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Maximal imaginary eigenvalues in optimal systems]
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In this note we present equations that uniquely determine the maximum possible
imaginary value of the closed loop eigenvalues in an LQ-optimal system,
irrespective of how the state weight matrix is chosen, provided a real symmetric
solution of the algebraic Riccati equation exists. In addition, the corresponding
state weight matrix and the solution to the algebraic Riccati equation are derived for
a class of linear systems. A fundamental lemma for the existence of a real symmetric
solution to the algebraic Riccati equation is derived for this class of linear systems.

1. Introduction

Application of the LQ approach to regulator design involves choosing the state and
control input weighting matrices, Q and P, that provide satisfactory closed-loop
performance. The closed loop performance is related to the locations of the closed loop
eigenvalues. In some applications we are not interested in the exact locations of the
closed loop eigenvalues, rather the region where the eigenvalues are located. For
example, approximate knowledge of the locations of the closed loop eigenvalues is
required when designing the performance weights. The problem of determining the
region where the closed loop eigenvalues are located is the topic of this paper.

We know that for a suitable choice of performance weighting matrices the real part
of the closed loop eigenvalues can be located all along the negative real axis in the
complex plane. This means that the real part of the closed loop eigenvalues is not
bounded. This is generally not the case for the imaginary parts of the closed loop
eigenvalues.

In this paper we will show and determine an exact upper bound for the imaginary
part of the closed loop ecigenvalues for a class of lincar systems. In addition, the
corresponding ‘worst case’ state weight matrix and the solution to the algebraic Riccati
equation are derived. A fundamental lemma for the existence of a real symmetric
solution to the algebraic Riccati equation is derived for this class of linear systems.

The rest of the paper is organized as follows. Section 2 presents the problem
definitions, ie. determines the maximum possible imaginary eigenvalue in an LQ-
optimal system, the corresponding state weight matrix Q, and the corresponding
solution to the algebraic Riccati equation. Once the maximum imaginary eigenvalue is
determined, we will show that the closed loop eigenvalues are located inside a
horizontal strip in the complex plane, no matter how the state weight matrix is chosen,
provided a real symmetric solution of the algebraic Riccati equation exists. The
problem solution is stated in Section 3. Numerous examples are given in Section 4 and
some concluding remarks follow in Section 5.
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2. Problem formulation
Consider the linear, time-invariant, dynamic system
x=Ax+Bu 1)

where (A, B) is a stabilizable pair, and the quadratic objective functional of long or
infinite settling time

J _! Iw (x"Qx+ u"Pu)dt 2
2)o

where x is an n-dimensional state vector, u is an r-dimensional control input vector, A
and B are constant matrices of appropriate dimensions and Q and P are nxn
symmetrical and r x r positive definite matrices respectively. It is assumed that (Q"/%, 4)
is a detectable pair. The optimal control that minimizes criterion (2) and the
corresponding closed loop system is given by

u=Gx, G=-P'B'R (3)

¥=(A+BG)x=(A—HR)x @

where H is given by (6) and R is a solution to the algebraic Riccati equation (ARE)
—R=A"R+RA—-RHR+Q=0 %)

H=BP 'B" (6)

The ARE (5) can have solutions which are real or complex, symmetric or non-
symmetric, definite or indefinite and the set of solutions can be either finite or infinite.
See, among others Kudera (1989), Lancaster and Rodman (1980) and Willems (1971).
This paper is restricted to real symmetric solutions of the ARE.

Both the closed loop system eigenvalues, and the solution R to the ARE can be
determined from the state/co-state system matrix (7), Laub (1979), Di Ruscio and
Balchen (1990). The state/co-state system matrix (the Hamiltonian matrix) is derived
from optimal control theory by augmenting the co-state equation p=—Qx— A'pto
the state space model (1), with the optimal control input vector u=—P~'B"p. The

Hamiltonian is
A —H "
F:[_Q - AT]GRZ» o )

We will show that when H >0 then the closed loop eigenvalues are bounded by the
region shown in Fig. (1), irrespective of how the state weight matrix Q is chosen,
Im
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Figure 1. Region where the closed loop eigenvalues are located.
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provided there is a real symmetric solution of the ARE. Thus the problem is to
determine the maximum possible imaginary value §,,,,, the corresponding ‘worst case’
state weight matrix Q, and the corresponding real symmetric solution R to the ARE.
Benar Q and R are extreme solutions to the LQ-problem. Note that H >0 only when
dim(x) =dim(u)=n.

3. Main results

The main results in this section are stated in three lemmas. Lemma 1 consists of a
necessary and sufficient condition for the existence of a real symmetric solution to the
ARE. Lemmas 2 and 3 state analytical solutions to the n-dimensional algebraic Riccati
equation where the corresponding closed-loop eigenvalues determine a finite upper
bound of the imaginary value. We will prove that the imaginary part of these closed
loop eigenvalues is the maximum possible in an LQ-optimal system, no matter how
the state weight matrix Q is chosen, provided there is a real symmetric solution of the
ARE.

Lemma 1
When H=H">0, then there is a real symmetric solution R to the algebraic Riccati
Equation (5) having the property Rei(A— HR)<0, if and only if, the symmetrical state
weight matrix Q satisfies
0—Qo—X(w)=0, VoweR' (®)
where

Qo=—(H 'Z{+ ATH ' 4)

=ZIH 'Z,— ATH A )
X=H '(ljo—Zy)?

=—H Yw+jZ) (10)
Zy=YA—HA™H™Y) (11

A proof of Lemma 1 follows immediately after the statement of Lemma 2. Note that
there may be symmetric matrices Q, satisfying Lemma 1, which are negative
semidefinite, indefinite and (of course) positive semi-definite.

Lemma 2
A unique solution to the algebraic Riccati equation with closed-loop eigenvalues at
the imaginary axis is given by

Ro=3(H 'A+A'H™) (12)
Qo=ZlH 'Z,—A"H 'A (13)

where the closed-loop system matrix Z, is given by
Zy=A—HR,=A—HA™H™ ) (14)

The closed-loop eigenspectrum is given by
A{A—HRo)=1{Z,), i=1,...,n (135
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The spectrum (15) is purely imaginary. This means that the eigenvalues of (14)
consist of p complex-conjugate imaginary eigenvalues and s eigenvalues in origo, where
n=p+s.

Proof of Lemma 1 and 2
There is a real symmetric solution to the algebraic Riccati equation having the
property Re A(4A—HR)<0, if and only if, (Lemma 5, Willems 1971),

[I— BY(—Is— AY) ‘G 1P[I— G(Is— A)1B]=P+ B"(—Is— A" 'Q(Is— A)"*B=0

(16)
for all s=jw, where weR " and G= — P~ ' B"R. Pre-multiplcation with BP~ ' and post-
multiplication with P~!BT we see that (16) is equivalent to

[I+4H(—Is— AT 'R1H[I + R(Is— A) 'H]=H+ H(—Is— A"~ 'Q(Is— A)"'H>0
17

Pre-multiplication with (—Is— AT)H ! and post-multiplication with H"~ ‘{Is—A; w‘)a
see that (17) is equivalent to

[—Is—(A—HR)"1H '[Is—(A—HR)}=(—Is— ADH '(Is—A)+ Q=0 (18)
Equation (18) shows that for all s=jw, Q must satisfy

0> —(—Is—ANH '(Is—A)= —(—H 's*+2H 'Z;s+ATH'4)  (19)

where Z, is given by (14). Equation (19) can be written as

0— 00> —(Is—Zo)*H™ WIs— Zo)=H " Is—Zo)* = —H NI +jZ)* =X (20)

where the super-index * denotes the complex conjugate, and Q@ is given by (13).
Equation (20) must be satisfied for all s=jw, where weR'. Note that X =X"<0,
VYweR!. To show that X is Hermitian, use the fact that Z,= — HZJH . To show that
X <0 we use the fact that the spectrum A(Z ) is purely imaginary, A(Iw+jZ,)is real and
A(Iw + J-Zo)’> 0 and real. A proof of the statement that A(Z,) is purely imaginary, is
given in Appendix A. Note that the maximum of X is zero, in a matrix sense, and
appears for all s=A(Z,), i=1,...,n. To show this, take the determinant of X.

From Eqn. (20) and the fact that X <0 must be satisfied for all real @ we find that the
state weight matrix Q must satisfy

0-0o=X, 02X 2n

and Lemma 1 is proved. From (21) we know that the extreme solution is given by
0=0Q,, and Eqn. (13) is proved.

An alternative way to establish this result is as follows. We are interested in extreme
solutions at the imaginary axis. We then choose the equality condition of (19), i.e.

0()= —(—H ‘s> +2H 'Zos+ ATH ' A)=Qo + X(5) 22

where X is defined in (20). (22) has a minimum value, in a matrix sensc, because
220(s)/8s*=2H 1 >0. This minimum value is the solution to the problem. The
minimum value, in a matrix sense, is given by

%=2H' Us—Z)=0=>s=2(Z,), i=1,...,n 23)

Substituting the condition for a minimum, Eqn. (23), in (22) or (20) we derive Eqn. (13).
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Observe that Q,, Eqn. (9) or (13), is symmetric. The symmetry of (9) is shown by
expanding the term H™'Z2 in Q,. We have

Qo=—4H *A>4+(A})"H '—H" 'AHATH ' —ATH 14)— ATH 4 (24)

To show that R,, (Eqn. (12)) is the corresponding solution to the ARE, we simply write
the closed loop system as

A—HRy=Zy={A—HATH Y (25)
Equation (25) is satisfied, if
Roy=3H 'A+A™H™ ) (26)

With standard algebraic manipulations it is easy to see that (13) and (12) satisfy the
algebraic Riccati equation, and Lemma 2 is proved.

Lemma 3
A unique solution to the algebraic Riccati equation with real parts of the closed-

loop eigenvalues equal to —o and constant imaginary parts equal to Bi=2{Z,),
i=1,...,n are given by

R,=Ry+AR, AR=oH™! 27
0.,=00+AQ, AQ=o*H ! (28)
where R,, and Q, are given in (12) and (13). The closed-loop system Z, is given by
Z,=A—HR,=—al+}(A—HA'H™') (29)

The closed-loop eigenspectrum is provided by
A{A—HR)=—a+1{Z), i=1,...,n (30)

where Z,, is defined in (14). The spectrum A(Z,) is purely imaginary.

Proof of Lemma 3
The equality in (17) can be written as

[+ H(Is*—A")"'RIJH[I+R(Is— A) 'H]=H+ H(Is* — A") " 'Q(Is— A)"'H
—20H(Is*—A")"'R(Is— A) 'H>0 (31)
where s= —a+0 and 6 =jw. From (31) we get
Q)= —(Is*— A")H '(Is— A)+ 2R (32)
Substituting s= —«+ 0 in (32) we get
Os)> —(—H '6*+2H 'Zyo+ ATH ' A)—H '« —(H "A+ ATH Yo + 2aR (33)

We are interested in extreme solutions. We then choose the equality condition of (33)
Firstly, we optimize (33) with respect to « and get

-‘a%sl:—m-la—(H—IA+ATH“)+2R=0 (34)
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(34) is satisfied, if and only if,
R=3H 'A+ATH Y)4aH '=Ry+AR (35)
and Eqn. (27) is deduced. Substituting (35) into (33) we get
020,+H 'Uo—Zo)*=Q0,—H 'Uo+jZ) (36)

Secondly, we have to optimize (36) with respect to @. This problem is identical to
proving Lemma 2, and the reader is referred to the proof of Lemma 2. A proof of the
statement that the spectrum A(Z,) is purely imaginary, is given in Appendix A.

We see that the extreme imaginary eigenvalue is independent of the real part o and
that the results in Lemma 3, with a =0, are identical to the results in Lemma 2. From
(34) we see that it is possible to locate the closed loop eigenvalues all along the real axis,
and that the imaginary parts are limited by (29). With standard algebraic manipul-
ationsit is easy to see that (28) and (27) satisfy the ARE, Equation (5), and that (29)is the
corresponding closed loop system matrix.

Note that Eqns. (17) and (31) are special cases of a more general formulation,
namely

[I+H(S*— A" 'RIH[I+R(S—A) 'H]=H+H(S*—A")!
x(Q+S*R+RSYS—A)"'H  (37)

where SeC™*" is a complex matrix. Equation (17) is derived from (37) with S=1Is=ljw
and Eqn. (33) is derived from (37) with S=I(—a+0)=I(—a+jw). The closed loop
system matrix S=Z =A— HR satisfies Eqn. (37).

Remark 1
An LQ-optimal system, when H is non-singular, has only real eigenvalues, for all Q
satisfying Lemma 2, if

Z,=0=>AH—-HA"=0 (38)

This means that the control input weight matrix P (H=BP~'B") can be chosen to
position the imaginary parts of the closed loop eigenvalues.

Remark 2
As a consequence of the above discussion we have the maximal possible imaginary
value f§ in an LQ-optimal system, when H is non-singular, is given by

ﬂm=maX|3.‘(Zo}i, i"—-l.....,ﬂ (39)

Note that the eigenvalues of Z, are always located at the imaginary axis. A proofis
given in Appendix A.

Remark 3

Note that the maximum imaginary value of the closed loop eigenvalues is
independent of a multiplicative scalar perturbation of the nominal control input weight
matrix P, P,=pP, p>0 and peR'. This is seen from Eqgns. (14) or (29).
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Remark 4

Note that AR=aH ™', AQ=0’H 'and A— HAR= —al+ A in Lemma 3 also is a
solution to the LQ-problem. This means that the feedback matrix G= —aP 'B'H !
moves the eigenvalues of A a certain amount, — «. This result can be used, for example
to determine an initial stabilizing control feedback matrix.

Remark 5
From Eqn. (18), we have that an alternative form of the ARE, when H is non-
singular, is given by

(A—HR'H " Y(A—HR)=A"H 'A+Q (40)
From (40) we have the relation
n 2 det(A"TH 'A+0Q)
—_ 2_ _ — =
[det(A— HR)] [ n J{A—H R)] det(HY)

i=1

(41)

which relates the closed-loop poles to A, H and Q.

4. Numerical examples

4.1. Example 1
Consider the system (equal to Example 1 in Di Ruscio and Balchen, 1989)

2 0 10 10
A=[ 1 —1]33[0 1]P=[0 5] “42)

l 0
H=BP '\BT= 43

The system eigenvalues are
M(A)= =2, 2,(A)=-1 (44)

The extreme solutions of the LQ-problem at the imaginary axis are given by
(Egns. (13), (12) and (14))

—775 50 —20 25

Q"z[ 50 1-25]R°=[ 2:5 —50] “s)
00 -25
= 46
Zo [05 0-0] o)
The eigenvalues of the optimal closed loop system Z, are given by

1/2

1(20)=‘1(A_HR0)= :‘:jﬁmn= iJT (4?)

The stable extreme solutions of the LQ-problem, with real parts of the closed loop
eigenvalues equal to —o, >0 are given by (Eqns. (28), (27) and (29))

a2 —775 5
Q‘*=[ 5 502+ 1-25] “8)

a—2 25 —o =25
R“‘[z-s 5a—5]Z“=[05 —a] “9)
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No solutions in this region
[ 7 [Qa|=0 j:@
>0 Q<0

—2.89

Q>0 N Q<0_jﬁ
/S S S 1Qal=0

No solutions in this region

Figure 2. Region where solutions to the LQ-problem occur,

The cigenvalues of the optimal closed loop system Z, are given by

(5)'2
2
Note that |Q,| =0 for o= — (42 +(21)"/?)'/2 >~ —2-89, 0, > 0for a < —2:89 and Q, <0 for

—2:89<a<0. The region where solutions to the LQ-problem occur is illustrated in
Fig. (2)

MZ)=MA—HR)=—0otjfna=—0tj ~—atjl-118 (50)

4.2. Example 2

Consider the same system as in Example 1, but with a free control input weight
matrix P. The question we raise in this example is, What choice of P would lead to an
LQ-system with only real closed loop cigenvalues, irrespective of how the state weight
matrix Q is chosen? We get the answer to this problem from Eqn. (3).

Zy=0=>AH—HAT=0 (51)
Equation (51) is satisfied, if
P=["‘ "’}mo, PPy —p2)>0 (52)
P2 P2
4.3. Example 3
Consider the system
01 1 0
= =P=H= 53
A[OO]’BPH[OI] (53)
and the state weight matrix
0
Q=on-—-k[f, _] 59

For which real values of k can we establish a real symmetric solution to the ARE,
Eqn. (5)? In Lemma 1 (5) has a real symmetric solution, if and only if,
ki +w? jo

Q—Qo—X(w)=[ _

—jo  —k3+1 +wz]?0’ HEER (53)
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From Eqn. (55) we get the conditions

ki+®*>0, YoeR! (56)
2 —_—
(mz—g) -l-k(1 k) >0, VweR' (57)
4 4
from (56) and (57) we find that a solution exists, if and only if,
0<k<i1 (58)

5. Concluding remarks

For a class of linear time invariant systems, when dim (x) =dim (u)=n, we have
shown that there is a finite upper bound on the imaginary value of the closed loop
eigenvalues, no matter how the state weight matrix is chosen, provided there is a real
symmetric solution of the ARE. When dim(x)#dim(u), when det(H)—0, the
maximum imaginary value of the closed loop cigenvalues goes to infinity.

We have derived the maximum possible imaginary value f,.,,, the corresponding
worst case state weight matrix Q and the corresponding solution R to the algebraic
Riccati equation. fi.., Q and R are extreme solutions to the LQ-problem.

These solutions are uniquely determined by the system matrix A, the control input
matrix B and the control input weight matrix P. These solutions give valuable insight
into the LQ-optimal problem.
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Appendix A

In this appendix we will prove that the spectrum A(Z,) is purely imaginary. Z, is
defined in Equation (14), and can be written as

Zo— —HZIH 1 (59)

The matrix H is assumed to be positive definite, then the Cholesky decomposition
exists. We have

H=LLT (60)
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where LeR™ ™" is a lower triangular matrix. Combining Eqn. (59) and (60) we get
L™ Zol= — (L 'Z,L)" (61)
By similarity transformation we see that the spectrum
HZg)= AL~ *ZyL)= — A[(L~Z,L)"] ©2)

1s purely imaginary because the matrix L™ 'Z,Lis skew symmetric. Note that the
eigenvalues of a skew symmetric matrix are purely imaginary, and that the eigenvalues
of a symmetric matrix are purely real.




