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By a plant’s inherent control limitations we mean the characteristics of the plant
which will cause poor control performance irrespective of what controller is used.
Another frequently used term is ‘dynamic resilience’ which is the best closed-loop
performance achievable using any controller. Since a plant’s dynamic resilience
cannot be altered by change of the control algorithm, but only by design
modifications, it follows that the term controllability provides a link between
process design and process control. In this paper we focus on two aspects of
controllability. The plants’ sensitivity to disturbances and the limitations imposed
by interactions when using decentralized control. We use simple tools such as the
RGA, the PRGA (Performance RGA) and the closely related Closed Loop
Disturbance Gain (CLDG). For example, if kth column of the CLDG is large, then
this indicates that disturbance k will be difficult to reject. This may pinpoint the need
for modifying the process. The PRGA provides a measure of interaction which also
includes one-way coupling. In the paper we apply these measures to distillation
column control and fluid catalytic cracker (FCC) control.

1. Introduction

In this paper we study simple tools for evaluating a plant’s inherent control
characteristics. We will refer to this as the ‘dynamic resilience’ (Morari, 1983) of the
plant and use the following definition:

Dynamic resiliency (of a plant) is the (best) quality of the response which can be
obtained for the plant by use of feedback control.

Admittedly, this definition is not very precise, since, for example, ‘best’ is not
defined. Closely related terms are ‘dynamic operability’ and ‘achievable performance’.
Also the term ‘controllability’ is often used in the meaning of ‘dynamic resilience’ (e.g.,
Perkins, 1989). This use of the term is in accordance with engineering practice, where a
plant is called ‘controllable’ if it is possible to achieve the specified aims of the control,
whatever these may be (Rosenbrock, 1970, p. 161). Unfortunately, the term ‘controlla-
bility’ also has a well established definition in terms of Kalman’s state controllability.
The term state controllability (and state observability) is mainly related to realization
theory and has little to do with the engineering term controllability. If we have a
minimal realization of a system (fewest number of states) then all states are controllable
and observable. Noncontrollable and nonobservable states correspond to those which
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disappear by exact pole-zero cancellation when we evaluate the transfer function. We
will therefore not use the term ‘controllability’ in this paper, although it would have
been the preferred term to use if it did not already have this rather restrictive definition.

A key idea in the term dynamic resilience is that it is an inherent property of the
plant, and is independent of the selected controller parameters (it is assumed that the
optimal tunings are used). Of course, one may restrict the class of allowed controllers,
and consider, for example, ‘dynamic resilience using linear controllers’ (which we do
throughout this paper) or ‘dynamic resilience using decentralized control’ (which we
consider in most parts of this paper). Since the dynamic resilience cannot be altered by
change of the control algorithm, but only by design modifications, it follows that the
term dynamic resilience provides a link between process design and process control.
‘Design modifications’ of course include modifications of the process units (eg., adding
buffer tanks, increasing the number of trays in a column), but they also include selection
of control objectives (e.g., control temperature or composition), selection of manipu-
lated variables (e.g., placing of bypass streams) and selection of measurements.
Stephanopolous (1984, p. 512) gives some examples of how process modifications may
change the dynamic resilience. Seborg et al. (1989, p. 682) give some guidelines for the
control structure selection, that is, selection of controlled, manipulated and measured
variables.

What limits dynamic resilience? Perfect control can only be achieved if the plant is
invertible (Morari, 1983). Several authors (e.g., Rosenbrock, 1970) discuss the
deteriorating effect of Right-half plane (RHP) zeros and time delays which make it
impossible to invert the plant and retain stability of the closed-loop system. Constraints
make it impossible to implement in practice the inputs that perfect inversion requires.
Model uncertainty results in mismatch between the model used by the controller and
the actual plant. Large RGA-elements imply sensitivity to model uncertainty for
multivariable systems (Skogestad and Morari, 1987b). All these items generally imply
that the speed of the response (bandwidth) cannot be too high.

In this paper we will focus on two additional aspects of dynamic resilience: The
plants sensitivity to disturbances and the limitations imposed by interactions when
using decentralized control. The requirement of disturbance rejection requires the
speed of response (bandwidth) to be high, and is thus generally in conflict with the
requirements imposed by RHP-zeros, time delays, model uncertainty and constraints.

We will concentrate on simple measures which depend on the plant model only
such as the RGA, PRGA and CLDG. The advent of the computer has largely removed
the need to develop simplified tools in order to save computation time. However, there
is still a need for simple tools to yield insight and to assist the engineer in prescreening
the large number of alternative control structures, and to get initial estimates of a
system’s dynamic resilience. For example, the RGA is an ideal tool in this respect; it
may be computed using only limited information and one calculation is sufficient for
screening a large number of alternatives.

However, there are of course limitations with such simple tools, and more powerful
and exact methods must be used after the initial screening. Such methods generally
involve performing a controller design. For example, one method is to obtain an upper
bound on performance by adjusting the performance weight such that the optimal
controller satisfies the performance objective. One specific approach, which also takes
model uncertainty into account, is to adjust the performance weight such that the
structured singular value (mu) for robust performance is 1 (e.g., see ‘Approach 2’ in
Skogestad and Lundstréom, 1990).
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2. Some simple tools: RGA, PRGA and CLDG

Notation. Let y(s) denote the output response and let e(s)= y(s)—r(s) denote the
output error. The closed loop response to a setpoint r and a disturbance z becomes

e(s)= — S(s)r(s) + S(5)G(5)z(s); S=(I+GC)™! )]

The Laplace variable s is often omitted to simplify notation. G is assumed tobe anxn
square matrix, but G, may be nonsquare. In most of this paper we consider
decentralized control, and the controller C(s) is diagonal with entries c,(s) (see Fig. 1).
This implies that after the variable pairing has been determined, the order of the
elements in y and u has been arranged so that the plant transfer matrix G(s) has the
elements corresponding to the paired variables on the main diagonal.

RGA. The RGA was first introduced by Bristol (1966) as a measure of interaction
and as a tool for pairing selection for decentralized control. However, later it has
become clear that the RGA is a useful controllability measure also when decentralized
controlis not used (e.g., Skogestad and Hovd, 1990). The RGA was originally defined at
steady-state, but it may easily be extended to higher frequencies (Bristol, 1978).
Shinskey (1967, 1984) has demonstrated practical applications of the steady-state
RGA. The book by McAvoy (1983) yields a good introduction to interactions in
multivariable systems, and demonstrates the usefulness of the frequency-dependent
RGA.

For a 2 x 2 plant G(s) the RGA-matrix is

A A A 1—4
A(S)=< 11 12>=< 11 ll)
2‘21 2'22 1_111 A’ll

1 912921
A e Y(s)=""=~(s 2)
H 1Y () g11922() (

where Y is the interaction measure introduced by Balchen (1958). For n x n plants the
RGA is defined by the ratio of the ‘open-loop’ and ‘closed-loop’ gains between input j

and output i
=(ayi/auj)u1¢j:
(0y,/ou),,,,
Thus, a RGA matrix can be computed using the formula

As)=G(s) x (G~ ()" )

lij(s) gij(s)[G_ I(S)in (3)

G

A\

Figure 1. Block diagram of decentralized control structure.
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where the x symbol denotes element by element multiplication (Hadamard or Schur
product). The RGA matrix has some interesting algebraic properties (Bristol, 1966):

(a) It is scaling independent (e.g., independent of units chosen for u and y).
Mathematically, A(D,GD,)=A(G) where D, and D, are diagonal matrices.

(b) All row and column sums equal one.

(c) Any permutation of rows or columns in G results in the same permutations in
the RGA.

(d) If G(s) is triangular then A(G)=1.

Another important usage of the RGA is that pairing on negative steady-state
relative gains should be avoided. The reason is that with integral control this yields
instability of either (1) the overall system, (2) the individual loop, or (3) the remaining
system when the loop in question is removed. It is also established that plants with large
RGA-values, in particular at high frequencies, are fundamentally difficult to control
irrespective of the controller used (poor dynamic resilience).

PRGA. One inadequacy of the RGA (e.g., McAvoy, 1983, p. 166)is that it, because of
property (d), may indicate that interactions are no problem, but significant one-way
coupling may exist. To overcome this problem we introduce the performance relative
gain array (PRGA). The PRGA-matrix is defined as

F(S) = Gdiag(S)G(S) -t (5)

where Gy;,.(s) is the matrix consisting of only the diagonal elements of G(s), i.e.,
Ggiag=diag{g;;}. This matrix was originally introduced at steady-state by Grosdidier
(1990) in order to understand the effect of directions under decentralized control, and
similar ideas are presented by Friedly (1984). We will derive its relationship to
performance in Section 6. The elements of T are given by

79 =06 61,25 19 ©
g ji(s)
Note that the diagonal elements of RGA and PRGA are identical, but otherwise PRGA
does not have all the nice algebraic properties of the RGA. PRGA is independent of
input scaling, that is, I'(GD,)=T(G), but it depends on output scaling. This is
reasonable since performance is defined in terms of the magnitude of the outputs. Note
that PRGA = G; ! where G, is obtained by input scaling of G such that all the diagonal
elements are 1 (at all frequencies).
CLDG. A closely related measure, the closed loop disturbance gain (CLDG), was
recently introduced by Skogestad and Hovd (1990). For a disturbance k and an
output i, the CLDG is defined by

8ud8) = gi(s)LG(s) "' Gy(s)] ik (7

The reason for the name CLDG will become clear later. A matrix of CLDG’s may be
computed from

A= {5ik} = GdiagG - lGd = er (8)

The CLDG is scaling dependent, as it depends on the expected magnitude of
disturbances and outputs. The CLDG is closely related to the relative disturbance gain
(RDG), denoted B, introduced by Stanley et al. (1985). We have 0:3(8) = Bu(8)g 4 l5).
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Note that the PRGA and CLDG have to be recomputed whenever another choice
of pairings is selected, whereas the RGA need only be rearranged in accordance with
the rearrangement of G (because of property c).

3. Scaling

The RGA has the advantage of being scaling dependent, but for the other measures
it is crucial that the variables are scaled properly. In general, the variables should be
scaled to be within the interval —1 to 1, that is, their desired or expected magnitudes
should be normalized to be less than 1. Recommended scalings:

o Inputs (u): An u; of magnitude 1 should correspond to the largest allowed input
signal e.g., the input reaching its constraint (i.c., the inputs are normalized with
respect to their allowed range).

e Outputs (y): An ¢; of magnitude 1 should correspond to the largest allowed
control error (ie., the outputs are normalized with respect to their allowed
range).

e Disturbances (z): A z, of magnitude 1 should correspond to the largest expected

disturbance (i.c., the disturbances are normalized with respect to their expected
range).

The measures depend on scaling as follows: RGA: independent of scaling; PRGA:
depends on scaling of y; G;, CLDG and RDG: depends on scaling of z and y; Condition
number and Disturbance condition number: depends on scaling of u and y. All
interpretations and examples in this paper assume that appropriate scaling has been
performed.

Comment. We do not here separately scale the setpoints r;, and therefore implicitly
assume that these are of the same magnitude as the allowed errors. If this is not the case,
then one should use the diagonal matrix D, to scale the setpoints such that they all are
of magnitude 1, and use the matrix PRGA, = G4;,,G ™' D, to evaluate the performance
for setpoint tracking.

4. Performance requirements imposed by disturbances

Some plants have better ‘built-in’ disturbance rejection capabilities than others,
that is, their dynamic resilience with respect to disturbance rejection is better. For
single-input single-output (SISO) systems, the sensitivity to disturbances is directly
given by g,(s) (we use a lower-case letter to denote scalar transfer function). We have
when we consider only disturbance rejection (r=0)

e(s)=y(s)=S(s)gs)z(s) ©)

If we assume that scaling has been applied to g, such that at each frequency the
expected z( jw) is less than 1 in magnitude, then the requirement to achieve e jw) less
than 1 in magnitude is that at each frequency

IS(jw)ga(jw) <1 or |S(jo)l <1/lg.jw) (10)

Thisis a performance requirement on the sensitivity function S imposed by disturbance
rejection. If |g,| is large (larger than 1) then feedback is needed to reject this disturbance.
A plant with a small g, is preferable (better dynamic resilience) since the need for
feedback control then is less, or alternatively, with a given feedback controller (given S)
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the effect on e of the disturbance is less. At low frequencies, within the bandwidth wy, we
have S~ (gc) ™! and the disturbance requirement (10) yields the following constraint on
the loop transfer function gc

lgel > g4l Yor <wp (11)

Example (see Fig. 2): Assume that the appropriately scaled g (s)=k,/1 +1,s), and
assume k,>1. Then the required bandwidth, wg, imposed by the requirement of
disturbance rejection, is the frequency at which the asymptote of |g,( jw)| is 1. We get
wgp=ky/t,;. We want the required wg to be small. That is, we get the obvious result that a
large’ (k, large) and ‘fast’ (z, small) disturbance requires a large bandwidth and is
difficult to reject.

For multivariable systems we get

e=SGde(GC)_1GdZ (12)

where the approximation holds at low frequencies where control is effective and S is
small. One may generalize the use of |g,| for SISO systems to multivariable systems by
simply using the singular values of G,,. The frequency range where the singular values of
G, cross 1, will give the required bandwidth region for the closed-loop system.
However, for multivariable systems one should also consider the directions of G,
relative to those of G. These issues are discussed by Skogestad and Morari (1987 a)who
introduce the disturbance condition number. The special case for multivariable system
when the controller is diagonal is discussed in detail in the next section on decentralized
control.

3. Performance relationships for decentralized control

For SISO systems we found at low frequencies that the loop transfer function gc
must be larger than g, in magnitude to achieve disturbance rejection. The objective of this
chapter is to derive similar derive bounds on each loop transfer functions, g::C;, for the
case with decentralized control. Essentially, we want to find the apparent disturbance
gain for an individual loop i when using decentralized control.t We will show that the
answer to this problem is given by the closed loop disturbance gains (CLDG), which are

equal to the PRGA-matrix multiplied by the open-loop disturbance gains G,. We will

) i
13
Magnitude B\/\<ISI
1
T = ()
l
l1/Gd| |

Figure 2. Performance restrictions imposed by the requirement of disturbance rejection for
single-input single-output system. To reject a disturbance with model Gi(8) =k /(1 +145)
the closed-loop bandwidth must be higher than w}=k,/z,.

11t may seem that this may be obtained by simply closing all the other loops with perfect
control and consider the effective disturbance gain to the uncontrolled output y;. However, this is
not the case as this assumes that the input u, is constant, while we want to use u; to keep the
output y; constant.
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also consider setpoints and find that the PRGA-matrix enters in a similar way also
here.

Scaling is essential when evaluating performance and we stress that all interpret-
ations given in this section assume that G and G, have been scaled as discussed in
Section 3.

Consider the effect of a setpoint change r; and a disturbance z, on the offset e;. With
all loops closed the closed-loop response becomes (Fig. 1)

€= _[S]ij"j+[SGd]ikzk (13)
or on matrix form
e=—SR+S8G,;z (14)

For w < g we may usually assume S =(I + GC) ™' =(GC) ™ '. Provided the correspond-
ing cofactor of G is nonzerot, and ¢; is sufficiently large (decentralized control), this
approximation will also hold for individual elements

Gy G™'Gal;
B R 13)
With this approximation (13) becomes
-1 1 -1 1
e~ —[G ]ijc—rj"*'[G Gd]ikc_zk; W <wpg (16)

If g,/(s)#0 the definitions of the PRGA and CLDG yield

3 5.
ex — Yij ri+ * 7 o< 17)
giiC; 9iiCi

Using Sgiae= (I + G40 C)~ ' & diag{l /(giic;)} this may be written on matrix form
e~x — SdiangiagG B lr + SdiangiagG -1 GdZ = — Sdiagrr + SdiagAZ; w < O)B (18)

From (17) we see that the ratio y;;/(g;c;) gives the magnitude of the offset in outputitoa
setpoint change in output j. This ratio should preferably be small. That is, on a
conventional magnitude Bode plot, the curve for |y, should lie below lgiicil at
frequencies where we want small offsets.

For process control disturbance rejection is usually more important than setpoint
tracking. From (17) we see the tatio §;,/(g;c;) gives the magnitude of the offset in output i
to a disturbance z,. That is, the curve for |6, should lie below |g;;c;| at frequencies where
we want small offsets. A plot of |8;(jw)| will give useful information about which
disturbances k are difficult to reject.

Note that for input disturbances G,=G and we get J;=g;; Thus, large diagonal
elements in G (when appropriately scaled) may imply difficulties rejecting input
disturbances.

1 Cofactors of G identically equal to zero are relatively rare except for the offdiagonal zero
elements of triangular transfer matrices. However, for these zero elements both [S];; and
[(GC)~'];; are zero and the approximation holds even though the cofactor is zero.
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Figure 10. Disturbance rejection for FCC example using Kurihara control structure.
Responses to a unit step in z, at t=60min and a unit step in z; at t= 180 min.
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Generalizations are also possible. Consider controllers on the form C(s)= H(s)K(s)
where K(s) is a diagonal matrix (for example, consisting of PID controllers), and H(s) is
a multivariable precompensator, for example, a constant matrix (steady-state or high-
frequency decoupler), a simple dynamic decoupler or a one-way decoupler. The
performance results on decentralized control may be generalized to include decouplers,
H(s), by replacing G by GH when evaluating PRGA and CLDG.
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Nomenclature

e=y—r vector of control errors

9;;=[G];; ijth element of G

G(s) plant model for effect of u on y

Gaiagls) matrix consisting of diagonal elements of G
9aix=[G4ly ikth element of G,

G,(s) disturbance model for effect of z and y

r vectors of reference outputs (setpoints)
S=(I+GC)~! sensitivity function

u vector of manipulated inputs

y vector of outputs

z vector of disturbances

B ikth elements of RDG matrix (Stanley et al., 1985)
0u()=gi(s)[G ()G (5)]y Closed Loop Disturbance Gain (CLDG)
A(s)=G4;, ()G 'G,(s) CDLG-matrix
7i/8)=gu(s)[G~'(s)];; ijth element in PRGA matrix
I'(s)=G4;oe()G " '(s) PRGA matrix
Aif(8)=g,;()(G™(s)]; ijth element in RGA matrix
A(s) RGA matrix

o frequency [rad/min]

wg closed loop bandwidth, frequency at which asymptote of |S(jow)| first reaches 1

Subscripts

i index for output or loops

j index for manipulated inputs or setpoints
k index for disturbances.
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