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Here we address the problem of representing NARMAX (nonlinear ARMAX)
models with application to adaptive control. We propose a nonlinear model
representation where a number of simple local models are combined. The local
models are valid in specific operation regimes of the process. Explicitly defined
model validity functions make it possible to combine the local models by
interpolation. During online identification, only the local models corresponding to
the current process operation regime are updated. It is therefore not necessary to
relearn the model each time there is a change in the operation regime of the process.
The concept is illustrated by a simulation example of a nonlinear pH-neutralization
process.

1. Motivation

A process must often work under different operation conditions. A change in
operating conditions may be caused by process nonlinearities, time-varying para-
meters, significant disturbances, batch operation, setpoint changes, startup and
shutdown, component failure or process maintenance. There are several approaches to
control a process under different operation conditions:

e The use of a simple model of the process, and the design of a robust controller
that works well under significant model uncertainty.

e A controller based on a nonlinear model of the process that is valid for a large set
of operation conditions.

® An adaptive controller that will try to compensate for varying process
characteristics using online identification.

o Gain scheduling (Astrém and Wittenmark, 1989) can be applied to choose a pre-
designed controller depending on current operation conditions.

e Some kind of ‘model scheduling’ (Skeppstedt, 1988) (Skeppstedt et al. 1992)
(Hilhorst et al. 1991) and (Serheim, 1990) to choose the best model corresponding
to the current operation regime.

However, all these have a number of drawbacks. A robust controller will have to
sacrifice bandwidth to achieve robustness. A nonlinear state-space model that is valid
for different operation conditions may be difficult to expensive to find. Gain scheduling
usually does not contain a feedback loop to decide if the chosen controller performs
well. Adaptive or self-tuning controllers are often based on a linearized input/output-
model, for instance an ARMAX model. When the process changes operation regime, it
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Figure 1. A typical situation. The set of possible operation points is @, but the process typically
operates in the operation regimes ®, and ®,.
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Figure 2. Several local models are used to cover all possible operation points in ®.

is necessary to discard old information in order to adapt to the process characteristics
in the new operation regime, since the linear ARMAX model will be a linearization of
the system about the current operation point. Since the parameter estimator should be
slower than the process dynamics in order to be robust, the controller can exhibit poor
performance during rapid transition between operation regimes.

Our approach (Johansen and Foss, 1992a) to this problem is illustrated by Fig. 1,
which shows a typical situation. Let ® be the set of all operation points. A vector ¢e® is
a possible operation point for the process. The process will typically operate in®,c®
(typically a small subset) or @, c®. If we have a set of simple linear local models
describing the process well in different parts of ®, as shown in Fig. 2, we can form a
complete model by introducing smooth interpelation between the local models. This
requires explicitly defined model validity functions for each local model. These
functions are defined over the set of operation points, and indicate the validity of the
local models as a function of the operation point, which is assumed to be known.
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During on-line identification, only the local models which have significant weight will
be updated. This implies that only the local models which are relevant for the current
operation regime will have their parameters updated, the other local models will
remain unchanged. Hence, information about other operation regimes will not be
forgotten, and this information can be recalled instead of being relearned when the
process re-enters an operation regime. The goal of a controlled process is often to keep
certain process states near their set-points. Hence, a very small part of the input-space is
normally excited and it is important not to forget information from operation regions
that are rarely entered.

2. Model representation
For linear systems, a popular family of models is the ARMAX models

W) =0"P(t—1)+eft) (1)
where y(t) is the system output at time ¢, ¢(t) is the equation error at time t, 8 is a
parameter vector and Y(t—1)=[ y{t—1)... it —nJu(t—1)...u(t —n)e(t—1)...e(t —n)]"
is the information vector at time t— 1. The ARMAX model family are input/output
models. This means that the model structure and parameters have no direct
interpretation in terms of physical phenomena or physical parameters. Input/output-
models may be preferred instead of state-space models when our process knowledge is
limited and it is a resource demanding task to develop first principles models. This will
often be the case for complex nonlinear systems. In that case the NARMAX (nonlinear
ARMAX) (Leontaritis and Billings, 1985), (Chen and Billings, 1989) model represent-
ation can represent a large class of dynamical systems

W) =f@pt—1)+elr) @

where f is a nonlinear function with range and domain given by the output- and
information-vectors. The problem is now how to represent this function. If we assume
that our process knowledge is limited, a generic nonlinear structure for f is required.
Among the alternatives are polynomials (Chen and Billings, 1989) and neural networks
(Chen and Billings, 1990), (Chen et al. 1990).

A generic representation based on local models is proposed (Johansen and Foss,
1992a). By definition, a local model is valid only within a limited operation regime.
With the local model representation we try to reduce the problem of building a global
model to the problem of building a set of local models. In order to sew these local
models together to a global model, we use interpolation.

Assume that we have given a set of local models f; such that

)= fig(t—1) )

To each such local model we associate a model validity function p,: ®—[0, 1] which by
definition is close to 1 for those operation points ¢ where the model f; is a good model
and close to 0 elsewhere. Having knowledge of these is a strong assumption, but
experience shows that the choice of p; is not critical. A typical choice for p; is the
Gaussian function shown in Fig. 3. We now define a set of normalized interpolation
functions w;: ®—[0,1]
wi) =P @
Y. pid)
j=o0
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Figure3. A typical model validity function p; defined on the set of possible operation points @.

By this definition we know that for any ¢e® will Z[=5' wi(@)= 1. If we assume that the
real system is given by (2), then the following identity will hold

N-1
yt)=f@p(t— D) +e(t)= ;o J@e—D)widle—1)) +e(1) ©)

Since w; is a normalization of p;, we know that w{¢) is close to 0 for operation points ¢
where f; is not assumed to be a good model, expect for those ¢pc® where none of the
local models are good. Hence we can substitute f; for f on the right-hand side of (5)
without losing too much accuracy in the model. This is rigorously analysed in
(Yohansen and Foss, 1992¢). Given a sufficient set of local models and sensible choices
for the operation point vector and model validity functions, the model will approxi-
mate the system with any given accuracy. This leads to the proposed representation

(0= 3. JHe—Dwidle—1) ©

The operation point ¢t — 1) will typically be directly related to y{t —1), since this vector
contains the inputs, outputs and in some cases the measured disturbances of the pro-
cess. In most cases there will exist a mapping ¥(t)—¢(r), such that the operation point
at any time can be calculated as a function of the information vector. This mapping will
typically be a projection onto some subspace of the information space. In some cases it
is not possible to find such a direct mapping. This is the case if some estimator isused to
find quantities describing the operation point. Typically process knowledge about
different operation regimes or the validity of the available local models will be used to
define the validity functions p;.

The local models can have different structures. A Oth order Taylor-series
expansion of f about ¥; gives a local model

S =)= =07 )

where 6° is a parameter. In this case we typically have ¢=y. The model can be
interpreted as a radial basis-function neural network if p; is a radial function (Moody
and Darken, 1989), (Stokbro et al. 1990). This is a very simple local model, since the
value of f at a point y is extrapolated to nearby points. By interpolation between such
simple models, this simple local representation is sensible.
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A Ist order Taylor-series expansion of f around ¥, gives a local linear model
Fe—1)= f)+ VWXl — D)~ ) =07+ 67t — 1)) @®)

where 67 and 6, are parameters. The local model will in this case be an ARMAX model.
This is related to the approaches by Stokbro et al. (1990} and Jones et al. (1991).

Higher order expansions or nonlinear local models like neural networks may be
applied. Local state-space models based on first principles can be used. Physical
knowledge can thus be integrated with input/output type models using this represent-
ation (Johansen and Foss, 1992b).

3. Learning

An important property of (6) is that if all the local models f; are linear in the
parameters, the nonlinear model composed by interpolating the local models will also
be linear in the parameters. Hence, in the simple case when we have uncorrelated noise,
the model can be written in the linear regression form

Ht)=0"p(t—1) ©

where 0 contains all the parameters, and @(t — 1) is a nonlinear regression vector. In this
case a least squares estimator may be used. When the information vector y{t— 1)
contains delayed error terms, a prediction error estimator must be used if unbiased
estimates are desired. Standard system identification algorithms may therefore be
applied (Soderstrom and Stoica, 1988). The performance index used for learning can be
based on the total prediction error

N-1 2
-3 ( o f:(w—l))wi(«t—n)) (10

or the local prediction errors

T
Ji=y ¥, OO~y (1)

Using the local prediction errors, we may choose to keep some of the local model
parameters fixed, and choose different algorithms for each local model. The disadvan-
tage of the local indices (11) is that the interpolation-functions are not included in the
index, implying that the model validity functions that have not been well chosen will
not be compensated for during learning. The advantage of the index (10) is that because
the shape of the interpolation-functions is incorporated in the model, this criteria may
give a more accurate prediction. However, a local linear model will not be a
linearization of f in (2), since the optimal parameter values will be influenced by the
model validity functions.

Only local models that have a weight above some limit should be updated, if
forgetting is to be reduced. Another possibility is to only update the local model that
has most weight. The amount of information a model is capable of storing is limited.
Using a standard ARMAX model and an RLS- or RPE-algorithm (Soderstrém and
Stoica, 1988) with a constant forgetting factor, information will be forgotten at a
constant rate. If the information vector do not contain much information, e.g. due to
lack of persistence of excitation, the model will eventually contain very little
information about the process. Using a model composed of several local models, and
updating only the local models with large weight will reduce this problem considerably.
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Only the information content of the model being updated will be changed. Hence, there
will be no forgetting about the operation regimes the process is not currently operating
in. Since relearning because of changing operation regimes is generally not needed
using this model representation, learning is only needed to compensate for slowly
varying process parameters and disturbances. If the disturbances vary slowly
compared to the process dynamics, the learning rate may be chosen to be small.

The model (6) can be viewed mathematically as a series expansion of the function f.
Each term in the series expansion will be orthogonal to all other terms except those
which have overlapping model validity functions. Informally, if the model validity
functions do not overlap too much, a local model (corresponding to a term) will be
“almost orthogonal’ to most other local models. From this one may belicve that it is
possible to include a new local model without disturbing the other local models, except
in the neighbourhood of the new local model. This means that the structure of the
model representation (6) can be changed without losing significant information. It also
implies that the model accuracy will improve by adding new ‘almost orthogonal’ terms
(Johansen and Foss, 1992b).

4. Simulation example

We have performed a simulation study on a pH-control system, in order to
illustrate the concept. Consider the stirred mixing tank in Fig. 4. The mass balance for
the tank is

v 4 )= @01+ aa0DX0+ 00O —ealtant) (1)

and the pH is given by the titration curves in Fig. 5. The symbols are defined in Table 1.
An ideal level controller keeps the tank volume constant. This gives a holdup-time

T=V/(g,+4qg) in the tank in the interval 100s<T<400s. Due to stirring there is a

dead-time 7, and the pH-electrode and the valve have first order dynamics.
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Figure4. Stirred tank with pH-control. A level controller (not shown) keeps the level constant.
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Figure 5. Titration-curves for acid-base mixture. The different curves are for different buffer
contents.
Symbol Value Unit
C, 0-000025 mol/l  Acid concentration in input, fixed
Cy 00001 mol/l  Base concentration in input fixed
44 0025—-01 I/min  Acid flow, disturbance
qs ~0-01 I/min  Base flow, control input
X, mol/l  Acid concentration in tank
Xp mol/l  Base concentration in tank
ox Xo—Xp mol/l
pH pH in tank, measurement
pH, 72 Setpoint
vV 10 1 Tank volume
1 5 s Dead-time due to stirring
Ton 5 § Time-constant in pH-sensor
1, 2 s Time-constant in valve
Table 1. Definition of symbols.

Due to varying buffer contents the titration curve will vary continuously between
the ones shown in Fig. 5. This variation is assumed to be slow compared to the
dynamics of the process and control system. The process gain is proportional to the
slope of the titration curve. We see that the slope of the titration curve varies both with
pH and also with buffer contents. This is a difficult nonlinear control problem due to
several factors (Waller and Gustafsson, 1983). The strong nonlinearity of the process
gain requires a compensating nonlinearity in the controller. The time-variation of the
gain due to variations in buffer contents calls for adaptation. The kinetics of the
neutralization process is very fast, and together with dynamics in the pH-electrode and
high gain near pH =7, this makes the pH measurement signal inaccurate. The dead-
time due to stirring gives some limitation on the attainable bandwidth of the closed

loop.
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The simulations cover all these factors, but the disturbances and time-variations on
the process may be smaller in the simulations than in many industrial plants, hence the
simulations should be regarded as semi-realistic with the only purpose of illustrating
the modeling concept.

We define the operation point to be equal to the measured pH-value at any time, i.e.
#(t)=pH(t). In a more advanced control system the operation point could also include
information about the flows into the tank and buffer contents (titration curve). Since
such information is not directly available, we only use measured pH, which should
make the model able to capture variations in process gain due to different pH-values.
Since the buffer contents is slowly varying, a slow estimator is used to identify the
parameters of each of the local models on-line. 5 local models are applied. They are
centred at the following pH-values, pH, =62, pH,=67, pH;=7-2, pH,=77 and
pHs =82 in order to take care of disturbances taking the pH away from the setpoint
at 7-2. Each of the local models is an ARX model

ABFI(0)=aApH(t— 1)+ biAgylt—1) =07b(t — 1)~ ¥ (13)

where 0=[a,b,]", y(t—1)=[pH(t — 1) g5(t — 1)]" and ¢,= [pH; g3]1" where g5 =0011/s
is nominal flow. The two parameters (for each of the 5 local models) are estimated on-
line. A slow LMS-estimator (Astrém and Wittenmark, 1989) is used to illustrate that
adaptation is not needed to adapt to changes in pH, but only to buffer contents. We
update only local models that have weight above some threshold, and we use the local
prediction errors (11)

_ [B{t—1)+nAge(t—Deft) if plp(t) =04
b= {5,{: —1) otherwise (14)
where the local model prediction errors are

elt)=y(O)—fi(¥(t—1) (15)

Using the global prediction error gives qualitatively equal results in this case, and may
in general be preferred. The prediction horizon for the model is chosen as 15 s because
of the dead-time and dynamics in sensor and actuators. The sampling interval for the
controller is 1 s. As illustrated in Fig. 6 the local model validity functions are chosen as
Gaussians centred at each of the 5 operation points.

The controller is a discrete PI-controller, where the integral time is kept fixed at
T,=60s and the controller gain is proportional to the inverse of the estimated process
gain. The process gain estimate is

6= 3, Bowi(#0) (16)

For comparison purposes we use a PI-controller with fixed gain K ,=0-005, and a gain
scheduling controller with 5 gains as shown in Table 2. The gain is scheduled as a
function of pH.

Figure 7 shows the simulation results for titration curve 4, see Fig. 5. We see that the
adaptive-PI controller based on local models will compensate faster for the disturbance
in g, than both the fixed-gain PI-controller and the gain-scheduled PI-controller.
Comparing Figs 7, 9 and 5 we see that the adaptive Pl-controller increases the
controller gain when the process gain is low and vice versa. The gain-scheduler does the
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Figure 6. Five local models are used. The associated model validity functions p; are shown
at right.

Measured pH K, (PI-controller gain)

pH>7-95 001
795> pH > 7-45 0008
745> pH > 695 0005
695> pH > 645 0003

pH<645 0004

Table 2. Gain scheduling table.

same, but ends up with slightly worse compensation. From Fig. 8 we see that improved
control does not require significantly larger control inputs, and from figure 10 we see
that the parameter estimates b, is updated slowly, so the adaptation does not have
significant influence on the controller gain.

When the titration curve slowly approaches the curve 1 in Fig. 5 the controller
adapts and gives results as illustrated in Fig. 11. The difference between the controllers
is now smaller, as would be expected, since the process gain is now larger for all pH-
values. The controller gain is not increased as much as earlier, cf. Fig. 13, and the
control signals do not differ much for the different controllers. The parameter estimates
have grown since the process gain has increased throughout the operation regimes,
see Fig. 14.

5. Discussions and conclusions

The simulations have shown that using a local models representation, we have been
able to build a model that is able to describe the nonlinear behaviour of the process and
that this model is applied to a simple adaptive PI-controller where only the gain is
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Figure 7. The figure illustrates the pH for 3 controllers when the titration curve is curve 4.
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Figure 8. The figure illustrates the flow for 3 controllers when the titration curve is curve 4.
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Figure 9. The figure illustrates 3 controller gains when the titration curve is curve 4.
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Figure 10. The figure illustrates parameter estimates when the titration curve is curve 4.
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Figure 11. The figure illustrates the pH for 3 controllers when the titration curve is curve 2.
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Figure 12. The figure illustrates the flow for 3 controllers when the titration curve is curve 2.
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Figure 13. The figure illustrates 3 controller gains when the titration curve is curve 2.
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Figure 14. The figure illustrates parameter estimates when the titration curve is curve 2.
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adapted on the basis of the nonlincar model. The controller performs well compared to
a fixed-gain Pl-controller and a gain-scheduled Pl-controller, indicating that the
model is sensible.

The main idea is to store information about several operation regimes in the model,
making relearning unnecessary. Hence, adaption is only needed to take care of slowly
varying parameters or disturbances. A global NARMAX model is built using simple
local models like ARMAX models. It is also possible to use the proposed model
representation in a non-adaptive context to build models.

A possible disadvantage of the proposed model representation is that the number of
parameters may be larger than necessary. From the Parsimony principle we know that
it is important to try to keep the number of local models at a minimum.

The method is presented here for SISO-models, but can be easily extended to
MIMO-models in a straightforward manner (Johansen and Foss, 1992c). There are
several open questions, particularly regarding the robustness with respect to the choice
of model validity functions. These validity functions must generally be chosen
heuristically, and it is desirable that the model is not sensitive to the choice of shape and
width of these functions.
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