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Exponential stabilization of mobile robots with
nonholonomic constraintst
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This paper represents an exponentially stable controller for-a-two-degree-of-
freedom robot with nonholonomic constraints. Although this type of system is open
loop controllable, this system has been shown to be nonstabilizable via pure smooth
feedback (Brockett 1983, Samson and Ait-Abderrahim 1991). In this paper, a
particular class of piecewise continuous controller is shown to stabilize the system
exponentially. This controller has the feature that it does not require infinitely fast
switching, as required, for example, by sliding controllers.

1. Introduction

Path tracking precision is essential in Wheeled Mobile Robots (WMR) performing
tasks such as welding, painting, gluing, drawing, etc., where some point in the WMR is
in contact with the navigation surface and has to accurately follow a given path. Also,
good path following capabilities are required when the navigation is effectuated in
cluster obstacle environments. The control problem of mobile robots with non-
holonomic constraints has been addressed from two points of view.

(a) Open-loop strategies seek to find a bounded sequence of control inputs steering
the cart from any initial position to any other arbitrary configuration. The existence of
such sequences has been indicated by Barraquand and Latombe (1989), as a
consequence of the local controllability and reachability of this type of systems.
Lafferriere and Sussmann (1991) have proposed analytic tools based on Lie algebra and
geometrical considerations to find the required control sequence. Brockett (1981) has
worked on optimal sinusoids-type inputs for canonical systems for which controlla-
bility is obtained by first order Lie brackets. Murray and Sastry (1990) have extended
this work to non-canonical forms requiring a high degree of bracketing to achieve
controllability. This proposal results in sub-optimal sinusoids-type inputs. These
strategies have been studied in connection with the motion planning of mobile robots.

(b) Closed-loop strategies consist of designing feed-back loops that stabilize the
cart about an arbitrary point in the state space. Although, the cart model is locally
controllable and locally reachable, it has been shown by Samson and Ait-Abderrahim
(1991) and Campion, d’Andrea-Novel and Bastin (1991), based on the work of Ayels
(1985) and Brockett (1983), that there is no pure smooth state feedback law (i.e. C*)
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which can locally stabilize this class of systems. Byrnes and Isidori (1991) have
suggested looking for attractors including the equilibrium point, and have proposed a
method to stabilize the closed loop motion about such an attractor. Although the
mobile robot model is not considered, Byrnes and Isidori (1991) deal with attitude
stabilization of a rigid spacecraft in failure mode which belongs to the same class of
systems as those considered here. Nonlinear controllers for tracking a moving virtual
car (or reference cart) were proposed by Kanayama, Kimura, Miyazaki and Noguchi
(1990)and Samson and Ait-Abderrahim (1991), among others. The requirement of non-
zero motion excludes the stabilization problem. Extension of the work of Samson and
Ait-Abderrahim (1991) including stopping phases, was studied by Samson (1991). They
proposed a continuous state feedback law depending on an exogenous time variable.
This control scheme yields asymptotic stabilization of the origin. An alternative to
time-dependent smooth controllers is the discontinuous or piecewise smooth
controllers. Messager (1990) has proposed discontinuous controllers for the well
known Brockett’s example (Brockett 1983), and for the system considered in Messager
(1990) concerning a rigid spacecraft in failure mode. Bloch and McClamroth (1989) and
Bloch, McClamroth and Reyhanoglu (1990) have presented a discontinuous controller
for the knife edge example. Their idea consists of first constructing an open loop
strategy to steer the system state from any initial condition to the origin. This results in
a set of manifolds which are then made invariant through a set of discontinuous
feedbacks.

In this paper we propose a ‘piecewise’ smooth controller to make the origin
exponentially stable for any initial condition in the state space. The main difference
with respect to other approaches can be summarized as follows. The proposed scheme
does not seek to render the discontinuous surface invariant, as opposed to the
principles of sliding control, but rather to make this surface non-attractive. Infinite
switching in the control law and the undesirable ‘chattering’ phenomenon, can thus be
avoided. Furthermore, this control law yields exponential stability so that the
convergence can be chosen arbitrarily fast.

2. Coordinate transformation

The kinematics of a mobile robot with two degrees of freedom is given as:
x=cos (v, +v,)/2=cos v
y=sin (v, +v,)/2=sin Oy (1)
O=(v, —1,)/(2c,)=w

where the state of the system (1) is described by the triplet g=[x, y,0]", indicating the
position of the wheel axis centre, (x, y), and the cart orientation, 6, with respect to the x-
axis. The distance between the point (x, y) and each of the wheel locations is c,. The
velocities (or inputs) v, and v, are the tangent velocities of each wheel at its rotation
centre (i.e. motor velocities times wheel radius). The control variables v and o are the
tangent and angular cart velocities, respectively. They are related to the wheel velocities

as:
1 1
Vv 2 2 Uy
w 1 1 Uy
2c, 2c,
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By stabilization of system (1), we understand the design of a control law, u(g), so that
the closed loop system

cosf 0
G=Glqu(g)=flg), Glg)=] sin6 0 3)
0 1
converges for any initial condition’, g(0), to an equilibrium point in @,
0={(x,y,0)=(0,0,2nm); n=0,+1,+2,..}

Note that all points in @ are equivalent in terms of position and orientation of the cart.
Introduce the circle family 2,

P={(x, Yx*+(y—rP=r*} 4

as the set of circles passing through the origin, centred on the y-axis and with dy/dx=0
in the origin. Let 8, be the angle of the tangent of # at (x, y), defined as:

_ f2arctan(y/x); (x, y)#(0,0)
oy ’_{0, (x,5)=(0,0) ©
n=* 2" ©

where r is the radius of the circles defined by 4 and 6§, is taken by definition to belong to
(—m, m]. Hence 6, has discontinuities on the y-axis with respect to x. The discontinuity
surface is defined as:

D={(x, y,0)lx=0, y#0} 0]
In view of these definitions, introduce the arclength, a, and the orientation error, &,
as:

X +y? arctan (y/x) (8)

alx, y)=rb,=

ox, y,0)=e—2nnle), e=06-0, ©)

where ae(—mx, 7], is a periodic and piecewise continuous function with respect to e.
ntakes valuesin {0, +1, +2,...} insuch a way that « belongs to (—n, n]. a is introduced
so that all the elements in ¢ are mapped into the unique point (a, &) =(0, 0). & is the set of
the points in g where o{g) is discontinuous, i.e.,

&={(x, y,0)lx, y,0)=n} (10)

Note that a(x, y) defines the arc length from the origin to (x, y) along a circle which is
centred at the y-axis and passes through these two points. a(x,y) may be positive
or negative according to the sign of x. In the degenerate case, where y=0, we define
a(x, 0)=0 which makes a(x, y) continuous with respect to y. Discontinuities in a(x, y)
only take place at the y-axis. An illustration of these definitions is shown in Fig. 1.

! In general, conditions for stabilization are not required to be global, but in this paper we add
this requirement,
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Figure 1. Illustration of the coordinate transformation.

Let us now introduce the function F(+): R3— R x (—x, 7], mapping the state space
coordinates, ge R3, into the two dimensional space, zeR x(—m, 7]

a(x, y) ]
afx, y,6)
This transformation has several useful properties listed in the following lemma.

z=F(g); F(q)=[ (an

Lemma 1. The mapping F(*): R*>R x(—mn,7] has the following properties:

1. F(0)=0
2. a*(g), @*(g), lIF(g)|* are continuous in g.
3. 10x, 1T <Nzl <lal + o

where | - || denotes the Euclidian norm.

Proof. The proof is simple and is left to the reader.

3. Control design and stability analysis

This section proposes a piecewise smooth controller and analyses the stability of the
closed loop system. The stability analysis is first performed in an open continuous
subspace, and then the analysis is extended to the whole state space including
discontinuities.
3.1. Dynamics in the ¥-space

Let us first consider the case where ge'¥ where ¥ is defined as the open set
¥ =R3—(2ué&). F(*) is differentiable in ¥, i.e. F(g)e C*, Vge'¥.

In ¥ we have,

z=3—§4=1(q)¢ J@eR?*? (12)

and J(g), with §=y/x, is given as:

6a_ &( _i) Ly
A A
I
(1+p%x (1+p%)x

J@)= (13)
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together with eqn (3), we get:
b, 0
2=J(q)Glqlu=B(g); B=[b‘ 1] (14)
2
with
6, . 6 1 1
b1=cos9(?‘—l)+sm9(?(l—?)+§) (15)
_ 2 2
bz-oosﬂ(l e Sme(l+ﬂ2)x (16)

By noting that cos@=cos(a+6,), sinf=sin(x+6,) and cosf,=1—p%*1+p%
sin 6,=2p/1 + B, we can rewrite b, as:

0, 6 1 1)\ .
b =cosa+| —sinf (—‘—1)+oosﬂ (—‘(l——)-l-—))smoc (17
1o B) ( d B a\ 5 52)" B
Lemma 2. The functions b(g) have the following properties for any x and y, with
B=yix:

L bpyin(®) < by (, f) S baas(®)
2. by(a, p) is continuous in a

3. lim,.oby(o, f)=1
4. |b,(g)a(g)| < N for some constant N >0

where

bm(a)=cosa—§|sin ol

bm(a)=msa+§|sina|

Proof. See Appendix.

The properties in lemma 2 will be useful in establishing exponential stability of the
closed loop equations.

Taking the following control law, with y>0 and k>0,

v=—vb,a (18)
w=—b,v—ka (19)
gives the closed loop equations:

d=b,v=—ybla

. (20)
d=bv+w=—ka
which have the following solutions for a(f) and o(z):
t)=a(0 — it

a(t)=a(0)exp (—yx(t)) 1)

oft)=a(0)yexp (— k)
with,

Kt)= L bi(g(x))de (22)
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From these equations we have:

llz()11* < [|2(0)|* exp (—2n(t)) (23)
where,

n(f)=min (yx(t), ki) V=0 (24)

which indicates bounds on the norm of z(t) in the continuous set .

The following subsection extends the boundness of z(f) to the region including the
discontinuities by showing that the discontinuous surfaces & and & are not invariant
and that the norm of z(f) remains constant when traversing the discontinuous surfaces.

3.2. Dynamic behaviour on the surfaces 2 and &

Motion (or impossibility of motion) on the discontinuous surfaces % and & can be
investigated by analysing the direction of the vector field f(g) from (3) in the
neighbourhood of the discontinuities.

Let us first consider the behaviour on the surface 2.

Lemma 3. Any trajectory g(t), solution of the closed loop system
=1
cannot stay in 2 in a closed time interval I=[t,,t,], t,>1,.

Proof. To prove that no motion is possible in &, we can first compute f(g) in the
neighbourhood of & as:

[ cosfv* ]

ffa= lil;l}'l fl@=| sinév*
x—0* ] m_'_ ]
[ cos@v™ |

f —(‘I)=xl_igl_ Sflg)=| sinfv”
[ _

where,

to_of ¥ T in6 )=
v 'y(+cosﬁ+zsm9)2[y|
T
2
and then show that there exists no convex combination of f'~(g) and f*(g) which
makes g(t) stay in 2. In other words, there does not exist a ge 2, de[0,1] and ueR

such that
whi=f*(@+(1—-8)f (g (25)

for all te I, where f;indicates the directions of possible motions in £. Note that in order
to remain in 2 during a time interval I, the cart should perform either a motion along
the y-axis, a pure rotation in a fixed point y, or stand still. By allowing u to be equal to
zero, these possibilities are represented by the following directions:

£i=[0,1,0" or f,=[0,0,1]"

ot =—cos Bgm(ioos 0+ sinﬁ) sgn(y)—k(0 —n—2nn)
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This direction indicated by f;, is equivalent to the situation where the cart is oriented in
the y-direction, i.e. 0 is constant equal to 90° or 270°. In this case it is simple to see that
the last line in condition (25) cannot be satisfied. In the f,-direction, the two first lines in
condition (25) cannot be verified for all tel.

We have shown that trajectories g(t) cannot stay in 2. However, it should be
noticed that & can be traversed. This is not the case for the surface & which is shown to
be a repulsive discontinuity by the following lemma.

Lemma 4. Any trajectory g(t), solution of the closed loop equations,

i=f(g
starting in &, i.e. g(0)eé&, or in its neighbourhood, will be repelled from &.
Proof. To prove this, we need only to show that for any ge&, the projection of the
vector field f(g) on the normal of & points out from both sides of the surface. In other
words, the inner products of f(g) and the out-pointing normal at each side of the
discontinuous surface are strictly positive.
Let s(g)=0 denote the discontinuity surface &,
s(g)=0—04x, y)—2nn—mn
Then the normal to s(g)=0 is:

2y 1
asa) x2+y? r
mg=22=| 2 |=i_x 26)
K x? 4yt yr
e l - e l -
We define for geé:
" cos 6,70, |
f*(@= lim flg)=| —sinOur6,
’ | —y0;+kn
[ —cos 6,10, i
S @)= lil;l S@)= | —sinbrb,
520~
L —'Po‘_kﬂ -
Then we have
S m)=kn>0 @7
S, —n)y=kn>0 (28)

This means that in the neighbourhood of &, or when g(0)e &, the field vector, f(g), will
always have a component driving the system away from &. This can also be seen by
studying the ‘potential’ function, V(s)=4s>.

V=ss§=s{n, f*)=5-sgn(s)2n=2x|s| =0 29)
Therefore V(t) and hence [s(t)| will always increase.
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3.3. Dynamics in the complete space

Lemma 3 and Lemma 4 allow us to extend the properties of the dynamics of the
closed loop system to the space including discontinuities. The following Lemma
summarizes these results.

Lemma 5. For any geR?, zeR x(—m, ], and Ve >0, we have:

Iz@)ll < I z(0)1l exp (—n(z)) (30)
la@ll < lla(O)]| exp(—«(1) (31)
led)l < l|(0)| exp (— k) (32

where 7(t) and x(t) are defined by (24) and (22).
The following theorem establishes our main result.

Theorem 1. 'There exist positive constants, T, n(T), oo(T) and &T), so that the norm
of z(t) satisfies,

l2()1* <o3(T)exp(—2no(Th), Vi=0 (33)

where, 1>&(T)>0, and ao(T), y,(T) are given as:
1(T)=min (y(1 — &(T)), k) (34)
0o(T)=max (|a(0)] exp (y(1 —&(T)T), [A(0)]) 3%)

with arbitrary, positive constants y and k.
Proof. Lemma 2 gives upper and lower bounds on b,(x, f) and shows that when o
approaches zero, b,(x, f) tends continuously towards one. Lemma 5 shows that oft)
decreases exponentially to zero. Therefore, for all ¢ > 7; there exists a small enough &(T)
so that,
Ib3ale), BO)— 1 <e(T); VizT

which gives the following bounds on b?,

1—-T)<bi(alr), BO)<1+&(T); V=T
In view of Lemma 5, we have for all t>0,

|a(t)l <|a(0)| exp (—x(z))

t T
<|a(0)| exp (-?Jr(l —&T)dr—y J. . b?(‘f)df)
=ao(T)exp(—y(1—&T)))

where
ao(T)=a(0)l exp ((1 —&(T)HT
And therefore,
z()I% =a*(t)+o’(2)
<ag(T)exp(—2y(1—e(T))t)+a*(0) exp(—2kt)
<max (ay(T), o*(0)) exp (—2 min (y(1—¢(T)), k)r)
=03(T)exp(—2no(T))
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It can now be established that exponential convergence of z(f) to zero implies
exponential convergence of the g-trajectories to any of the members of 0.

Theorem 2. For any initial condition g(0)€ R?, the solutions ¢(t), ¢ >0, of the closed
loop equations

=19
converge exponentially to any of the elements in 0={(0,0,2zn), n=0, +1, +2,...}.

Proof. 'The proof will be based on basic properties of the norms of ¢ and z. Note first,
from Lemma 1, property 3, that the distance from (x, y) to the origin is upper bounded
by the arc length |a,

IDx(e), YOI |2 < llael%  ve=0

Since a(t) tends to zero exponentially, the norm of [x, y]” will converge exponentially to
zero. It remains to show that the cart orientation, 8, converges to a point in . For this
purpose, we recall that 6 can be written as a function of « as, (9):

0(t)=odt) + 04t) + 2nn

when n increments when the y-axis (or 9) is crossed from the right to the left and
decrements when @ is traversed in the opposite direction.

Since «(t) tends exponentially to zero, the behaviour of 6(t) will be determined by the
behaviour of 84f). Simple arguments can be used to show this. 6, is by definition the
tangent angle to the circles defined by 2, and « is the error between the actual
orientation and this tangent angle. Since off) converges exponentially to zero, the
motion of the cart will converge exponentially to a motion along one of the circles
defined by 2. From Theorem 1 we have that the distance, |al, from the origin to the
position of the cart along this circle, converges exponentially to zero. We have therefore
that the position of the cart converges to the origin exponentially along a circle.
Therefore, 04x(t), )t)) converges exponentially to its limit, 6(0,0)=0. Since 6(t)
converges exponentially to 6,, 6(t) will converge exponentially to zero.

Corollary 1. The control inputs ¥g) and w(g) remain bounded for any geR>3.

Proof. Boundness of vand o follows from the properties 1 and 4 of b, and b,alisted in
Lemma 2, and the fact that a and « are bounded quantities. It should also be observed
that both the inputs v and o tend to zero as time goes to infinity.

Theorem 1 gives bounds on the convergence rate, 115, and on the magnitude of the
norm of z(t), 6. Note, however, that when T is high, 6, may describe a too conservative
bound on ||z(¢t)|| since 6, grows exponentially as T increases. Design guide lines for
choosing the control gains can be established from Lemma 5 and Theorem 1.

4, Conclusions

Giving up the requirements for pure smooth feedback, a piecewise smooth
controller has been proposed. The particularity of these controllers is that infinite high
frequency components as well as the well known problem of ‘chattering’ are avoided.
The cart converges exponentially to the origin with zero orientation for any initial
condition. This is achieved by letting the motion of the cart converge to one of the
circles which pass through the origin and are centred on the y-axis. The circles were
chosen because they yield a new change of coordinates which is geometrical
meaningful. However, other types of paths may also be possible.
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Appendix
Proof of Lemma 2
1. From eqn (17) we have, with f=y/x:
by(a, fy=cos o+ B(f)sina (36)
where

0,=0,(8)=2arctan (B)

. (0 0 1) 1
-l )l -3)-3)

1 I
=——| 1l —— ] arctan
(1) an
Here, we have used the fact that cos@,=1—p%/1+ % sin6,=2f/1+p*> and
tan,=2p/1— .
In order to find the maximum and minimum values of B(f), we analyse the
derivative, B'(f):

1 2 1 1
2
=B§(ﬂ€;“_ﬁ_1)<0 v

We note that B'(f) is continuous in f=0, if we define B'(0)=—2/3.
Since B'(B) is negative for all feR, we find that

lim B(B)<B(f)< lim B(p)
p-w fr—w
U
n k(4
"5<B(ﬁ)$'i

Therefore we get:
cosa— [sina] <by(a f) <coso+ 3 Isinal

2. From 1 we have that

b,(o, By=cosa+ B(f)sina

where B(p) is bounded. Since cos « and sin « are continuous in «, and B(f) is bounded, it
is clear that b,(a, B) is also continuous in o

3. By the continuity property from 2, we find
lim b, (e, f)=lim cos a+ lim B(f)sina=1

a0 a—+0 a—+Q

4. From the definition of a(x, y), (8), we have:

2 1 2
x _;yz arctan? =x +b

x B

a=rf,= arctan
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From the definition of b,, (16), we get:
2p . 2 1+p2
cos—————sinf
( (1 +p)x A+ ) B
arctan f§
B
<7lcos O]+ 2jsinf|<n+2=N

bal =

arctan f8

2cosfarctan f—2sinf




