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Variable selection for decentralized control
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Decentralized controllers (single-loop controllers applied to multivariable plants)
are often preferred in practice because they are robust and relatively simple to
understand and to change. The design of such a control system starts with pairing
inputs (manipulated variables) and outputs (controlled variables). Foran xn plant
there are n! possible pairings, and there is a great need for screening techniques to
quickly eliminate undesirable pairings. In this paper we present several tests for
eliminating pairings which are not decentralized integral controllable (DIC). A
system is DIC if there exists a stabilizing decentralized controller with integral
action such that the gains of the individual loops may be reduced independently
without introducing instability. Note that DIC is a property of the plant and the
chosen pairings. The tests presented are in terms of different measures of the sign of
steady state gain matrix; including the RGA, the determinant and eigenvalues. The
relationship to previously presented results is discussed in detail.

1. Introduction

Decentralized control implies the use of single-loop controllers to control
multivariable processes. This means that for any particular choice of pairing of
controlled and manipulated variables we can rearrange the plant G such that the
controller C is diagonal

C=diag{c;}

The constraints on the controller structure invariably lead to performance deterior-
ation when compared to the case with a full controller matrix. Still, decentralized
controllers are very common in practice, for the following reasons:

(i) ease of implementation,
(i) simplified design,
(iii) decentralized turning,
(iv) robustness with respect to model error, and
(v) ease of making system failure tolerant.

In short, single loop controllers are preferred by the operators because they are robust
and relatively simple to understand and to change.

The designer of decentralized controllers is faced with the issues of (1) pairing
outputs and inputs, and (2) controller design (tuning) of the individual loops. This paper
addresses the pairing problem. Even for relatively small plants, there are many
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decentralized control systems to choose from. Consider pairing of single loops. Then
for a 2 x 2 plant there are two alternatives, a 3 x 3 plant offers 6,a 4 x 4 plant 24,a 5x 5
plant 120, etc. Thus efficient screening techniques are needed which are capable of
eliminating quickly inappropriate control structures.

In this paper the criterium chosen is that the controller structure should be
‘Decentralized Integral Controllable’ (DIC). A plant G (corresponding to a particular
choice of pairings) is DIC if there exists a stabilizing decentralized controller with
integral action (no offset) such that the gains of the individual loops can be reduced
independently without introducing instability. In particular, DIC implies that any
subset of loops can be detuned or taken out of service (put in ‘manual’) without affecting
stability. Note that DIC is a property of the plant and the particular control structure
(pairing) chosen.

Necessary conditions for DIC are of particular interest, since a violation of such a
condition means that DIC is not possible and the corresponding pairing may be
eliminated. For most plants the majority of the alternatives may be eliminated using
such conditions. To select the best of the few remaining alternatives, sufficient
conditions for DIC are more useful. In this paper several necessary conditions in
terms of the steady state gain matrix are presented. Some of the results have been
presented elsewhere, but their interpretation in terms of DIC is new. It is stressed that
only steady state data are needed.

The main reason for the problems encountered with decentralized controllers are
the ‘interactions’ caused by the off-diagonal elements in the plant G. If these elements
are ‘small’ then interactions are weak and decentralized control is simple. If the
interactions are large, then it might happen that the sign of the plant gain between a
specific plant input and output changes sign as other loops are closed. Integral control,
which is known to depend on knowing the plant gain, is then not possible. All of the
conditions presented are therefore in terms of avoiding pairings where the plant gain
may change sign as other loops are changed.

A good discussion of the importance of the pairing problem is presented by Nett
and Spang (1987). Bristol (1966) introduced the relative gain array (RGA) as a criterion
for choosing the best variable pairing, and this measure continues to be the one most
often used. Niederlinski (1971) proposed considering the sign of the determinant of the
plant as a screening tool. McAvoy (1983) and Grosdidier et al. (1985) discuss the use of
the RGA in more detail and provide theoretical justification for Bristol’s rule of
avoiding pairings corresponding to negative relative gains. Grosdidier et al. (1985) also
present several conditions for a plant to be integral stabilizable (IS) or integral
controllable (IC), which upon reformulation turn out to be useful tools for eliminating
pairings. Mijares et al. (1986) introduced the ‘Jacobi Eigenvalue criterion’ as a tool for
selecting the best pairing. This criterion is closely related to the SSV (u)-interaction
measure introduced by Grosdidier and Morari (1986). Yu and Luyben (1986) present
three rules for eliminating unworkable pairings. The first is based on the RGA, the
second on Niederlinski’s result, and the third involving MIC is based on Theorem 7
(determinant condition for IS) in Grosdidier et al. (1985). Grosdidier and Morari (1987)
introduced the property of block-IC. This property is easier to satisfy than DIC, since
DIC implies block-IC, but not conversely.

The objective of this paper is to show that all the above-mentioned conditions are
related rigorously to DIC and IC, and to derive some new conditions for DIC.

Throughout the paper we assume that the plant G(s) is a square, open-loop stable,
strictly proper transfer matrix. The steady state value of this matrix is G(0). A general
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Figure 1. Decentralized control structure.

decentralized control system is shown in Fig. 1. The notation is summarized at the end
of the paper. All rules and theorems are given for the case of single loop pairings, but
most of them are easily extended to blocks (see Manousiouthakis et al. 1986, and
Grosdidier and Morari 1987).

2. Summary of rules for eliminating undesirable pairings

Below we present a summary of rules for pairing selection. The rules are
subsequently proved in §4.

Yu and Luyben (1986) present three rules for eliminating what they call unworkable
variable pairings:

Rule 1. Eliminate pairings with negative RGA'’s.
Rule 2. Eliminate pairings with negative Niederlinski Indexes

_det(G(0)

H dii
i=1

Rule 3. Eliminate pairings with negative Morari Indexes of Integral Controlla-
bility, MIC =Re {A(G *(0))}.

In fact, we will show that violation of any of these three rules imply that the plant
is not decentralized integral controllable (DIC) with this choice of variable pairings.
With respect to rule 3, Yu and Luyben claim that a negative MIC-value ‘shows that the
variable pairing will produce an unstable closed-loop system’. This is not necessarily
correct (see Example 2 below), but it might happen if one of the loops is detuned since
the system is not DIC. In §4 we establish rule 3 rigorously in terms of DIC. We also
show that rule 2 (involving NI) is redundant, because rule 3 always implies rule 2 as
special case.

Furthermore, the following new rules for eliminating pairings for which DIC is not
possible are established:

Rule 4. Eliminate pairings with Re {A(E(0))} < —1; E=(G — G;2))G sing-
Rule 5. Eliminate pairings for which there exists a K (diagonal matrix with positive
entries) which yields Re {4(G *(0)K)} <O.

Rules 3 and 4 are special cases of rule 5. They are derived from rule 5 by choosing K
equal to I (the identity matrix) and G J,,(0) "', respectively. Rule 4 involves the matrix
E used in the interaction measures derived by Grosdidier and Morari (1986). Rule 4 is
equivalent to eliminating pairings with eigenvalues of the ‘Jacobi iteration matrix’
greater than one (Mijares et al., 1986). Numerical evidence proves that none of
rules 1, 3 or 4 is mutually redundant, and all three are therefore useful.

NI
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One important advantage with the RGA (rule 1) is that it is very simple to compute
and does not have to be recomputed to investigate alternative pairings. This follows
since a permutation of the rows or columns in the plant G, corresponding to a change in
pairings, results in the same permutation in the RGA (Bristol 1966). Consequently, one
should always start by eliminating undesirable pairings according to rule 1 (RGA), and
subsequently use rules 3 and 4 to screen the remaining alternatives.

Rules 1-5 above may all be reformulated as necessary conditions for DIC. This
means that a plant that does not pass these tests is not DIC, but there may be other
plants that pass the tests, but still turn out not to be DIC.

There also exist sufficient conditions for DIC. One of these is in terms of the
structured singular value u (Doyle 1982) of E, and yields the rule:

Rule 6. Prefer pairings with u(E(0))<1.
(here p is computed with respect to the structure of C). Note that

P(E)<HE)<p(E) (1)

and we therefore have that the eigenvalues of E(0) should always be greater than —1
(rule 4), and their magnitude p(E(0)) preferably less than 1 (rule 6 and Eqn. (1)). The
criterion that the spectral radius of E(0), p(E(0)), should be less than one is equivalent to
the ‘Jacobi Eigenvalue Condition’ of Mijares et al. (1986). This condition is rigorously
related to IC (see below), but not to DIC. For DIC, u(E(0)) is the right measure.

There exists no simple necessary and sufficient condition for DIC. If it is not
possible to find any K which satisfies the criterion for elimination in rule 5, then, under
some minor technical conditions, we may conclude that the system is DIC. Thatis, DIC
is equivalent to

min min Re {1(G *(0)K)}>0
K i

However, this last condition is difficult to test, and therefore of limited practical value.

3. Definitions

Decentralized Integral Controllability. A plant G (corresponding to a particular
pairing) is decentralized integral controllable (DIC) if it is possible to design a diagonal
controller for this plant which (1) has integral action (no offset for tracking), (2) yields
stable individual loops, (3) is such that the system remains stable when all loops are
closed simultaneously and (4) has the property that each loop gain may be reduced
independently with a factor ¢;(0<¢;<1) without introducing instability.

Decentralized controllers are frequently used in process control, and it is obviously
desirable that they satisfy the above requirements for DIC. Note that the property of
DIC depends on the particular pairings chosen: the plant may satisfy DIC for one
choice of pairings, but not for another. To satisfy condition (2) the controller must be
such that the individual loop gains g;,c; are all positive. Also note that property (4)
implies (2) since one particular choice of loop gains is to have all but one loop with zero.
gain.

The definition of DIC is similar to that of ‘Integral Controllability’ (IC) introduced
by Grosdidier et al. (1985).

Integral Controllability. A system (plant and controller) is integral controllable (IC)
if (1) the controller has integral action, (2) the overall system is stable, and (3) all

controller gains may be reduced by the same factor ¢(0<e< 1) without introducing
instability.
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Note from the definitions that for IC all the gains are reduced by the same amount,
while for DIC each loop gain may be reduced at a different rate. Consequently, there
may be a particular decentralized controller which satisfies IC, but this does not
necessarily imply that the plant with this choice of pairings satisfies DIC. However, the
reverse holds:

DIC=IC (with any decentralized controller with positive loop gains) (V)]

Thus control structures which fail the IC test can be eliminated when searching for a
plant which is DIC. Another somewhat subtle point is that whereas IC is a property
that depends on both the plant G and the controller C, the property of DIC depends
only on the plant. This follows because we are allowing each loop gain to be reduced by
an arbitrary amount which is equivalent to allowing any ratio between the elements in
the controller and we are therefore considering all possible diagonal controllers (at
least at steady state). From this point of view DIC is a much more useful property than
IC since it is an inherent plant property independent of the particular choice of
controller.

4. Theorems
4.1. Necessary conditions for DIC

The basis for all the results presented below is that negative feedback is needed to
have stability under integral control, that is, we must know the sign of the plant gain.
We will see that all of the results involve different expressions for the plant gains, either
in terms of the determinant, eigenvalues or relative gains. We will first recall three
results for DIC and IC given by Grosdidier et al. (1985)— though they are not explicitly
written in this form.

Theorem 1 (basis for rule 1). Assume C(s)is a diagonal controller and that G(s)C(S) is
proper (always satisfied for any real system). Then

RGA,;(G(0)) <0 for some i=not DIC Ba
or equivalently (see Appendix)
DIC=RGA(G(0))=0, Vi (3b)

Here RGA;;(G) denotes the i’th diagonal element of the RGA of G.

Proof. Follows from Theorem 6 in Grosdidier et al. (1985).
The rule of avoiding pairings corresponding to negative RGA-elements goes back

to Bristol (1966), but it was proved rigorously only recently. Note that ij’th element of
the RGA is defined as

(094043} s GoL
RGAi-= e,z JOL
/ (ayi/auj)yl, I#i gCL

that is, it represents the ratio of the gain from u; to y; in open loop (other «’s constant)
and closed-loop (other y’s constant). If the sign of this gain changes as we change or close
other loops, then we are not able to apply negative feedback in all cases, and the plant is
not DIC.
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Theorem 2 (basis for rule 2). Assume C(s) is a diagonal controller, G(s) is stable and
that G(s)C(s) is strictly proper (always satisfied for any real system). Then

d
4et GO _ o pot DIC (4a)
H Gii
or equivalently
det (G *(0)) <0=>not DIC 4b)

Proof. Follows from Theorem 3 in Grosdidier et al. (1985).

(4 a) is Niederlinski’s result which tells us that we should avoid using decentralized
control on pairings which have the sign of the plant (given in terms of its determinant)
different from the product of the plant gains for the loops. Again, this is a condition for
avoiding the use of positive feedback.

Most of the new results in this paper (Theorems 4, 5 and 6) are based on the
following theorem in terms of IC:

Theorem 3 (eigenYalue condition for IC). Write the controller C(s) with integral
action as C(s)=%C(s). Then there exists a k* >0 such that the system is stable for all
0<k<k* (i.e., the system is IC) if

Re {1(GC(0)} >0, Vi (5a)
and there does not exist such a k* (i.e., the system is not IC) if
Re {1(GC(0))} <0, Vi (5b)

Proof. See Theorem 7 in Grosdidier et al. (1985). The proof is based on MacFarlanes
generalized Nyquist theorem in terms of the characteristic loci.

In words, the real part (Re) of all the eigenvalues of GC(0) must be positive to have
IC, i.e., the eigenvalues must all be in the right half plane. Furthermore, if we disregard
the few cases where the eigenvalues of GC(0) are one the jw-axis (purely complex), this
is a necessary and sufficient condition. The following condition in terms of DIC when C
is diagonal is easily derived from (5 b):

Theorem 4 (basis for rule 5). Let K be a diagonal matrix with real, positive (nonzero)
entries. Then
min Re {1(G *(0)K)<0, for some K=>not DIC (6)

Proof. Consider a specific diagonal controller C which yields positive individual loop
gains g;,c; (needed to satisfy property 2 in the definition of DIC). Write GC(0)=G *(0)K
where K=|C(0) has only positive elements. Then from Theorem 3, Eqn. (5 b):
Re {A(G(0)* K)} <0=not IC for this diagonal controller=-not DIC (the last implic-
ation follows from Eqn. 2).

Theorem 4 by itself is not too useful because it requires specifying a controller.
However, the following two results are obtained by choosing the diagonal controller
gains K as I and G j,(0)™", respectively.

Theorem 5 (basis for rule 3).
min Re {4(G *(0))} <0=not DIC )]

Theorem 6 (basis for rule 4).
min Re {1(G(0)G 5,4,(0))} <0=>not DIC 8)
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Theorem 5 is the basis for the MIC-rule (rule 3) which has been presented previously
by Yu and Luyben (1986), but without any proof. Furthermore, Yu and Luyben
interpret the MICs in terms of IC and not in terms of DIC as they should.

Note that det (G *) which appears in Theorem 3 is the product of the eigenvalues of
G * (MICs) which appear in Theorem 5. An even number of negative eigenvalues of G *
will result in a positive det G *, but the reverse is not possible (i.c., negative det G *
cannot yield all positive eigenvalues; this follows since any complex eigenvalues come
in pairs). Consequently, Theorem 4 yields 2 as a special case (but not vice versa), and the
NI therefore contains less information than the MICs. Use of rule 3 therefore makes
rule 2 redundant.

Rule 4 follows from Theorem 6 since A(E(0)) = A(G(0)G 4;,(0)) — 1. A similar result to
Theorem 6, but in terms of Re {A(E(0))} > — 1 as a necessary and sufficient condition for
IC (our result is that it is a necessary condition for DIC), has been derived by Mijares
et al. (1986) (Eqn. 37 in their paper). They consider the eigenvalues of the ‘Jacobi
Iteration Matrix’ 4 =1— G g, but this is essentially the same matrix as E since A(E)=
— A(A). For an alternative proof of Mijares’s result see Skogestad and Morari (1987).

Other theorems similar to Theorems 5 and 6 can be derived by making other more
or less arbitrary choices for the matrix K: If we can show for a particular diagonal
controller that IC is not possible, then we know that DIC is not possible for this plant.
However, the two choices made above seen to be the most reasonable, and also tie in
very nicely with results presented previously.

4.2. Sufficient conditions for DIC

p-conditions. The matrix E=(G— Gg,,)G g, in rule 4 appears in the interaction
measures introduced by Grosdidier and Morari (1986). From Corollary 2.1 in their
paper we derive that a sufficient condition for having IC is that p(E(0)) (magnitude of
largest eigenvalue) is less than one, or equivalently

p(E(0) <1=IC )

Note that this does not guarantee DIC since one requirement of using p(E) is that all
loops g;.c; are identical (e, C=G aiag) and the loops cannot be detuned independently.
However, an equivalent condition in terms of DIC results if p(E) is replaced by u(E),
that is (Theorem 7 in Grosdidier and Morari 1986)

W(E(0)) < 1=DIC (10)

The generalization to DIC follows since the use of y(E) allows the individual loops to be
different. u(E(0)) can be used to tell that DIC is satisfied for a particular pairing.
However, it cannot be used to eliminate variable pairings since it may be possible to
achieve DIC for a plant even though p(E(0)) and thereby also u(E(0)) (recall Eqn. 1) is
greater than 1. This is illustrated in the discussion on 2 x 2 plants below.

However, the main advantage with u(E(0)) < 1 is that interactions are small and the
controllers for each loop may easily be designed independently (that is, on the basis of
Giag ONy) (see Grosdidier and Morari 1986, and Skogestad and Morari 1989, who
provide guidelines for the design). Consequently, we prefer pairings with u(E) (and
p(E))less than 1 because we (i) are guaranteed DIC and IC, and (i) may easily design the
loops independently. This is the basis for rule 6.

Block-IC. The definition of DIC is similar to that of block-IC (here denoted loop-1C
since we only consider single loops and not blocks) introduced by Grosdidier and
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Morari (1987). Loop-IC implies that one loop at the time may be detuned, but DIC is
stricter since it all allows all loops to be detuned simultaneously in an arbitrary fashion.
Theorem 6 in Grosdidier and Morari (1987) says that, provided the system is IC with a
diagonal controller in the first place, loop-IC of all loops is guaranteed if and only if the
RGA has positive diagonal elements. (Note that a separate test is needed in addition to
test IC.) The only if part is not too surprising from the DIC-condition in Theorem 1.
The main new information in this result is therefore

RGA(G(0));>0, Vi=loop—IC 1)

That is, positive RGA-elements guarantee that loops may be detuned one at a time
(provided the system is IC in the first place). We have another result (Eqn. 10) which
also guarantees the same

WE@0))<1=DIC=loop—IC (12)

However, (11), which is necessary and sufficient, is of course more useful (less
conservative) than (12).

4.3. Necessary and sufficient conditions for DIC
Theorem 7. Let K be any diagonal matrix with real, positive (nonzero) entries. Let

Q(G(0))2 min min Re {1(G *(0)K)} (13)
K i

Disregard the case when Q of G(0) or any of its subsystems (obtained by choosing some
¢;=0)is exactly zero (e.g., caused by G(0) or any of its subsystems being singular). Then
Theorem 3 is necessary and sufficient for DIC, that is

Q(G(0))>0<=DIC (14)
Proof. This result follows from the definition of DIC and Theorem 3: From Theorem
3 we know that conditions 1 to 3 in the definition of DIC will be satisfied if
Re {A(G *(0)K))} >0 (15)
Condition 4 with 0<¢;< 1 is satisfied if Eqn. (6) is satisfied for all possible K’s (follows
from Theorem 3, (5 a) by considering all possible diagonal controllers, that is, each gain
may be reduced independently). Condition 4 with some ¢;=0is not covered by this test
(Eqn. 13). This case corresponds to deleting rows and corresponding columns in G(0),
and considering instability of the remaining subsystem under decentralized control.
Simple limiting arguments show that stability of these subsystems is also guaranteed by
Eqn. 15 provided neither of the submatrices yield Q exactly equal to zero (¢.g., caused by
singular submatrices). For example, this means that pairing on elements with zero gain
is disregarded. Summing up we have under this condition that

min min Re {4(G *(0)K))} >0=DIC (16)
K i

Combining this with (6) and assuming in addition that Q(G(0)) is not exactly zero
(e.g., caused by G(0) being singular) we arrive at condition (14).

As mentioned before condition (14) is of limited usefulness since it is difficult to test.
In particular, if the plant is DIC then Q(G(0))—»>0* (choose small elements in K), and if it
is not DIC then Q(G(0))— — oo (choose large elements in K). In our numerical studies
we have used a general purpose optimization routine which seems to have worked
satisfactorily. The optimization is stopped as soon as a K which yields negative
eigenvalues of G *(0)K is found.
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44. 2x2 Plants

Theorem 8. Consider 2 x 2 plants with G(0) nonsingular and both diagonal elements
nonzero. Then theorems 1-5 (and rules 1-5) are all equivalent and are all necessary and
sufficient for DIC

DIC<RGA,, > 0<NI > 0<-MIC > 0<>Re {(E(0))} > —1 (17)
Proof. This follows from the following facts:

1. Eqn. 14 is necessary and sufficient for DIC provided G(0) is nonsingular and
the diagonal elements are both nonzero.

2. For2 x 2 plants G *(0)K will have all its eigenvalues in the right half plane if and
only if G *(0) has all its eigenvalues in the right half plane (this fact is easily
established by applying the Routh test to the characteristic polynomial).
Consequently, eqn. (14) and Theorems 3-5 are equivalent in this case.

3. For 2 x 2 plants G *(0) has all its eigenvalues in the right half plane if and only if
det (G *(0)) is positive. Consequently, Theorems 5 and 2 are equivalent.

4. For 2x2 plants both the diagonal elements of the RGA are equal and
furthermore RGA,, =1/NI. Consequently, Theorems 1 and 2 are equivalent.

p-conditions. For 2 x 2 plants p(E)= w(E) and condition (12) becomes (Grosdidier
and Morari 1986)

p(E(0))<1=DIC (18)
Furthermore, (18) is equivalent to (Grosdidier and Morari 1986)
RGA,,(G(0))>0-5=DIC (19)

However, from Theorem 8 we have another necessary and sufficient condition for DIC
RGA,,(G(0))>0<«DIC (20)

Consequently, whereas we know from (20) that it is possible to design a controller
which is DIC for 2 x 2 plants with positive diagonal RGA-elements, condition (19)
indicates that the RGA-elements should be greater than 0-5. Conditions (18) and (19)
are therefore conservative (sufficient only). This does not mean that there might not be
factors other than DIC that may favour choosing pairings with RGA-elements larger
than 0-5. For example, closed-loop performance may be better because of less
interactions which may make it possible to use a higher gain. (The definition of DIC just
says there will exist some detunable diagonal controller with integral action that yields
stability; it does not guarantee good performance.)

5. Examples
Example 1.

oo-(; )

033 067
RG’s‘(G(O»=(0-67 0-33)

NI=3, MIC=AG*(0){1+1-414j}
MEQ)={x1414j}
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This is a 2x 2 plant and rules 1-5, which are necessary and sufficient for DIC in
this case, all tell us that this plant is DIC. This is the case even though
p(E(0))=w(E(0))=1-41 which means that sufficient condition (10) for DIC is not
satisfied. Note that the plant is DIC also with the reverse pairing (diagonal RGA-
elements are 0-67), and in addition p(E(0))=0-71 <1 in this case. The reverse pairing is
therefore preferable according to rule 6.

Example 2.
10 0 20
GOo=| 02 1 -1
11 12 10

458 0  —358
RGAO)=| 1 -25 25
—458 35 208

NI=048, MIC=A(G *(0))={—300, —0-65,24-7}
ME(0))={—0-59+023,1-19}

Here A(E(0)) and NI are inconclusive, the MIC- and RGA-values tell that the plant is
not DIC with this pairing.

However, this does not necessarily mean the plant is not integral controllable (IC).
Consider the following diagonal controller consisting of three SISO controllers;
C=%C, C=diag {01,1,0-1}. This controller yields stable individual loops since the
loop gains are positive. Furthermore, the matrix GC(0) has all eigenvalues in the right
half plane (A(GC(O))={0-41i0-23 j,2-19}), and we know from Theorem 3 that the
controller yields a system which is integral controllable (IC). This means that the
system will remain stable if all the gains in the controller are detuned by the same
amount. However, if each loop is detuned in an arbitrary fashion, the system may
become unstable. For example, we know from the negative MIC-values, that if we
detune the controller gain in € for the second loop from 1 to 0-1, and keep the other
controller gains fixed at 0-1, then the system will become unstable. This kind of
conditional stability is clearly undesirable and this is the reason why one in practice
prefers plants which are DIC and not only IC.

Example 3.
This model of a sidestream column is given by Elaahi and Luyben (1985)

872 281 298 —1580
6:54 —292 250 —-2079
—582 099 -—148 751
—723 2:92 311 7-86

G(0)=



Variable selection for decentralized control 123
041 047 -006 017
—020 045 032 044
040 0-08 017 035
0-39 0-001 0-57 0-04
NI=—1865, MIC={—-9-69,4-74,6:05,19-88}
ME(0))={—3-25,1-88,0:69+0-162;}

RGA(G(0)=

Here the RGA is inconclusive, the three other tests tell that the plant is not DIC with
choice of pairings.

Example 4.
05 05 —0004
G(0)= 1 2 =001
—-30 —250 1
—-1:56 —219 475
RGA(G(0))= 312 475 —687
—056 —1-56 312
NI=0-16, MIC={0-049 +0-21j,3-40}
ME@0)={—082+017j,1-64}
Here only the RGA allows us to conclude that this pairing is not DIC; all the other tests
are inconclusive. In fact, from the RGA we see that it is impossible to rearrange the

plant such that all diagonal RGA-elements are positive. Consequently, this plant is not
DIC for any choice of pairings.

Example 5.

This example was first presented by Niederlinski (1971) and is also used by Mijares
et al. (1986)

10 —01 10
GO)=| —05 06 01
—02 —08 03

03¢ —0-02 068
RGA=| 0:50 039 011
0-16 0-63 021
NI=426, MIC={0-27+0-70j,1-35}
ME(0))={—05211-36j,1-05}
This choice of pairings is not excluded by any of the pairing rules, and we may therefore
expect it to be DIC. It is certainly IC, for example with a controller with C(0)=k/sI

(since the MIC’s are positive). Furthermore, we know from Eqn. 11 that this plant is
loop-IC, that is, we may detune one loop at the time in an arbitrary fashion. It then
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seems extremely likely that the plant is also DIC. Indeed, a numerical search gave
Q(G *(0))>0, and we conclude from Theorem 7 that the plant decentralized integral
controllable (DIC) with this choice of pairings.

Notation

C(s)=C(s)/s—transfer function of decentralized (diagonal) con-
. troller with integral action
C(s)—transfer function of controller excluding integral
action
G *(0)—plant steady-state gain matrix with the signs adjusted
so that all diagonal elements have positive signs
Gaiag=4iag {g11,922, - -»gnnj—matrix consisting of the diagonal elements of the
plant only
E=(G— G;,g)G giag—interaction matrix (closely related to the Jacobi
Iteration Matrix of Mijares et al. (1986))
A(A)—eigenvalue i of the matrix 4
Re {A(A)}—real part of eigenvalues
p(A)=max;|A(A)l—spectral radius (magnitude of largest eigenvalue)
u(A)y—structured singular value (Doyle 1982)
|A|—matrix A with all its elements replaced by its absolute
value
RGA(A)=A x (A~ )T—Relative gain array of 4 (Bristol 1966)

APPENDIX

This appendix contains some basi¢c mathematical terminology which may be useful
for the reader. The following statements are all equivalent:

A<=B; AifB; Ais necessary for B; B=>A; B only if A; B is sufficient for A if B then A;
and not A=not B
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