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On the location of LQ-optimal closed-loop poles

DAVID DI RUSCIO%
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Inequalities which bound the closed-loop eigenvalues in an LQ-optimal system are
presented. It is shown that the eigenvalues are bounded by two half circles with radii
ry and r, and centre at —x<0, where =0 is the imaginary axis, and that the
imaginary parts of these eigenvalues are bounded from up and below by two lines
parallel to the real axis.

1. Introduction

Application of the LQ approach to regulator design involves choosing the state and
control input weighting matrices, Q and P that provide satisfactory closed-loop
performance. The closed-loop performance is related to the locations of the closed-loop
eigenvalues. Therefore, the relation between the quadratic weights and the poles of the
closed-loop system is of interest. This problem has been solved for a second order
system, (Di Ruscio and Balchen, 1990). In the general case, very little is known about
these relations.

However, instead of having exact knowledge of their positions, it may be sufficient
to know that the poles are located in a bounded region of the left half s-plane. This
paper is concerned with the problem of determining the region where the closed-loop
eigenvalues are located.

The paper will show that for a suitable choice of performance weighting matrices,
the eigenvalues are bounded by two half circles with radii r, and r, and centre at
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Figure 1. Region where the closed-loop poles are located.
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—a<0, where a=0 is the imaginary axis, and that the imaginary parts of these
eigenvalues are bounded from up and below by two lines parallel to the real axis. This
region is illustrated in Figure (1).

The paper is organised as follows: Section 2 presents the problem definitions. The
problem solution is stated in Section 3 and some concluding remarks follow in
Section 4.

2. Problem formulation
Consider the linear, time-invariant, dynamic system
Xx=Ax+Bu 1)

where (A, B) is a stabilizable pair, and the exponentially weighted quadratic objective
functional of long or infinite settling time

J =% Im exp (2et)x"Qx + u" Pu) dt 2
4]

where o> 0 is a real number, x is an n-dimensional state vector, u is an r-dimensional
control input vector, A and B are constant matrices of appropriate dimensions and Q
and P are nxn symmetrical and r xr positive definite matrices respectively. It is
assumed that (Q*, A) is a detectable pair. The optimal control that minimizes criterion
(2) and the corresponding closed-loop system is given by

u=Gx=—P 'B"Rx 3

%=(A+BG)x=(4—HR)x @

where H is given by (6) and R is a solution to the algebraic Riccati equation (ARE)
—R=A"R+RA—RHR+2aR+Q=0 5

H=BP 'B" (6)

The closed-loop system (4) is « stable, i.e. all eigenvalues with real part less than —a.
The problem investigated in this paper is to determine the region which the LQ-
optimal closed-loop poles are located.

3. Main results

The main results in this section are stated in Subsections 3.1, 3.2 and 3.3. Subsection
3.1 deals with the imaginary part, Subsection 3.2 considers the magnitude and
Subsection 3.3 is concerned with the real part of the closed-loop eigenvalues.

3.1. Imaginary parts of the closed loop eigenvalues
The main result in this section is presented in the following theorem.
Theorem 1
The imaginary parts of the LQ-optimal closed-loop eigenvalues, (s;=x;+jy,
i=1,...,n), are bounded, from up and below, by
—B<y:<P Y]
where f are given by
B=2ulJZ0) ©®)

and Z, is given by the two different cases below
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Case (i) @>0and H=0

Zo=HA"-QA407") )
Case (ii) Q=Q" and H>0

Zo=HA—HATH™Y) (10)
A
Proof
Case (i) Q>0 and H=0

Di Ruscio proved that the imaginary parts of the closed-loop eigenvalues are
bounded when H >0, irrespective of how the state weight matrix Q=07 is chosen,
provided there is a real symmetric solution of the ARE.

Here we will prove that a corresponding result exists for the case where H>0 and
0>0. When Q>0 then the imaginary parts of the closed-loop eigenvalues are
bounded, from up and below, irrespective of how the control input weight matrix P> 0
is chosen. This result may be derived from the adjoint system.

Note that the adjoint equation associated with % is

p=—(A"+QR™ Y)p (11)
and that the ARE, Equation (5), can be written as
(A—HR)=—R YAT+QR™ YR 12)

and that the closed-loop eigenvalues can be computed from the adjoint system matrix,
that is

AMA—HR)=—-}A"+QR™Y) (13)
When Q >0, (Q non-singular), then we have the following equality
Q_l(AT'l-QR—l}—{AT'I'QR_l)TQ_l=Q-1AT—AQ_1 (14’

Note that both terms, on the left and right sides of Eqn (14), are skew-symmetric, and
that the eigenvalues of a skew-symmetric matrix are purely imaginary.

Let s=x—jy be an eigenvalue and » a right eigenvector of the adjoint system matrix
(AT+QR™!). Substituting ¢ and s into (14) gives

(s—s*P*Q lo=04Q'4"—AQ ") (15)
or
- oHQTAT—AQ
Y= (16)
Eqn (16) can be written

v*[jQ™'HAT— QA0 ")]v

Q0 '

(17

Note that the matrix in the nominator of Eqn (17) is Hermitian, and that the
eigenvalues of a Hermitian matrix are real. We use the inequality connecting ratios of
quadratic forms, Lemma A2 Appendix, and get

Aeainl 5 (AT~ QAQ ™ )] <y < Amaal (AT — 040~ 1)] (18)
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Let us define the upper bound as
ﬁ=;'max[j12{AT_QAQ"1)]#2‘!1\&:(}-20) (19}

Note that the eigenvalues of Z, are purely imaginary, and that that the eigenvalues
consists of complex conjugate pairs, because the matrix Z, is real. Then we must have
that

Amnx(jzl]) . ji“min(.le.)) = ﬁ (20)
The consequence is that y, given by (17), is bounded by
—B<y<p 2D

where f is given by (19).
Inequality (21) must hold for all n eigenvalues, and Inequality (7) is proved for the
case when 0>0.

Case (i) Q=Q" and H>0
The fact that the imaginary part of the closed-loop eigenvalues is bounded when H >0,
irrespective of how the state weight matrix Q= Q" is chosen, provided there is a real
symmetric solution of the ARE, was proved in Di Ruscio (1991). An alternative, and
more direct proof, is given below.

When H >0, (H non-singular), we have the following equality

H Y{A—HR)—(A—HR'H *=H 'A—A"H™? (22)

where we have assumed that R is a real symmetric solution of the ARE, corresponding
to a state weight matrix Q=Q", not necessary positive semi-definite. See Di Ruscio
(1991) for the existence of solutions to the ARE in this context.

Let s=x —jy be an eigenvalue and v a right eigenvector of the closed loop system
matrix (A — HR). Substituting v and s into (22) gives

(s—s*)o*H 'o=v¥H 'A—A"H ') (23)
or
v H 'A—A"H W
—2yj= ; 24
Y T (24)
Equation (24) can be written
v*[jH 'HA—HA"H )]o
= i 25
Y v*H v (25)
We use the inequality connecting ratios of quadratic forms, and get
j'min[j%{A - HATH_ 1)] é.}’ < Amn[j%(A - HAT”’_ ])_] (26)

with equality, if and only if, Q is chosen according to Lemma 3 in Di Ruscio (1991).
Inequality (26) must hold for all n eigenvalues, and Inequality (7) is proved for the case
when H=>0.

3.2. Magnitude of the closed loop eigenvalues
The main result in this section is presented in the following theorem.

Theorem 2
The LQ-optimal closed-loop eigenvalues, (5;=x;+jy»i=1,...,n), arc bounded by

i< +o) +yi<r] 27



LQ-optimal closed-loop poles 19

where r, and r; are given by

71 =i W) (28)
r=Ama(W) (29)
and Wis given by the two different cases below
Case (i) Q>0 and H>0
W=((A+ad)Q YA+al)"+ H)Q (30)
Case (ii) Q=Q" and H>0
W=(A+al)"H Y (A+al)+Q)H 31)
A
Proof
Case (i) Q>0 and H>0
The ARE, Eqgn (5), can be written

(AT+od + QR YO Y AT+al + QR Y)=(A+al)Q {(A+al)'+ H (32)
From (32) we have
(A"+QOR™Y'Q AT+ QR ) +af(A"+QR™1)'Q!
+Q YAT+QR N]+a?2Q '=(A+al)'Q Y A+al)+H
33)
Let s=x+jy be an eigenvalue and v a right eigenvector of the adjoint system matrix
(AT+QR™"). Substituting v and s into (33) gives
(s*s+af(s* +5)+a?)*Q lo=v*[(A+al)Q " (4 +al)" + H]v (39
or
v*[(A+al)Q " Y(A+al)T+ H]v
v*Q v
We use the inequality connecting ratios of quadratic forms, Lemma A2 Appendix, and
get

x2+2ox+o?+y = (35)

A W) < (x+0)* + y? <Al W) (36)

where
W=[(A+al)Q " (A+al)T+H]Q (37

(36) must hold for all n eigenvalues, and Inequality (27) is proved for the case when
0>0.

Case (i) Q=Q" and H>0
The ARE, Eqn. (5), can be written

(A+ol—HRH YA+al —HR)=(A+ol)"H Y(A+al)+Q 38)
From (38) we have
(A—HR'H " Y(A—HR)+o[(A—HR'H '+ H (A—HR)] +a*H !
=(A+a)"H YA+al)+Q (39)
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Let s= x +jy be an eigenvalue and » a right eigenvector of the closed loop system matrix
(A— HR). Substituting v and s into (39) gives

(s*s +o(s* +5)+a)* H 'o=v*[(A+al)TH (A+al)+QJv (40)
or
42ty TAT T HA 42D Ol a
We use the inequality connecting ratios of quadratic forms, and get
Arnin W) <(x+0)? + y? <Aoo W) 42)
where
W=[(A+al)"H Y(A+al)+Q]H (43)

(42) must hold for all n eigenvalues, and Inequality (27) is proved for the case when
H=>0.

We end this section by presenting two lemmas which relate the closed-loop poles to
A, H and Q.

Lemma 1
Let s;, i=1,...,n be the closed-loop eigenvalues, and 0 >0, then we have

[i]_![ s:]2 =[det(4— HR)]z=d°t(AQ_‘AT+H)

det(Q™)
=det(4Q™'ATQ+HQ) (44)
which relates the closed-loop poles to A, H and Q.
A
Lemma 2

Let s, i=1,...,n be the closed-loop cigenvalues, and H>0, we have
= T det(AQ 'A"+H)
— _ 2_
[11:[1 s;] =[det(A— HR)] &t (@1
=det(HA"H A+ HQ) (45)
which relates the closed-loop poles to A, H and Q.
FAN

Proof of Lemmas 1 and 2
Take the determinant on both sides of Eqns (32) and (38) with a=0. QED.
Note that the geometric mean of the closed-loop eigenvalues may be computed
from the relations in Lemmas 1 and 2.

3.3. Real parts of the closed loop eigenvalues
Theorem 3 (Anderson and Moore, 1969)
The real parts of the LQ-optimal closed-loop eigenvalues, (s;=x;+jy;, i=1,...,n)
are bounded by
X< —a (46)

A
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The fact that the real parts of the closed-loop eigenvalues are located to the left of a line
—a in the left half of the s plane is proved in Anderson and Moore ( 1969). A different
proof will be given below, because it will lead us to a useful result.

Let s=x+jy be an eigenvalue and v a right eigenvector of the closed-loop system
matrix (A — HR), then

(A—HR)p=sv,v*(A— HR)" =s*v* 47)
Pre-multiplication with v* and post-multiplication with v in the ARE give
[(A—HR)'R + R(A— HR)+ 20R + RHR + Q)v=0 (48)
where >0 is the prescribed degree of stability. Substituting (47) into (48) gives
(s* +5+ 2a)p*Rv= —v¥(Q + RHR)v (49)
Since 0 >0, and R>0 is guaranteed from the ARE, then we have from (49) that
s*+s+2a=2x+20<0=>x<—a (50)

(50) must hold for all n eigenvalues, and Inequality (46) is proved.

If the inequality connecting the ratio of two quadratic forms, see Appendix Lemma
A2, is used on Eqn (49) with R >0, then we have that the real parts of the closed-loop
eigenvalues are bounded, from up and below, by the result in the following theorem.

Theorem 4
Let 0>0 and H>0. The real parts of the closed-loop eigenvalues, (s;=x;+jvs
i=1,...,n), are bounded, from up and below, by

~Hna QR+ RH) < X;+ 0 — 3o QR "' + RH) (51
where R is the maximum solution of the ARE (5), assumed to be positive definite.
A

Inequality (51) states how far the eigenvalues are from « stability, i.e. the line —eo, > 0.
Any general relation which does not involve the solution R of the ARE, which only
require the matrices 4, H and Q, is not known at the present.

Equations (7) and (9) show that Q can be used to design acceptable bounds on the
imaginary parts of the closed-loop eigenvalues. From Eqn (9) we have

2Z,=(A"Q-QA)Q ™! (52)

This means in the extreme case, that an LQ-optimal system, when Q >0, has only real
eigenvalues, for all P> 0, if the right-hand side of Eqn (52) is zero. This leads us to the
following lemma.

Lemma 3
The closed-loop eigenspectrum is given by
MA+BG)= —(M(A+0)* +QH)"/? (53)
if
ATQ—-0A=0 (54)
or
AH—HAT=0 (55)

provided there is a real symmetric solution of the ARE.
A
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Proof
Let F be the Hamiltonian matrix of the state and adjoint system, then we have

A2+ HQ HAT—AH| _,.,
F 2=[ATQ—QA (A2+HQ)T:|ER2 - 56)

Substituting (54) or (55) into the off diagonal matrix elements of (56) and comparing the
cigenvalues, prove the lemma. QED.

If the Conditions (54) and (55) are not satisfied, then Eqn (53) may give a good
approximation of the closed-loop spectrum. However, in this case, the error in using
(53) should be investigated, for example by (27).

Once Q has been chosen, P can be used to design the required stability margin, i.e.
the distance of the real parts of the closed-loop eigenvalues to the imaginary axis. The
closed-loop poles are located to the left of the line —a<0. How far they are from this
line can be predicted from (7) and (27). We have that the real parts of the eigenvalues are
bounded by

13— B <+’ <rj—p*<ri (57)
where
B? = dnal — Z3) (58)

r, 1, and Z, are explicitly given by the matrices 4, B, P and Q, see Theorems 1
and 2.

4. Concluding remarks

It has been shown that the closed-loop eigenvalues of an LQ-optimal system are
located inside the region bounded by two half circles with radii r, and r, and centre
at —a, and two lines parallel to the negative real axis. This region is illustrated in
Figure (1).
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Appendix
The Rayleigh principle is stated in the following lemma. A proof is given in Magnus
and Neudecker (1988) pp. 203.

Lemma Al
For any real symmetric n x n matrix Q,

lm(Q)s%s ax(Q) (59)
VAN
The lemma bounds the ratio of two quadratic forms.
Lemma A2

Let Q be a symmetric matrix, and P a positive definite matrix, then we have the
following inequality connecting the ratio of two quadratic forms

xTOx
xTPx

I QP )< CAnax(@P ™) (60)

A

Proof of Lemma A2

Inequality (60) was proved in Kalman and Betram (1960) for the case where both (4}
and P are positive definite.

Here we will prove that the relations in Lemma A2, holds for any symmetric matrix
Q. Extension to the Hermitian (complex) case is straightforward.

The matrix P is assumed to be positive definite, then the (Cholesky) decomposition
exists. We have

P=L"L (61)

where Le R"*"is a lower triangular matrix. Change coordinate system with z = Lx, and
substitute into the ratio of quadratic forms. We have

x"QOx z'L"TQL™!z

xTPx z'z ©2)
From the Rayleigh quotient inequality, Lemma A1, we have
Ty -T —1
Il TQL )< 2L 2 (LTQLY) (63)

z'z
Use the fact that, for any n x n matrices A and B,
JMAB)=A{BA), Vi=1,...,n (64)

and the relations in (60) are proved.



