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A simplified algorithm of weighted generalized
predictive adaptive control

WEI WANG+ and ROLF HENRIKSEN]
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In this paper a weighted generalized predictive controller and a simplified adaptive
control algorithm using a multi-step cost-function with polynomial weighting are
presented. A simulation example and a comparison of computational loads are also
given in order to show the performance of the controller.

1. Introduction

Generalized predictive control (GPC) has enjoyed a growing attention in this last
few years, see, e.g. Clarke et al. (1987a), De Keyser et al. (1988) and Garcia et al. (1989).
The experimental studies and practical applications have demonstrated the robustness
of GPC with respect to model-order and dead-time (Clarke and Mohtadi, 1989). Some
interpretations and extensions of GPC are given by Clarke et al. (1987b) in which the
role of the polynomials P and T are discussed respectively.

In this paper a weighted generalized predictive controller (WGPC) using a multi-
step cost function with the polynomial weighting is presented. The closed-loop system
description with WGPC is derived. A simplified WGPC adaptive algorithm is also
given based on the concatenation property of the optimal prediction.

2. Weighted generalized predictive adaptive control

Consider a plant described by the following CARIMA (controlled auto-regressive
integrated moving-average) model

Alz”Yy()= Bz~ "t —1)+ Cz HaAt)/A (2.1)
where A, B and C are polynomials in the backward shift operator z ! with the degrees
of n,, n, and n, respectively. A(0)=C(0)=1 and A=1—z" 1. y(t), u(t) and w(¢) are the
output, input and disturbance respectively. &{c(t)/F,_,}=0, &{w(t)?/F,_,} =07,
where #,_, is the sub-sigma algebra generated by data up to time t—1.

The cost function has the form

N
J=é’{__il(P(z")(y(t+f)—y,(t P+ 3 (@6 Au +}'—l))2} 22)
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where P and Q are weighting polynomials with degrees of n, and n, respectively. { y,(t)}
is a set-point sequence. N is a prediction horizon. The polynomial P is used here to
penalize the over-shoot of the output whereas Q is used to improve the dynamic
behaviour of the input.

Define the auxiliary output y(t) by

Y(t)=Plz~ "))

According to Clarke and Gawthrop (1979), De Keyser and Van Cauwenberghe (1982)
and using the Diophantine equation

Pz™Y)C(z )=A(z Wz YA+z7iGz™")
the optimal j-step ahead prediction of () can be obtained as follows.
Clz"Wet+jity=Gyz™ )y(t)+ Bz~ ")F (z~ HAult+j—1)
In the following lemma we will present another possible representation of the
optimal j-step ahead prediction of y(z).
Lemma 2.1. For the system (2.1), if Au(¢), Au(t+1),... are & -measurable, the optimal
j-step ahead prediction, Y°(t +j/t), of Y1) satisfies
Yot +jfty=D Lz~ )y + Bz LAz HAu(t+j— 1)+ H (z~ e(t)
where
YOt +il) =W+ F =t +i)— Ejlt +j)
L;, D;, E; and H| are here polynomials in z~ ! and satisfy uniquely the equations
Pz Y)=A(z YLz YA+z Dfz"") (2.3)
Cz YLz ) =Efz"Y)+z H,z" ") 2.4)
where
Lz Y=lo+lz 7' +... 4z 7"}
Dz “Y=dj+dz " +...+diz”",  w=max(n, n,—j)
E(z Y)=ep+ez7 ' + ... +e;_yz7 "}
Hjz Y=hh+hiz" ' +...+hj _z7""!
Proof. Multiplying (2.1) by L;A and using (2.3) and (2.4) we obtain
Y(t+j)=D;y(6) + BLAu(t +j— 1)+ Ho(t)+ E ot +j) 2.5)
where the operator z~! is omitted to simplify the notation. Now define
Ve +j)=y(t+j)— Ejoft+j)
From (2.5) it follows that

Yot +j/t)=D;y(t)+ BL;Au(t +j— 1)+ H o0(1)

which obviously is % -measurable and hence

Y +j)=EW (+j/)F ) =Yt +))— Ep(t+))|F = EY+)IF )
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Therefore,
SYe+) ¥+ =Y. o’
which establishes the optimality of y°(t +j/1).
Using
Bz )Lfz7Y)=Gz" ) +z 7S}z (2.6)
where
Gz N=go+g:z ' +...+g;_,z77*!
Sz N=sh+siz "+ ... +s) _z7m*!
We can write (¢t +j/t) as

Yt +j/ty=Dy(t)+ G;Ault +j— 1)+ S;Au(t — 1)+ H,00(t) 2.7
Let f(t +j) be the part of y°(t + j/t) composed of signals which are known at time ¢, i.e.
St+))=D;y(t)+S;Au(t — 1)+ H (1) (2.8)

Then the equation (2.7) can be written in the vector form
V'=Gu+f 29

where

V=[P +1/0), ...yt +Nje]"

u=[Au(t),...,Aut + N—1)]T (2.10)
f=Lfe+1D,.... fe+NT" @11)
whereas the matrix G is the lower-triangular of dimension N x N and of the form
9o
G=| 7 9 2.12)
gv-1 9yv-2 Yo

In order to split QAu(t +j—1) in (2.2) into the two subsequences Au(t + N —1),..., Au(t)
and Au(t—1),...,Au(t —n,), the polynomial Q is written as

0z =0,z H+z 0,z ") (2.13)
where
Q.(z—‘)={q°+q’z‘_l+ w2 (i<np
! do+qiz ' +...+q, 2™ (j>ny)
0 (j>n)
Define

©=[QAu(p),..., QAu(t+ N —1)]"
0'=[0Qy,---, 00"
2= Q'ult—1) (2.14)
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From (2.13) we then have

®=Qu+z (2.15)
where the matrix Q is also lower-triangular of dimension N x N, viz.
o
o=| ®* (2.16)
gn-1 9In-2 -+ 4o

Note that g, 4 1,...,qy-y in (2.16) are zero if n, <N —1. Define
w=[Py(t+1),...,Pylt+N)]"
and the expectation of the cost function (2.2) can be written as
J=( =Wy —w)+ 0"
The minimization of J with respect to u results in
u=(G'G+Q"Q) '[G'(w—f)—-Q"z] (2.17)

Note that the first element of uis Au(t) and according to Clarke et al. (1987a) the receding
horizon control u(t) is given by

ut)=u(t—1)+¢"[G"(w—f)—Qz] (2.18)

where g7 is the first row of (G"G+Q™Q) ..

In order to avoid singularity of (G"G +Q"Q) and to reduce the computational load
for a large output horizon, the technique of imposing a control horizon N, (N, < N)can
be used here, i.e. when j > N,, we put Au(t +j— 1) =0. Therefore, in this case the vector u
in (2.10) is changed into

u=[Ault), Au(t +1),..., Au(t + N, —1)]°

and the dimensions of matrices G, Q and G'G +Q"Q are changed into N x N,, N x N,
and N, x N, respectively.

3. Closed-loop system

In this section we will derive the closed-loop system equation when control law
(2.18) is used. Define

r'={ry, ry....rx]

as the first row of (GTG +Q"Q) ™! and v" as the first row of (G'G+Q"Q)'Q". Also
define

S=[Sy,.--,Sy]"
D=[D,...,DyI"
H=[H,,...,H\]"
From (2.9) and (2.11) we have
f=Dy(t)+ SAu(t — 1)+ Ho(t) (3.1)
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From (3.1) and (2.14) the control law (2.18) is written as

Au(t)=r"(w—Dy(t)— Ho(t)) —(r"S+v'Q')Au(t — 1) (32)
Define
M=r"S+v'Q’
Rz Y=ry+ry_1z '+ ... +rz V*! (3.3)
We thus can write the control law in the form
Auy(t)=(RPy/t+N)—r"Dy(t) —r"Ho(t)/(1 +z M) (34)
Substituting (3.4) into (2.1) yields the closed-loop system
Tz )W) =Bz~ YR Pz )yt +N—1)+Cz" olt) (3.5)
where the characteristic polynomial T is given by
T=AA1+z 'M)+z 'Br'D 3.6)

whereas
C=C(l+z 'M)—z 'Br'H

We can see from (3.5) that the system eliminates the steady-state output error in a
natural way. From (2.3) we know that Dy(1)=P(1) (j=1,2,..., N), and from (3.3) and
(3.6) we thus have

N N
T(l)=B(l}.-Z:i r.-D.‘(l}=B’(I)J"(I)AZ,1 ri=B(LP(DR(1)

The stability of the closed-loop system depends on the location of the roots of the
characteristic polynomial T It is clear that the polynomials P and Q in addition to the
design parameters N and N, affect the roots of the polynomial T. The use of
polynomials P and Q therefore increases the amount of the tuning knobs which gives
the user a wider set of choices in the design of the system performance.

4. A simplified WGPC adaptive algorithm

Since the calculational load of GPC control law in adaptive case is quite heavy, a
simplification of the algorithm is important for industrial control applications. A
simplified algorithm for GPC control law was suggested by using a cost function
without P and Q weighting polynomials (Favier, 1987). In this section a simplified
WGPC adaptive algorithm will be derived by using the concatenation property stated
in the following lemma.

Lemma 4.1. y°(t + j/t) satisfies the following equation
Ve +j/)=—a Pt +j— 1/ —...—o Yt +1/1)
— (O = = Y+, — 1)

+ Bz NAu(t+j—1)+ ;—C,{Z' W — ¢ (t/t—1) @.1)

where «; (j=1,2,...,n,+ 1) satisfy
Az YA=14o,z7 '+ .. ety gz "
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Furthermore, f(z™') and C;(z ") satisfy
Bz N=Bz"YWPz")=PBo+B1z" "+ ... + By i,z T

) Clz™ Pz )=Ci{z"V+q7'Ci{z™ ") (4.2)
where
. JGo+Ez 6oz (j<m)
Cj(z )_{501-512-14' cer +Cz™™ (j>m) @3)

C,(z-1)={gj+51+12-' +.. 4Gz ™ 8 f:)) (4.4)

and where m=n_+n,
Proof. Multiplying (2.1) by PA yields

Az AY(t)= Pz~ )Au(t— 1)+ Cz™")P(z~ )ooft)
Using (4.2) we have
Alz" AU +j)= Bz~ YAult +j— 1)+ Ci(z Dolt +j) + C iz et

According to lemma 7.4.2. in Goodwin and Sin (1984) and taking expectations given &,
we obtain

Y +ily=—a ot +j—1/0)—...—o;_ Y (t+1/1)
—o(t)—. ..~ Pt +j—n,— 1)+ Bz™ )Au(t +j— 1)
+ef{a() F )+ ...+ laft+j—m)/F )} @5)

From lemma 2.1 we know that

w(t)=i(¢(r)— Yo(e/t—1) (4.6)

which shows that w(t) is #,, %, ,,... measurable, (4.1) then follows from (4.3)4.5).

The implication of the lemma above is that the optimal j-step ahead prediction can
be obtained from optimal one-step ahead prediction. This can be seen by writing (4.1)
for j=1,2,... as follows.

Yot +1/0)=BoAult)+ f(t-+1)
Yt +2/0)=[B, — oy folAu(t) + BoAu(t+ 1)+ f(t+2)

and so on, where

St+)=—o () —.. =0 4 Wt —ng)+2[ Bz N—BolAu(t—1)
+-6i(w(r)~;{;“(t/t—1)}+ +§'ﬂ(¢(t+l—m)—¢f’(t+l—m[:—m))
Po Po
S +2)=—o ft+ 1) —olt)—...— e, 4 Ylt +1—n,)
+22[Bz™ ") —Po—Prz” "JAult— 1)+i—z{l!f(£)*¢°(t/£* 1)

o +:Tm(dl(t+2—m)—l}1”(t+2—m/t+1—m))
o
etc. Thus ° can be written in vector form as

W =Gu+f’ @7
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where
=L+ 1)..., (t+N)]" 4.8)
do
G=| % % 49)
g!N =1 g’N -2 v glﬂ
and where g} has the following recursive form
9}=ﬁ;—i§1 gy (4.10)

where x=min (n,+ 1, j) and g5 =, =b,p,.

It is easy to see that g;=gj and f(t+j)=f"(t+j)(j=1,2,..., N), which means that
G=G' and f=f". Then (2.9) can be replaced by (4.7) and the recursive calculation of
equations (2.3), (2.4) and (2.6) are not needed. The calculational load of the algorithm is
reduced in this way. A comparison example between the calculation of §° in section 2
and the simplified version suggested above is given in the following table. We see that
the number of operations is significantly decreased when the simplified version is used.
We have here, for the sake of simplicity, put P=Q=1, N=10 and n,=n,=n,=n. The
abbreviations ‘add’ and ‘mult’ represent addition operation and multiplication
operation respectively.

n=1 n=2 n=3 n=4

add (not simplified) 183 301 437 602
add (simplified) 141 165 199 231
mult (not simplified) 231 345 471 630
mult (simplified) 137 153 174 198

In the derivation above we have assumed that the plant’s parameters are known.
When the parameters are unknown, (2.1) is written as

yO)= yt—D)+0"X(t—1)+wl) 4.11)
where
Xe—D)=[-Ayt—1),...,—Ayt—n,),
Au(t—1),..., Ault—n,— Dot —1),..., o —n)]"
O0=[ayy- .G y-eeyDgyeensbpy €1seeesCr T
Define f(t) and d(t) to be the estimates of 6 and (t) at time ¢ respectively, viz.
O()=La,(1), - .., G (8), Bo(D), . . By (0), E4(E)s .. ., G, ()]

a(t)= y(t)— yt—1)—0t—1)"X(t—1) (4.12)

where
X@t—1)=[—Apt—1),...,—Ayt—n,),
Au(t—1),...,Au(t—n,—1),d(t—1),...,d(t—n)]"
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The extended least squares method or other methods can be used to estimate 6(f)
and @(t). These estimates are then used to compute the control u(t). The steps in this
WGPC adaptive algorithm are shown in what follows.

Data: Given polynomials P and @, horizon N and N,
Step 1. Estimate A, B, C and o(t);
Step 2. Compute G and f using (4.8)(4.10);
Step 3. Compute the first row of matrix (G"G+Q'Q)™ .
Step 4. Compute u(t) using (2.18);
Step 5. Increase t by one and return to the step 1.

5. Simulation

An example is given in this section to show the performance of the simplified
WGPC adaptive algorithm proposed in this paper. The plant to be controlled is
described by

(1—17z7 1409z ) pt)=(1+2z" Yu(t— 1)+ (1 + 03z~ Yax(t)/A

where o(t) is a zero-mean white noise with variance 0-07. In the adaptive algorithm we
choose P(z"")=09+01z"',0(z )=05+06z"', N=3, N,= 1. The initial values of
parameter estimates are ((0)=[—1,1-2,0-7,2:3,0]".

Figure 1 shows the behaviour of y(r) when it is tracking reference sequence y, ().
Figure 2 shows the corresponding control signal u(t). It is seen that y(z) tracks y,(t) quite
well but there is a large overshoot in the beginning due to the effect of initial values of
0(0). Figure 3 shows the parameters’ estimates of (), which demonstrates the good
convergence property of the parameter estimator.
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Figure 1. The reference sequence y,(t) and output y(z).
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Figure 2. The corresponding control w(t).
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Figure 3. The parameter estimates.

6. Conclusions

A weighted generalized predictive controller has been derived in this paper. A
concatenation property of the optimal prediction has been proved by which a
simplified WGPC adaptive algorithm was developed. The simplified algorithm lowers
significantly the number of calculational operations required without any significant
change of the performance. This is believed to be of great importance in industrial
control applications.
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