5:@ MB%,0%)
X(TV_)”Z',-ZI 20 ’6')”*]] e, Z %&(ﬁ* B*w.} (A.30)
o, (8% 0*)= R MB™, 6*){ 7::;,—”(5* 6*) [nzu[xa 1%, 6%)
XEN)”E,:Z; 2 ’9')‘%]] e 2 5 %&(ﬁ* 9*)0.} (A31)
and where
R = 'F' = O¥LIQYT(6*
6‘R¢, .

=1 § [%’{i(ﬁ* PTG +F(p*, 0 S 6] (A3

As N tends to infinity f} and f} tend to f* and 0* (by assumption), respectively,
and we obtain

(N)l.&[gl\' ﬁ‘] Rﬁi N‘(ﬁ* 6*)(N)”z Zl ‘Ft(ﬁ*s e*)vl (A34)
Again, by Lemma A4.1 in Soderstrom and Stoica (1983)
1 X .
W ‘;1 'F:(ﬂ 3 B*)Ur

1s asymptotically Gaussian distributed with zero mean and covariance matrix

Ou (%, 0%)= lim 3. 3 B8, 00 75", 0% (A39)
It follows that
(N)”z[ﬂ!é’—ﬁ‘}————*dm;ﬁl;m v (A.36)

where y;’ ~ N(0, P}’) and where the covariance matrix P} is given by

PR =Ry (B, 070Q4(*, 0*)R; (B, 0%) (A3

where
Ry(B*,6%)= lim Ry, (B*,0%)=Ey(B*, 0*W (6%
N—+ao
= EJ(B*, 0*) (B>, 6%) (A38)
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We will now evaluate the matrix Q(f* 6*) further. Let ¢,(7) denote the
autocorrelation function of v,, i.€.,

Pu(T)=EDD; 4, (A.39)
We can then write (A.35) in the form (see the proof of Theoren 5.1. in Séderstrom and
Stoica (1983))
: 1 B T £
Q,*.0%=1im — ) (N- [DEP{B*, %)W+ LB, 6%)

N—+wx N =-=N

= 5 EGF%0M)0. 00 (*,0%)

T=—a

~tim 1 3 BB 0P 50 (A40)

N—+w T=—%
where the first term on the right hand side converges due to the assumption of
stationarity whereas the second term vanishes (see the above reference). Now, define the
series

§ cai=CY (A41)

i=—a

where ¢;=0 for i<0. We obtain

Qulp.0)= 3. EGB*.0%: ECla™YeiCla™ Vs B A%, 6%

=¥ E'F,(ﬁ*ﬁ*)[‘ 3 iwci[Es.-:sm_,-]c,]'.FL,(ﬁ*,ﬂ*)

T=—o =—o j=—

$ 5 EGB.0McR e BT A 0%

t=—wi=—w

=R 55 B OWT 50K

=—wi=—w@

=R,EC(q™ W{B*,6%)- Clg~ "Wi(p* 0% (A.42)

Proof of Corollary 2.
We simply observe that

B¥*(g ! B* -1
'F;r(ﬁ*'et)=[_;4;:‘;_1;u!—ls---’_ET:‘;;T;“I—m’B?(q_I)ut b---’Bg(q-l)ut-ml]
(A.43)

B* -1 B* =1
‘ﬁ?(ﬁ*?eﬁ)=[_zg?;-—1;ua S LLEET _Ig:z_l_;u:—nyBﬁq_l)%—p---vut—mz]

(A44)




