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A globally convergent generalized pole-placement
adaptive control algorithm
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A complete proof of global convergence of a generalized pole-placement adaptive
control algorithm for linear discrete-time plants with an unmeasured bounded
disturbance is given in this paper. The analysis shows that the difficulty encountered
in the convergence analysis is circumvented by fixing the parameters which enter
nonlinearly into the control law to some constant value. This allows us to use the
standard analysis techniques for adaptive control in the analysis of our control
algorithm.

1. Introduction

Adaptive control based on long-range predictive methods has evoked a great deal
of interest recently, see, for instance, extended horizon adaptive control (EHAC)
(Ydstie 1984), extended prediction self-adaptive control (EPSAC) (De Keyser and Van
Cauwenberghe 1985), generalized predictive control (GPC) (Clarke et al. 1987), and
generalized pole-placement control (GPP) (Lelic and Zarrop 1987).

In spite of the intense research efforts, the question of convergence of adaptive
controllers based on long-range predictive methods is still open. This type of control
law is generally nonlinear in the estimated parameters which causes a great difficulty in
the convergence analysis. Ortega and Sanchez (1989) pointed out that to date it is not
clear how to establish the linear boundedness condition of the key technical lemma
(Goodwin and Sin 1984) for a control structure which is non-linear in parameters.

To circumvent this difficulty, Ortega and Sanchez (1989) used a fairly restrictive
assumption that the first N coefficients of the plant impulse response are known and
suggested a globally convergent multistep receding horizon adaptive controller
(MRHAC) for the deterministic plant. Although the non-linear control law can be
changed into a lincar one in this way, this assumption reduces the significance of the
result since, for general plants, it is difficult to determine these coefficients a priori when
sufficient knowledge regarding the plant is absent. In addition, the parameters of the
controller are estimated on-line in the MRHAC algorithm and a bank of estimators for
unknown parameters must be used.
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In this paper a globally convergent adaptive control algorithm based on the GPP
method (Lelic and Zarrop 1987) is proposed which provides a way to establish the
convergence of this type of adaptive controllers. In the proposed adaptive control
algorithm the non-linear parameter of the control law are not updated on-line, instead
of that they are fixed to some constant value. The restrictive assumption about the
coefficients of the plant impulse response in Ortega and Sanchez (1989) is, however, not
needed. We will deal with linear time-invariant discrete-time deterministic plants with
an unmeasured bounded disturbance. As will become clear in the sequel the
convergence and stability results can be extended to treat the case of stochastic
disturbances via martingale theory.

2. Generalized Pole-Placement (GPP) scheme

In this section the GPP scheme is introduced briefly with a trivial modification (see
Lelic and Zarrop 1987 for further details).

The plant to be controlled is of discrete-time with constant but unknown
parameters and is described by the difference equation

Alg™y(t)=Blg ™ ult)+ &) 2.1)
where A and B are polynomials in the backward shift operator ¢~! of the form
Alg Y=1+a,g" +...+ag "
Blg )=q B(@ ")=q “bo+biq ' +...4+bng™")

u(t) and y(t) are the plant input and output respectively, d>1 and b, #0. &(t) is an
unmeasured bounded disturbance. Let M be an upper bound of |(f)].
The following assumptions are made about the plant (2.1).

Al: n and m are known.

A2: A(g~") and B(g~ ") are coprime.
A3: d is known.

A4: M is known.

Define a generalized output
¢t)=P;y(t+d+j—1)—Ry(t+d+j—1)+Qut—1) (2.2)
where
Pj{q_l)=Po+P1‘1_1+---+Pj+d—2q_j-"2 (23)
0=0./0» Qd0)=1 24)

where R, Q, and Q, are polynomials in g~ . {,(t)} is a bounded reference sequence.
Note that the polynomial Pj(g~ ") is different from the one used in Lelic and Zarrop
(1987) and its use will be seen in the adaptive case.

Use of the following polynomial equations

Pj=AF;+q 771G, (2.5)

BF;=E;+q 7T (2.6)
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where
Fj(q -1)=fo+flq_l+---+fj+a ,q 17I*2
Efg )=eo+e,q " +...+e;_ ;g !
Gl =gb+giq ' +...+gi- g """
I{q™)=vo+1iqa " +...+Vhsa—2a "7
leads via a standard manipulation to
¢iO)=Eplt+j—D)+(T;+ Quit— 1)+ Gp(t)— Ryt +d+j— 1)+ F &t +d+j—1) (2.8)

@7

where j=1,...N.
The equation (2.8) can be written in the vector form
©=Eu+yu(t—1)+ Gy(t)— Rw+ F¢ (29
where

O =[,(t)...pM1)]
u' =[u(t).. u(t+ N —1)]
wi=[yft+d).. ylt+d+N—1)]
ET=[&t+d)...Lt+d+N—1)]
Y =[r+Q)..([y+0)]
G'=[G,...Gy]
FT=[F,...Fy]
and where E is the N x N lower-triangular matrix
€9

E=| € (2.10)

eyN_1€N-3...€
The current control u(t) is given by
u(t) =K [Rw —jult —1)— Gy(t)] 211)
where
KT =[k,.. ky] (2.12)
is the first row of (ETE+AI) 'E™.

Remark 2.1. We know from Lelic and Zarrop (1987) that u(t) given in (2.11) is the ‘rolling
horizon’ control law if {{(t)} is a white noise sequence and the following cost function is
used

J=E(@"®+ u"u)

where E(.) is the expectation operator.
Using (2.4) and the definition of y, equation (2.11) takes the form

Lu(t) + Q.K"Gy(t)= Q,RK ,y(t +d+ N —1) (2.13)
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where
K, =ky+ky_1q ' +...+k,g "
L=0,+q 'Q.K'T+q 'pQ,
Iﬂ-=[rl...rhr]
N
,u=_zlkj (2.14)
i=

Combining (2.13) and (2.1) we obtain the closed-loop system

(A,0;+ B,Q,)y()=B'Q,RK y,(t+ N — 1)+ L&1) (2.15)
where
A;=A+q 'AK'T+q *BK'G (2.16)
B,=q 'pd @17)
From (2.5) and (2.6) we have
B'P;—AE;=q " g 'B'G;+q 'Al') (2.18)
Define
D;=q “B'G,4+q Al (2.19)
Thus (2.16) takes the form
A,=A+K'D (2.20)
where
D"=[D,...Dy]

From (2.17) and (2.18)(2.20) we know that deg B, =n+ 1 and deg A, =deg D;=max (m
+d, n).
To assign the closed-loop poles, select @, and Q, such that

A0, +BlQu= T

where T(q™") is a prespecified stable polynomial and the zeros of T(q !) are the
required poles. It is then possible to ensure the stability of the closed-loop system with
the GPP controller. There exists a unique solution of (2.21) for the coefficient of Q, and
Q, if their degrees satisfy deg T<deg A; +deg B;—1, deg Q,=deg A, —1 and degQ,
=degB, —1.

For removing steady-state output tracking error in (2.15) the polynomial R(g™")
must satisfy

(1)
R)=—rr- 222
=B @2
In order to avoid singularity of (ETE + AI} and to reduce the computational burden
for large output horizons, the technique of imposing a control horizon N, can be used
here, see Lelic and Zarrop (1987) for details.
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3. Adaptive control algorithm and convergence analysis
Let us rewrite (2.1) as follows

YO =X(t — )70+ (1) G.1)

where
X(t—0)T=[—yt—1)...—y(t—n),u(t—d).. u(t—d—m)]
6"=[a...a, b,...b,]

When the plant parameter vector 6 in (3.1) is unknown we use the estimate 6(t)
instead of 6. Define

OO =[a,(t)...,a0t), 6o(0), .-, b (1)1
e0)=y(0)— Xt —1)"0(t—1) (32

The following recursive least-squares parameter estimation with a dead zone is used
here:

_ A)PE—DX(t—alt)

fo=0e—n+ 1+ X(@— )"Pe—2)X(t—1)

aft+ )Pt — DX ()X () Pt —1)
1+ X P@t—1)X(t)

{0 ifle®l<2M
ott) _{n otherwise (e(w, 3/4(1 —w)), 0 < <3/7) 3-5)

Lemma 3.1. The estimation scheme (3.3)~3.5) has the following properties:
() ol)—v(t—1)<0,  where o{t)=G{t)"P(t— 1) &t), Be)=6(e)— 6.
L alr)e(t)’ _

) f‘ﬂl 1+ X(— 1) P—2)X(t— 1)‘0'
@) Lim|6()— Ot —k)|=0, for any finite k.

| e al
Proof. See Gu and Wang (1989).

At first glance it would seem reasonable to obtain an adaptive control algorithm by
combining the control law (2.11) and the estimation scheme (3.3)-(3.5) and using the
certainty equivalence principle. But the convergence of this adaptive control algorithm
can generally not be ensured, and its analysis is very difficult since the control law (2.11)
is non-linear in the estimated parameters ¢;(j=0, 1,..., N —1). Fromequation (2.11) we
know that the non linearity in the control law is due to the fact that the ;s are updated
on-line. However, if they are fixed to some prespecified constant value, the difficulty
encountered in the convergence analysis can be overcome. We therefore propose the
following adaptive control algorithm.

(3.3)

P(t)=P(t—1)— (3.9

Data: the polynomial T(g~ '), the horizons N and N,, the coefficient A and ¢;
(j=0,1,...,N—1).
(a) Estimate the parameters of plant (2.1) by using (3.3)+3.5). R
(b) Use the estimate {t) to form A(t, ¢ ') and B'(t,q~ '), and compute I', F,and G;
using the following polynomial equations

B(t,a YF{t,g)=Efq ) +q T (t,q7") (3.6)
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Pit,a V=Al,g V(g ) +q 7" Gtg ™) (3.7)
where
At,g y=1+60,(0g *+...+00q "
B(t,q7 ") =0,10+ 0,0 o007+ 4O aa(hg ™™
Bi(t,q™ )=o)+ Pr()g ...+ Prra-lt)g 4T (38)
(c) Solve the diophantine equation for §, and 0, using
Ay(t,g7")0Mt,q™ ")+ By(t.q V0.t )=T(g™") (39
where T(g™") is a prespecified stable polynomial and
Ayt.q ) =Alt.qg~")+K"D(t,q7") (3.10)
B,(t,q )=q 'pA(t,q™") (3.11)
where
D'(t,q™)=[D:(t,g™"),.... Dltsg "] (.12)
Dj(t,q~)=q “B(t,q”)G)(t.q™ ) +q 'Alt.q W {it.q™ ) (3.13)
(d) The control u(t) is then determined from
Lit,g~ Yu(t)+Golt, g (&)= Ro(t, g Yyt +d+N—1) (3.14)
where
Lt,g™)=04t.qa ) +q ' 04t.a VK" T(t.g")+q 'p0,(t.q7")  (3.19)
Golt.q~")=0dt,q” K" Glt,q™") (3.16)
Ro(t,qa™)=04t,q” HR(t,qg™ YK (g™ (3.17)
ﬁ(l)=%)d(—l) (3.18)

Remark 3.1. We know from (3.6) that 8, (t)=5,(t)#0 is required to ensure the
solvability for F I3 r » ﬁj and G ; For this purpose the gain # in the estimation algorithm
can be adjusted to ensure that 8, ,(f) does not go to zero.

Remark 3.2. In comparison with the GPP algorithm in Lelic and Zarrop (1987) our
algorithm needs values of e;(j=0,..., N — 1) in the initiation in addition to other data.
This is, however, not difficult. If the prior knowledge of the impulse response
coefficients 6;(j=0,1,..., N—1) of the plant are known, ¢;=d;(j=0,...,N—1) are
recommended. Some simulations have showed that the choice of ¢; is not critical and
sensitive. It is also clear from (2.12) and (2.14) that K and u can be calculated off-line if
the parameters A and e;(j=0,..., N—1) are given.

From this algorithm we know that the convergence depends heavily on the
solvability of equation (3.9). Although (3.9) is solvable with probability one (Goodwin
and Sin 1981), in the following analysis we require @, and 0, to have bounded
coefficients and hence near-singularity of (3.9) must also be avoided. It follows from Gu
and Wang (1988) that the singularity of the time-varying equation (3.9) can be avoided
by the use of the estimation algorithm (3.3)+3.5).
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Theorem 3.1. Subject to assumptions A1-A4 the adaptive control algorithm given by

(a)y{(d), when applied to plant (2.1), leads to

(i) {¥(1)} and {u(r)} are bounded for all t.
(ii) there exists a T, >0 such that for t>T,

|Ay(t)— Bu(t) < 2M
Proof- Given the time varying polynomials A(t,g ') and B(t, g ), define

AB=A(t,q™ )B(t.q™)=Y. Y a(0)bt)g*"=BA
i

A-B=A(t,q~ ‘)-B{t,q‘1)=;§é;(t)5,(r—f)q‘*"iaeﬁ-ﬂ
A=At—-1,97Y, B=Bt—1,q7Y
From (3.2) and (3.19) we have
&(t)= Ay(t)— Bu(r)
Muitiplying (3.20) by G, and Lrespectively we have
Goelt) =G, Ay(t)— G, - Bult)
=GoAyt)—GoBu(t)+[Go- A— G Aly(t)—[Gy- B—GoBlul?)
and
Le(t)=L- Ay(t)— L - Bu(t)
= LAy(t)— LBu(t)+ [L- A— LAYy(@&)—[L- B— LB]u(t)

Now, define )
wt)=A-Rpy,(t+d+N—1)

Using (3.9)3.17) and (3.21) we have
w(t)=A- Lu(t)+ A- Go)(1)
= ALu(ty+ AGoy(t)+[A- L— AL]u(t)+ [A- Go— AG,Iy(t)
= ALu(t)+ G oe(t) + G o Bult) + [A- L.— ALTu() +[A- Go— AG1y(0)
+[Go* B—GoBlu(t) - [Go A—Go A1)

=(T+A)u(t) + Goe(t) + A1)
where
Ay =[Gy B—GB]+[A-L—AL]
A, =[A-Gy—AG,] —[Gy A—GoA]
Also, define

2At)=B-Roy{t +d+N—1)
Using a similar argument to the latter we obtain
2(t)=B- Lu(t)+ B- Gy(t)
=(T+4,)y(t)— Le() + A3u(1)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.29)
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where
Ay=[B-L—BIL)—[L-B—LB]
Ay=[L-A—LA1+[B-G,—BG,)
Combining (3.23) and (3.24) and from the definition of w(t) and z(t) we have

[T+Al a4, ] I:u{r)]_[(/ik’o+[ﬁ-ﬁo—.«ifio])y,{t+d+N—I}—Gos(t)]
A5 T+4,| | y©)]| | (BRo+[B-Ry—BRy])yt+d+N —1)+ Ler)

(3.25)

Equation (3.25) has a similar structure as (3.37) in Goodwin and Sin (1981). It can be
regarded as a linear time varying dynamical system with inputs {,(£)} and {e(t)} and
outputs {u(t)} and {(t)}. Now, it follows from Gu and Wang (1988) that 4 and B are
always coprime which means, from (3.10){3.13), that A, and B, must be coprime and
have bounded coefficients. Therefore 0, and 0, must have bounded coefficients for all .
From lemma 3.1 (iii) and the continuity of (3.9), it follows that 4,, 4,, 45, 4,,[4- R,
~ARy]and [B- R,— BR,] in (3.25) all approach zero as t tends to infinity. Then, for a
sufficiently large but finite ¢, the system (3.25) is arbitrarily close to an asymptotically
exponentially stable system having characteristic polynomial T(z)%. From (3.25) and
the boundedness of {y(1)} it follows that the sequences {u(t)} and {)(t)}, and hence
{1 X(¢)I} will not grow faster than linearly with respect to &(r). Then, from lemma 3.1 (i)
we can apply the key technical lemma (Goodwin and Sin 1984) to conclude that

lim oft)e(t)® =0 (3.26)

oo

and {||X(¢)|l} must be bounded. This establishes part (i) of the theorem.
Define H={t:a(t)#0,1eN *}. We first prove that H must be a finite set. If not, a
series {t,} can be obtained where t,— 00 as n— cc. From (3.26) it follows readily that

lim &(¢,)=0 (3.27)
| Sl s}

Then, for a sufficiently large n it must be the case that
lelt, ) <2M (3.28)

From (3.5) it now follows that oft,)=0. This contradicts the definition of H.
Since H is a finite set, there exists a T, >0 and when ¢ >T,,a(t)=0. This yields

[e(t)| <2M (3:29)
From (3.20) and (3.29) we finally have
| Ay(t)— Bu(t)| <2M
which establishes part (ii) of the theorem.

4. Conclusion

In this paper we have carried out convergence analysis of an adaptive GPP control
algorithm. Our analysis shows that with some modifications of the self-tuning GPP
algorithm given in Lelic and Zarrop (1987) global convergence of the adaptive control
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algorithm can be established. A technique used here is to fix the nonlinear parameters
of the control law to some prespecified constant. Then a linear controller structure can
be obtained. This enabled us to use the standard adaptive control analysis techniques

in our paper.
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