MODELING, IDENTIFICATION AND CONTROL, 1992, voOL. 13, No. 3, 127-140
doi:10.4173/mic.1992.3.1

Multiple model estimation with inter-residual distance feedback
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This paper presents a modification of the Multiple Model Adaptive Estimation
concept. A trade-off problem between tracking the process and distinguishing the
models is pointed out and an adaption of the elemental filters is proposed. The
adaption scheme modifies the filters such that the predicted measurements do not
become too close in some sense. This has considerable influence on the distinguisha-
bility of the filters and thereby the properties of the Multiple Model Adaptive
Estimation algorithm. Stability of the method is considered, and a simulated
example demonstrates the method.

1. Intreduction

Multiple Model Adaptive Estimation (Anderson and Moore 1979, Athans and
Chang 1976, Maybeck 1982), have been developed for simultaneous estimation of
states and parameters in dynamic systems by Magill (1965) and further refined by
Lainiotis (1971). A common assumption in MMAE is that the parameters only take on
a finite number of different values. This is often an approximation of the continuous
parameter case, but when prior knowledge indicates that the parameters only obtain a
finite number of different values, MMAE is a method to utilize this information.

The MMAE concept constitutes a bank of state estimators running in parallel,
producing one residual for each filter, as illustrated in Fig. 1. Each filter has a model
that is different from the others and used to compute weighting coefficients which
indicates the validity of each filter. These weighting coefficients are used to compute an
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Figure 1. Multiple Model Adaptive Estimator.
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overall state estimate and parameter estimate. The MMAE concept has also been
closely tied to adaptive control (Multiple Model Adaptive Control) by use of LQG
controllers together with the overall state estimate (Athans et al. 1977, Magill 1965).
Successful operation of MMAE is highly dependent upon the distinguishability of the
models and tuning of the filters (Maybeck 1982, Maybeck and Pogoda 1989). When
K alman filters are used in the bank, there is feedback from the predicted measurements
which may force the residuals too close together and interrupt the discrimination
property of the filter bank.

In this paper a method, Inter-Residual Distance Feedback (IRDF), for on-line
modification of the filters is proposed. The objective is to maintain the discrimination
property of the filter bank. This is achieved by detuning the filters through modulation
of certain filter parameters. The modulation is governed by a scalar quantity computed
from a distance measure between the residuals.

The remaining part of this paper is organized as follows. In Section 2 the Multiple
Model Adaptive Estimation method is briefly discussed. Section 3 highlights a trade-off
problem in the MMAE concept. Namely that of discrimination versus tracking.
Recognition of this problem leads on to the method of Inter-Residual Distance
Feedback proposed in Section 4 which also addresses the stability of IRDF. The
properties of our method are demonstrated by simulations in Section 5. Section 6
concludes the paper.

2. The MMAE method

Let 0 denote a g-dimensional vector of uncertain parameters in a dynamic
stochastic state space model for a dynamic system. Assume that 8 can take on only one
of N different values, 0, i=1,..., N. In this paper an operational mode §; is associated
with 0. Then the true system denoted S* is contained in the set & = {S1,--., Sy} Theith
operational mode S; is modeled as

& 2)=1Tx0, 0,0+ 50

y(0)=g[x{1), 0,1 +w(t) M

where y(t) is measurement vector, x{t) is state vector and u(z) is measurable control
input. The process noise v{f) and measurement noise wit) are both assumed to be
independent zero mean Gaussian with covariance matrices V; and W respectively.
Vector dimensions are: dim x(f)=dim v{t) = n, dim u(t) =r, dim w(t)=dim y(t)=m. The
functions f[ -] and g[ -] may be general non-linear and vector-valued. The model in
Eqn. (1) is denoted by M, and within the limitations of modeling, M, describes the
system S* when operating in mode i All the models constitute a set 4
={M1,M2,--.,MN}.

At discrete time instants t,, the MMAE algorithm calculates the probability
P(t;) of each model M; conditioned on the discrete time measurement history Y,
={y(t;),---, y(ty)} obtained by sampling of y(t)

Pt) S prob{s* = MY} @
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P{t,) updates recursively as

Plt)= NP[J’(‘&]IMB Yo JP{t; ) Q)

j;l p[y{tt)lMJ’ Y;— l]Pj(tk—l)

where p[y(t,)IM,, Y, _,] is the density of y(t,) conditioned on M ;and Y. The overall
state estimate for the filter bank is given as
o,y def & o
Xt))= Y (6P @

i=1

where %(t,)is the state vector estimate in the ith elemental filter after the measurement
update, (Maybeck 1979). An estimate 8(1,), of 8 is the conditional mean

b ™ 3 ope) o)

The Eqns. (3), (4) and (5) are valid for general models M, and conditional densities
pOy(E)IM;, Y(¢, - )]. However due to filter complexity, applications of MMAE have
mainly dealt with linear models and Kalman filters. With the assumption of Gaussian
noise and linear models, the conditional densities are

PLYE)IM;, Y(t— )] = (2m)™*det[66)]) > exp (—vit)

w60 = 5 1) 87 e ©

where g(t;) = y(t,)— P{t;) is the residual vector of the ith elemental filter and &{1,) is the
estimated covariance matrix of ¢{t,) at time instant t,. For brevity the Kalman filter
including its model M; is denoted #(M,, K;). Both &{(t,) and &4t,) are provided by
F(M;,K)). The Kalman filter equations for discrete time measurement update may be
found in (Gelb 1984, Jazwinski 1970, Maybeck 1979, Maybeck 1982) for linear and
nonlinear models.

When §*=M; one should expect that

vt ) <v{t,), Vi#j (N

which is denoted as regular behaviour of the residuals. Now P(t,) increases towards
unity while probabilities of the mismatched filters will decrease towards zero if the
condition of Eqn. (7) persists over several measurements. A more formal convergence
condition is given in (Anderson and Moore 1979). If S*¢.# and/or the filters are tuned
improperly it is possible that

Vit 2 vo(t)x ... 2 vp(ty) 8)

The P; is now governed by det[&(t)], i=1,...,N and P{t,) increases if
det[£ {t)] <det [£(t,)], i#j, while P{t,), i#j decrease. For Kalman filters and
Extended Kalman filters det [£(t,)] is not dependent on which model is correct and
erroneous decisions upon the valid model may result (Athans and Chang 1976). Hence
the situation of Eqn. (8) is undcsirable. The behaviour of MMAE as outlined above is
related to the identifiability concept of the algorithm and tuning of the filters.

When using MMAE with changing parameters, a widely used ad hoc modification
isto fix a lower bound on P{t,). Without such a lower bound it is seen from Eqn. (3) that
a change will not be detected. A reasonable lower bound on P; is 0001 which gives
P{t,)e[0:001, 1 —(N—1)0-001].
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Figure 2. (M, K,) viewed as a proportional feedback system.

3. A trade-off problem in MMAE

This section highlights the model discrimination versus tracking properties of
MMAE. By tracking is meant the ability of a filter to predict the output y(t;) given Y, _ .
The trade-off problem may be stated as follows: On one hand, we want good tracking
capabilities for each filter #(M, K;), when §*=S,. On the other, we want the residuals
to be distant, to achieve fast and reliable model discrimination. The side in the trade-off
which is favoured, depends a lot on how strongly each filter updates its state estimates
from the measurements y(z,). To illustrate this, let the system operate in only two
modes, S*€{S,,S,}, with the corresponding models M, and M,. Also restrict the
models to be linear with continuous time measurements.

%xi(s)=,4ix¢(:)+s.-mm+ui{t)

ydO)=Cx{1)+w(t) ©)
Here A,=A(#) and C,=C(#). Then #(M,,K,) and F(M,,K;) can be viewed as
feedback systems with proportional gain as shown in Fig. 2. Introduce ¥(tlS;) as the
measurement from S* when known to be in mode S; and similarly y(jo|S)) in the
frequency domain. Then from Fig. 2

& jlS;)=[I+P{i)K1™ ' y(jelS;)
— [+ P(jw)K:] ™' P jw)Bu(jo)
P(jo)=C{jol —A4)"", ij=1,2 (10)
Assume that both M, and M, are stochastic observable and stochastic controllable
(Maybeck 1979, Chap. 5). Then for increasing process noise covariance matrices V; and
V,, both filters have the same property: P j)— y(jw) and g jw)—0 regardless of the
mode. This behaviour may give the situation of Eqn. (8) and the filters mask the

differences between M, and M,. This indicates that the distance, in some sense,
between the residuals is crucial. One possible choice is to define

et)=e{t)—sft), i#]
&(t)=y(0)—y{t) (1

and use some vector norm ||¢;;]| as the distance between any two residuals. Denote |lg;]l
as the Inter-Residual Distance and the vector £(t,) as the Inter-Residual Difference.
When filter gains become large, we have that
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&)=y (1) p{1)—0

which highlights the fact that the filters in the bank should not be tuned totally
independently.

4. Filter gain modulation

A method for modulating the filter gains according to a measure of &, i#] is now
proposed. A simple quadratic form

Jiﬂ‘)=3{i(t)rueu(tl i#j (12)

is chosen as the distance measure of g; » Where I';; is a positive definite diagonal scaling
matrix. The number of filters is here restricted to N =2 but extensions to more filters is
outlined at the end of this chapter. The main principle of the method is to keep the inter-
residual distance measure J ,,(¢) above a specified limit J?, by adjusting the filter gains.
A general way to achieve this is by varying the process noise covariances Viand ¥,. In

filter calculations ¥ is now replaced by modulated process noice covariance matrices
¥i(t) defined as

Vio=n)V, i=1,2 (13)

where 7(t)€[#min, 1-0] and the lower bound 7, can be chosen to give a lower bound on
Vi(2). The restriction #,,;, >0, makes V;(f)>0 and the upper bound < 1-0 is chosen to
secure that Vi(1)< V(1).

u(t)

E V_z% ...chc.eq.Kz €a(t) E
E Lol Moder,pf, |-22(8) -5
H Elz(t):
' 7(t) !
K00 :
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Figure 3. Modulation of process noise covarance. AWU is anti-integration windup, see
Eqn. (14).
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Figure 4. Modulation of new information in the filters. AWU is anti-integration windup, see
Eqgn. (14).

The time derivative of the modulating variable #(¢), should be an odd function of
J,5(t)—J%,, being zero for J,,(t)=J9; and for #¢{Numm 1-0). One choice is

d = {[J12(t)—J;], Cond 1
E”(‘"{o , Cond 2 14

where the conditions in Eqn. (14) are:
Cond 1: #E{(#mims 10D

(7= i AND {[J 15()—JT21<0) OR
n=10 AND {[J 12— J5,1>0)

These conditions provides anit-integration windup (AWU), see Figs. 3 and 4. The
constant { >0, must be specified together with the lower inter-residual distance limit
J9, or a lower inter-residual difference limit &9,, such that J%, =9I | ,¢9,. Note that
Eqn. (14) is an integrator and { should be selected to provide proper attenuation of
noise on #(t). The concept is shown in Fig. 3 for N =2. From the standard Kalman filter
equations it follows that increasing values of ¥; and ¥, increase the filter gains. This in
turn, reduces the value of J, ,. Small values of ¥; and ¥; make J,, more dependent on
the differences between M, and M,, and presumably greater in mean square sensc.
Eqns. (12), (13) and (14) adjust #(t) to an equilibrium in mean value such that J (1)
—J9,. This is shown inside the dashed lines in Fig. 3 and described by Eqns. (15) to (19).

CondZ:{
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These equations constitute a system of nonlinear differential equations ((15) to (19)) of
order n*+3n+ 1 knowing that the state estimate covariance matrix X(60)=X1().

%ﬁl(l‘)= [4,—X,(0CTW™1C,]&,(t)

+ X, (OCTW L y(t)+ B, ult) (15)
d
it 25(t)=[A,— X ()CTW'C,13,(1)
+ X, (CI W y(t)+ B,u(t) (16)

d
ar X,(0)=A,X,(t)+ X,()AT
—X,(CIW™IC X (1) + )V, an
d
dr X,(t)=A4,X,(t) + X, ()43

=X, W T ICXS () +n(0)V, (18)

d {[(Co2,(0)—C %,(t)' Ty,
a no= (C1%,()—C,2,(1)—J9,], Cond 1 (19)
0, Cond 2

Since V(1) is a function of time, filter gains cannot be precomputed even for linear
models.

A simplification of the method described above is obtained if, instead of modulating
¥, the new information Kg(t), is modulated as

Ki0e()=nOKselt), i=12, n(t)e[tmn, 10] (20)

The individual filter gains K; are not precomputable, and only the modulation is
computed on-line. This simplified method is shown inside the dashed lines of Fig. 4 and
described by Eqns. (19), (21) and (22).

% 2,0 =(4, —n(K,C)%,(1)

+n(OK 3(t) + Byu(t) @1
=4y —n(OKC%,()
+n()K (1) + B,u(t) (22)

Eqgns. (21) and (22) together with (19) constitute a 2n+ 1 dimensional nonlinear state-
space system with u(t), y(t) and J{, as inputs. It should be noticed that in general,
modulation of K;¢; as in Eqn. (20) and modulation of ¥; as in Eqn. (13) does not give the
same filter gain. This is due to the filter gain calculation in Eqn. (23) together with the
Riccati equations (17) and (18).

K()=X,)CTw™! (23)
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The question of stability and which constraints this imposes on #(t) and { is now
considered. As can be seen from Eqns. (15) to (18) and Egns. (21) and (22), analysis is
simpler when modulating K;g, directly, because the Riccati equations are eliminated.
For examination of stability we assume that the models are linear and by utilizing a
Lyapunov function, we can establish a sufficient condition for asymptotic stability of
the autonomous parts of the Egns. (19), (21) and (22). We consider the Lyapunov
function

R)=32"0%eR 249)
where Q=Q">0 and
il
i=|x, (25)
n

Global asymptotic stability is guaranteed if
d[d oo od )
@ V(x)—[ @ (¥Nox+x'Q o (x)]<0, Vi (26)

We now make the rather restrictive and simplifying choice Q=1I and substitute
Eqns. (19), (21) and (22) into Eqn. (26) which gives
d_ .
i VF)=&1{AT1+ A4, —((K,C,]"+K,C))}%,
+33{A+ A, —n([K,C,1" + K,C))}%,
+2n{&]CTT ,C 2, +x3C3I1,C,%,

—%1CII,C2%,—K5C3T 1,018} 27
Reorganize Eqn. (27) into
4y = — (51 310P0, 0| (28)
dt LR T 1,

where the symmetric matrix P(y,() is partitioned into the four submatrices
Py \(n,0)=—AT— A +n((K,C,]"+K,Cy)
—2CTT,Cyly
P, 0)=P3,(n,0)=2CTT',,C,ln
Pyy(n,0)= — A5 — Az +1([K,C,1" + K,C))
—2C3 ,C5ln
Now, if a region # in the 5, { plane can be found such that
R={n,{|P(n,{)>0, neltmim, 10],{>0} (29

then Eqn. (26) is satisfied and the system formed by the Eqns. (19), (21) and (22) is
asymptotic stable for all 5, {e%.The region % may however be a conservative restriction
on 5 and {. An approximation of % can be found numerically by partitioning the n, {
plane into a grid and testing P(y,{) for positive definiteness at all grid points. This is
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demonstrated for a simple system in the simulated example. Note that it is only
necessary to analyse Cond 1 in Eqn. (19) by the Lyapunov function, since under Cond 2
stability is only concerned with the linear Eqns. (21) and (22). Stability analysis is more
complicated when modulating V] instead of modulating Ke,, although there are some
results which may be used. For stable linear models, both filters % (M,,K,) and
F(M,, K,) are separately stabie for all 5e[,,,;,. 1-0] and for all { >0 because nV = 0. See
(Jazwinski 1970, pp. 234-244). This does however not guarantee asymptotic stability,
because n may oscillate within the interval [#,,,, 1-0].

For Extended Kalman filters and higher orders filters there is no computational
benefit in modulating the new information vectors rather than the process noise
covariance matrices, because filter gains are computed on-line. Thus direct modulation
of new information should only be considered for steady state filters. But even for
steady state filters direct modulation of new information may introduce errors.
Nonlinear models make Eqns. (15)19) even more intractable for analysis, and
extensive simulations should be carried out in order to evaluate a bank of nonlinear
filters with IRDF.

In order to use the concept of filter gain modulation for three or more models,
one possible approach is to scan (N?—N)/2 distance measures and select
Jmin(t)=min; ;J; A1), i#j. Then substitute J,,(f) with J,;.(¢) and J9, with an overall
lower distance measure J° in Eqn. (14). Another method is to consider only the inter-
residual distance between the two most probable models. However this method suffers
from the fact that one of the probabilities approach unity while the others become zero.
This problem can be solved by reducing the time horizon of the probability calculation,
(Magalhdes and Binder, 1987).

5. Simulation tests

We shall demonstrate the IRDF concept by applying it on a second order linear
SISO system S* given in a continuous discrete time formulation

d[x@O] [-05 1 x0],[0
dt [xz(t)]_[ 0 a][xz(t)]+|:0-9]“(t")
_ xy(t)
-0 o 2 | (30)

Here y(t;) is discrete time measurement and wu(t,) is control input changed only at
discrete time instants t,. The operational modes are determined by the parameter a,
which has the values a=0-5 in mode S, and a=1-0 in mode S,. The corresponding

models M, and M, are given by
7 I A
[ral
=01 01| 2600 e 61

where te[t,,t,, >, i=1,2 and &,(t, ) is the estimate of x(t) at sample instant t, before
adding new information. The sample interval is 0-1 time units. Note that the control




136 E. J. Lund et al.

¢ x 10

Stable region

n x 100
Figure 5. Approximated stability region in the #,{ plane. See Eqn. (29).
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Figure 6. System output y(t,) (solid line} and input u(t,) (dashed line).

input matrix in Eqn. (30) differs 10% from the one in Eqn. (31). Hence, S* is not
a member in .#. In this example we shall apply direct modulation of filter gains,
K,=[k, k;]F, as shown in Fig. 4. An approximation of the stability region # given by
Eqn. (29) is shown in Fig. 5. Here the scaling matrix is a scalar and chosen as I'y; = 1.
The stable region corresponds to P(z,{)>0 and the other region to P(n,{)<0. By
choosing #,.:, =0, asymptotic stability is guaranteed for ne[0, 1-0] and (€0, 0-7]. In
simulations ¢ is chosen to 0-5 if no other value is stated. For small values of #; { may be
larger than 0-5, still not violating the stability constraint. This stable region is obtained
when K, =[092, 0-55]", K,=[092, 0-36]" and when the process and measurement
noise have covariances ¥, =¥, =10I and W=0r1 respectively. In all simulations, the
system and the filters were excited by a square wave u(t;) with amplitude =0-5, mean
=20 and period =400, all being dimensionless quantities. Excitation u(t,) and system
output y(t,) are shown in Fig. 6.

The Kalman filters were implemented in continuous-discrete time formulation with
measurement updating at every (-1 time unit. Between two successive sample instants t;
and t, , 1, both the system and filter state equations are integrated numerically using an
explicit variable step length Runge-Kutta method of order 5(4). The operational mode
changes from S, to S, at 80 time units and back to S, at 170 time units. Initial values of
the system were x(0)= %,(0)=%,(0)=0 and n(0)=1-0. The residuals obtained without
IRDF are compared to those obtained with IRDF ({ =0-5)in Figs. 7 and 8. For clarity,
no measurement noise was added to the system output here. The lower inter-residual
difference limit was specified to 9, =0-3. Figure 9 shows ¢, , with and without IRDF.
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Figure 7. Residual &, of #(M,,K,) with (solid line) and without (dashed line) IRDF.
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Figure 8. Residual g, of #(M,, K;) with (solid line) and without (dashed line) IRDF.
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Figure 9. Inter-residual difference &,, with (solid line) and without (dashed line) IRDF.
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Figure 10. Filter gains k, and k, of #(M ,, K ,) with (solid line) and without (dashed line) IRDF.
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Figure 11.  Filter gains k, and k, of #(M ,, K ;) with (solid line) and without (dashed line) IRDF-.
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Figure 12. Modulating variable #(t), for {=0-5 (solid line) and for { =4-0 (dashed line).
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Figure 13. Probability P, of M, with (solid line) and without (dashed line) IRDF. (P, =1 —P,).
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Figure 14. Residual difference ¢,,, with IRDF and {=4-0.
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Observe that ¢, , varies around —0-3 instead of 0-3 which is irrelevant due to Eqn. (12).
The variation in ¢, , is induced by the excitation, (t,). Filter gains k, and k, are shown
for both cases in Figs. 10 and 11, and # is shown in Fig. 12. The figs. 7, 8 and 9 illustrate
the trade-off problem.

A lower limit of P{t,)=0-001 was applied in order to avoid that probability of the
invalid model lock on to zero. The probability of M, is shown in Fig. 13 with and
without IRDF. Initial probabilities were P,(0)=0-5. Without the IRDF P,(t,)is seen to
approach zero despite M, is expected to be closest to S* before 70 time units. Also the
change of mode at 170 time units is not detected without IRDF. This is due to the small
difference between 4(t,) and &,(t,), which was denoted as irregular residual behaviour.
However, with the IRDF, the residuals behave in a regular way and the probabilities
become right.

In order to examine the influence of {, simulations were carried out for { outside the
stability region, #. For { =40, Fig. 12 shows #(t,) and Fig. 14 shows &, ,(t,). The other
parameters are unchanged. The variation in &, , about 7, is now smaller and # adjusts
faster than for {=0-5. However the stability is maintained, which indicates that the
stability region of Fig. 5 is rather conservative.

Simulations with zero mean Gaussian noise of covariance 0-1 added to the system
output were also carried out. For values of { inside the stability region in Fig. 5, IRDF
behaved similarly as without noise. Modulation of ¥ has also been simulated and
sumilar results were observed for this System.

6. Conclusions

A method for on-line modulation of the filters used for Multiple Model Adaptive
Estimation has been proposed. Stability of the method was investigated for a bank of
two linear filters, and simulations were carried out using a second order SISO system to
demonstrate the properties of the proposed method. The Inter-Residual Distance
Feedback was a successful method to enhance the model discrimination properties of
MMAE. Further investigations should include other distance measures between the
models especially in a probabilistic sense. Also some means of determining 1,,,;,, from an
overall tracking capability of the filterbank should be considered. The concept of
MMAE with IRDF extends naturally to discrimination between nonlinear models
with different structures and different orders, only the dimensions of measurement
vectors should be equal.
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