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The stability of mx m multivariable process control systemst

JENS G. BALCHEN}
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A technique is described for the investigation of conditions of stability of a m xm
multivariable process controlled by m independent controllers in terms of the
parameters of the m uncoupled control systems and the transfer functions of the
cross-coupling elements. The method is an extension of a similar result for 2 x 2
systems (Balchen 1990). The analytical results are given convenient graphical
representations by means of standard frequency response techniques yielding a
simple, but powerful tool for synthesis of multiple controllers for multivariable
processes

1. Introduction

The most common type of control system for a multivariable process is the multiple
monovariable controller (diagonal controlier matrix). The reason for this is its
convenience in design and tuning and in most cases also acceptable performance. It is
clear however, that a multivariable controller will in general yield a better performance,
but has the inconveniences of higher complexity, less operator comprehension, more
difficult tuning etc.

The pairing of variables in multivariable control is an important and interesting
subject in itself which has been dealt with by many authors (McAvoy 1983, Balchen and
Mumme 1988). In the following it shall be assumed that a proper pairing has been
performed so that the analysis will be based upon a fixed structure of the model.

The problem at hand is to develop simple criteria for system stability of
multivariable systems with multiple (diagonal) control in terms of the parameters of the
individual uncoupled control systems and the properties of the cross-coupling
elements. This problem can be solved in general terms, but the solution has little value
with respect to understanding the system behaviour for systems that are of higher
complexity than say 4 x 4 (4 inputs and 4 outputs). The knowledge gained by studying
2x2 and 3 x 3 systems however, is quite significant and is believed to settle most
practical problems.

2. System analysis
The system shown in the block diagram of Fig. 1 is considered. H,(s) and H (s) are
the transfer matrices of the multivariable process and the multiple controllers

Received 30 January 1991.

1@ IEEE. Reprinted, with permission, from Proceedings of the 1991 American Control
Conference, Boston, MA, 26-28 June 1991,

I Division of Engineering Cybernetics, The Norwegian Institute of Technology, 7034
Trondheim.




118 J. G. Balchen

M
Yo u Yy
Hel(s) = H,s) ——

Figure 1. Block diagram of control system under consideration. H (s): process transfer matrix.
H (s): controller transfer matrix.

respectively. The transfer from the vector of setpoints (yy(s)) to the vector of outputs
(¥(s)) is given by

Ys)=(+Hs)HLs) " H(s)H (s)yo(s) M
The stability of this system is determined by
det(I + H (s)H (s)) )

whose zeros are not allowed to be in the right half of the complex plane. Conditions
securing that the zeros are in the left half of the complex plane are to be developed.
The matrix H,(s)={h;{s)} is rewritten in the form

Ho(s)=H(s)+ HXs) 3)

in which H(s) constitutes the diagonal elements and H%(s) the remaining elements of
H [s). In other words Hi(s) expresses the cross-coupling terms of the process transfer
matrix. Since H (s)=diag {h{s)} is a diagonal matrix (because we only consider multiple
monovariable controllers), the product Hi(s)H,(s) will be a diagonal matrix.
Neglecting the argument s for simplicity, we get
(I+HH)=(I+(H;+ H)H)=(I+ HiH + H}H )
=(I+HH)I +(I+HiH) 'HH,)

=(I+HyH)I +( + HiH) " 'H{HH. '(H}) 'H}H,)

=T(I+M'H 'H.H) @
in which
T, ..0
T=(I+HH)= ' T, 5
o T,
and
M, ..0
Mi=(I+HH)HH,=| "M, * (6)
o M,

and H,=(H% 'H} 0
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From (4) the determinant of (2) can be developed as

det(I+ H,H)=det T-det(I+ M*H 'H H)
=[] T;-det(1 + M*H)
i=1

where

hihy
={0} for i=j

ﬁ:{}{‘j}:{h’h“} for i

The last term in (8) can be developed as
l Mlﬁlz Mlﬁl?l Mlﬁlm

M,h. 1 M.h,. M,k

Mmﬁml Mm’;mz Mm’;m3 1

The solution of (8) can now be illustrated first for a 3 x 3 system where

hyy hy, hy,
H,=| hyy hyy hys
h.‘!l h32 h33
and
hy 0
H=|0 h,
hs
We get
det(I+ H.H)=T, L, T;(1— YM{M,M,)
where
T=1+hzh,
and
h;h;
M= b,
and
Y=Y, M3 '+ Y, sM; '+ Y, sM[ ' — P,
with

,_hihi
N hﬁhﬂ
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and
hy2hyshyy+hyihashys
hl lh22h33
The case of a 2 x 2 system comes out of (11) and (14) in that Y;,, Y55 and P, ,, are all
equal to zero. So in that case we get
det(I+H,H)=T,T,(1-Y,,M M) (19)

which is the result studied in Balchen (1990).
Similarly the solution for a 4 x4 system can be found as

(18)

Piy=

det((+HH)=T, L, T, T(1-YM,M,M;M,) (20)
where
Y=Y, M3 M+ Y3 My M+ YoM M
+ Y5 MU M+ Yo My MG + Y My M (21)
=P My = PipsMy ! —PiagMy ' — Py My
—Pi334
and
iy
Y. — it 22
7 hyhy,
P, =h_"""ﬁ"@'_h"if"'ihﬁ (23)

hl‘ihj kh

_ Zy33a
Prase =g hasinn @49

Z338=(hy3hy B3 —hy4hy hs; —hyohygha)hys
+(hyshsihya—hyghshys—hyshy hyghy, (25)
+(hy4hy3hsy —hyzhyshsy; —hyshyshig)ha,

A general expression of conditions for asymptotic stability of m x m feedback control
system will be that

det(I+HH) =[] 1;-(1 —Y- ﬁ M‘) (26)
i=1 i=1

does not have zeros in the right half plane.

Equation (26) expresses that for system stability each term must have its zeros in the
left half plane. The zeros of the elements T; express the stability of each individual
control loop when the cross-couplings are not considered i.e. the other control loops
are not closed.

Any m x m system will convert into a number of 2 x 2 systems if controllers in some
of the loops are disconnected and put into ‘manual’ position. In this mode of operation
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it is still required that the system shall be stable. Therefore, in additiion to the
requirement of (26) we will need to require that the expressions

A-Y,MM) i=12..m j=12..m 27)

shall not have zeros in the right half plane. This requirement is simpler to investigate
since the expressions ¥,; are not dependent upon the controller settings.

Similarly a number of alternative combinations of 3 x 3 systems which have to be
stable, will result from disconnecting controllers in m x m systems when m >4 leading to
the investigation of expressions of the type shown in (13). But since Y of (13) is
dependent upon the controller settings, there is no particular advantage of investigat-
ing these requirements rather than the general requirement of (26). These questions will
be illustrated in an example in a later paragraph.

Y of (26) may be determined from expressions like (16) or (21). Alternatively the
frequency response Y(jo) may be determined numerically as suggested by Di Ruscio
(1990) by direct solution of (26) such that

[T Tijo)—det( + H (o) (jo)
V(o) =1 —— 28)
iu hi; (jwh; (jo)

Conditions for the last term of (26) to have zeros only in the left half plane, must now be
developed. Equivalently one may investigate the expression

l L
(—?+l:[ Mi) (29)

The case of 2 x 2 system is simpler than the 3 x 3 system because the function Y, , of (19)
is only depending on process parameters (not the controller parameters) whereas in the
3 x 3 case the function Y of (16) is depending also on all the controller parameters
through the factors M,.

This leads to the proposal of an iterative procedure in which the function Y of (26)
is calculated step by step on the basis of previously calculated functions M,. Thus the
procedure will be as follows

(1) Determine (tune) controllers h; which are acceptable for the uncoupled case.
Thereby the first iteration M{" of the closed loop responses are determined.

(2) Calculate the first iteration Y™V of (16), (21) etc.

(3) Determine a second iteration M{? by tuning controllers k; so that the zeros of
(26) (e.g. (28)) are located in acceptable positions in the left half plane.

(4) Calculate the second iteration Y® and so on.

In most cases the above procedure will converge in few steps, particularly if the
controllers are tuned one at a time.

3. Frequency response stability criterion

The conditions for the expression of (26) to have zeros only in the left half plane, can
be determined using the Nyquist Stability Criterion. The frequency response locus of
the function

Y(jw)ifll M{jo)
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Figure 2. Complex plane plot of ¥(jw) || M{jw) showing a stable and an unstable system.
i=1

is plotted in the complex plane shown in Fig. 2. In accordance with the criterion, this
locus shall not encircle the point (+1+j<0) in the complex plane.

Alternatively the expressions of (29) could have been used and the behaviour of the
locus of

ﬁ M jeo)

relative to the locus of

1
Y(jw)

could have been investigated. But this method would only have been advantageous in
cases when ¥(jw) is constant with respect to changes in controller parameters as is the
case for a 2 x 2 system.

A more convenient graphical representation than that of Fig. 2 is the Cartesian
‘phase angle vs. dB amplitude’ presentation as indicated in Fig. 3. Here it is seen that the
locus of

nfw)f! M{jo)

shall not pass above the point (0dB, —360°).
In fact it is convenient to introduce stability margins in this graphical represent-
ation quite similar to that known from single loop systems using the Nichols chart.

4. Example

An example of a very simple 3 x 3 process control system will illustrate the method
described above. The system is shown in Fig. 4. It consists of three control valves
installed in a piping system in which three water streams are mixed. These streams have
flows denoted g,(i=1,2...), temperatures denoted #; and concentrations of a certain
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Figure3. Sameillustration in Fig. 2, but in Cartesian amplitude (dB) versus phase presentation.
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Figure 4. Simple 3 x 3 control system for mixing process.

agent (say colours) denoted x;. The valves are assumed to be identical and linear and
driven by membrane motors with identical time constants (T;). The resulting flow after
the mixing is denoted g,. This is measured by a linear measuring device with a time
constant T,. Also associated with this measuring unit, there is a transportation delay
denoted 7,. The temperature of the mixture 6, is measured by a linear device with time
constant T3. Also there is a transportation delay from the valves to the temperature
measurement denoted ;. The concentration of the specific agent in the mixture (x,) is
measured by a linear device with time constant T,,. The transportation delay from the
valves to this measuring point is denoted 1.
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Three monovariable controllers (h,(s), h,(s), and h,(s)) are installed as shown
in Fig. 4.
The following parameters characterize the system:
0,=90(°C) x,=0 g,0="flow setpoint=10(l/s)
0,=10(°C) x,=0 0,,=temperature setpoint=>50("C)

0,=20(°C) x3=1 x,4o=concentration setpoint=0-5

T,=1(5)

T,=2(s) t,=1(s)
T=5() ©5=10(s)
T,=3(5) t4=15(s)

The process transfer functions of this system with the above data, will become
-5 -1 —s

e
b= gy M20= M=)

e
(1+8)(1+2s)

—10s — e 10s —3e—10s
(145)(1+5s) I"“(“’=(1 +5)(1+5s)’ hasls)= (1+s)(1+5s)

—0-05¢ 15 (9= —0-05¢ 1% N 0-05¢~15*
> haals T+ +3s) 2T (1 +9)(1+39)

hys(s)=

hs )= 91+ 39)

applying (17) and (18) this yields
le= _l, lq3= — l, Yz3= —0'75, Pl23=0.25

If for simplicity it is assumed that each of the controllers h; are ideal PID-controllers
which are tuned so that the integral time is equal to the largest time constant and the
derivative time is equal to the smallest time constant in each uncoupled loop and
furthermore each loop is adjusted to a gain margin of 2 (6 dB), then it is easily shown

that good approximations to the first iterations of the closed loop transfer functions
will be

M (s = 1+05s o -
1 253 (1-253)
M5 1+45s — o105
1+2-0:485- (}1253+(0-1253)
M)V = 1+75s 158

i e
i)
14+2-0485- G oo (0-0835)

According to (16) we now get

Y= — (M)~ +(ME) " +0TS(MY) ! +025]
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Now we want to investigate the behaviour of Y(jw)M ,(jw)M,(jw)M( jw). This is
shown in Figs. 5-8 for different tunings of the different control loops. As can be seen, the
loci all start at (—180°, +9-54dB). In Fig. 5 the loops M, and M, (the flow and
temperature loops) are tuned to the nominal dampings of {, ={,=0485 whereas the
M -loop (concentration loop) is given different dampings (0-2-2-0). Clearly the system
is unstable with {3=0-2, on the limit of stability with {; =0-485 and has very small
margin of stability for {;>0485.

Since the flow loop M | is about one decade faster than the two other loops, it is clear
that retuning of this loop will not influence very much the total behaviour. Therefore
the next proposal will be to adjust the temperature loop while keeping the two other
loops at their nominal tuning ({, = {3 =0485). This is shown in Fig. 6. It is seen that for
{3=0-2 the system is unstablc. For {, >0-485 the system is closc to instability or has
very small stability margin.

The last proposal is to adjust the damping of both the temperature loop and the
concentration loop while keeping the flow loop at nominal tuning. This is shown in
Fig. 7. Now it is clearly demonstrated that by introducing a damping of {, ={;>0-8 in
these two loops the stability margin is greatly improved. With {,={,=1, the gain
margin becomes AK &= 7 dB and the phase margin Ay &~ 50°. A very similar result would
have been obtained if the damping of the flow loop had been increased as well.

[n some cases it may be advantageous to investigate the behaviour of the locus

11 Mdjo
relative to the locus
1
Y(jo)
Then the vector should be drawn for each frequency between these two loci as shown in

Fig. 8. The system will be stable if this vector does not make a counter clock wise
rotation.

5. Conclusions

The procedures developed above yield a very convenient insight into the behaviour
of m x m multivariable control systems as experienced for instance in process control.
Only seldom will it be necessary to investigate systems of higher dimension than m=4
for which analytical expressions of the appropriate transfer functions have been derived
in (21)~25). The technique allows for simple rules for tuning multiple controller
systems. Such techniques have not been available previously.
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