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Nonlinear decoupling in process control

JENS G. BALCHENY{}
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The principle of nonlinear decoupling as a general approach to the control of
nonlinear processes is reviewed. A novel technique is introduced for resolving the
inverse problem in case the nonlinear process function does not have a closed-form
inverse. The paper also indicates the relationships between nonlinear decoupling,
‘cascade control’ and ‘sliding mode control’.

1. Review

The principle of nonlinear decoupling has been suggested by many authors for
decades (Balchen 1963) and a number of authors in recent years have described related
ideas sometimes under different names (Freund 1975, Isidori et al. 1981, Balchen et al.
1987, Lie and Balchen 1988). In robotics literature, an almost similar principle is known
under the name of ‘inverse dynamics’ or ‘computed torque technique’ (Bejczy 1974, Luh
et al. 1980).

A multivariable process is described by a nonlinear state space model of the form

.\'7=f(.t,u,v) (l}
z=g(x) 2)
where

x state vector, dim x=n

u control vector, dim u=r

v disturbance vector, dim v=s
z property vector, dim z=m<r
f vector of nonlinear functions
g vector of nonlinear functions

‘Nonlinear decoupling” has the objective of finding the control vector u which alters the
process in such a way that the property vector z changes with a specified desired rate z,.
According to (1) and (2) we have

dg(x) ., Og(x)
ox *= 0x

(3) is to be solved with respect to u when Z=1Z, and in general we will get

u=h(x,v,z,) 4)

Jix, u,v) G
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Most often the k(+) will not be available in closed form so that an implicit solution
becomes necessary through some iterative procedure. However, in some special cases, a
solution of the form (4) may be found. Such is the case when (1) and (2) take the form

% =f(x,v)+ B(x)u (5)
z=Dx (6)

where B(+)and D are matrices of appropriate dimensions. Since (5) is linear in u we find
the solution equivalent to (4) as

u=(DB(x)) " \(,— Df(x,v)) 7

The matrix DB(+) must be nonsingular for the nonlinear decoupling solution or (7) to
exist. This presents certain structural constraints on the process and the way the
property vector is related to the state vector.

When nonlinear decoupling is possible according to (4) or (7), then the nonlinear
process has been replaced by a set of m independent integrators as seen from Z, to z.
These integrators may be controlled by a diagonal control matrix with constant
elements as shown in Fig. 1 in which it has been chosen that

2,=G(zy—2) (8)

where z, is the setpoint of the property vector.

By choosing large values of the elements of G, the time constants of the individual
first order control loops will be small. In fact, the matrix G is the eigenvalue matrix of
the resulting system.

2. Iterative inverse

As the inverse equation of (4) will not usually be available in closed form, some kind
of equation solver must be used. One way of doing this is to introduce a new differential
equation to solve (3) with respect to u.

= KC Xy~ 5 fie, ) o)

where K(-) is a matrix which has the purpose of securing the convergence of (9).

Figure 1. Block diagram representation of elementary nonlinear decoupling.
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Figure 2. Nonlinear decoupling and multivariable control employing ‘iterative inverse’.

In the steady state (#=0), the right-hand side of (9) will be identical to (3).

A block diagram illustrating the complete control system with nonlinear
decoupling is shown in Fig. 2. Here the solution of (4) has been replaced by (9). Note
that (4) and (9) will only be identical when K of (9) has such large values that & becomes
very small. The dynamics of the new auxiliary loop will now be of importance to the
system behaviour.

The block diagram in Fig. 2 clearly reveals some very important features of the new
solution. It is seen that the function

28() ...
ax JO)

appears in the feedback of the auxiliary loop. This indicates the inversion of the process
model. Furthermore it is seen that if the disturbance (v) or at least some of its elements
are known, then we have a precise indication of what to do with these variables to
achieve nonlinear decoupling. In other words, we have not only solved the decoupling
problem, but also the feedforward control problem. The disturbance elements that are
not measurable should be replaced by estimated values, the most primitive of which
would be the expected mean values.

Another observation from Fig. 2 is that the solution requires the full state vector x
to be available for the computations. This may be totally realistic in a case when all
states are measured. Note that the property vector z is not necessarily the same as the
measurement vector y, even though in some cases it may be. In case not all state
variables (x) are measured, one could replace x by an estimated state vector & derived
from a special state estimator (e.g. state observer or Kalmar filter). We shall not address
this problem, but assume that the state variables are available.

The matrix K(-) must be determined so as to achieve acceptable convergence of the
auxiliary loop. This may be done in a number of ways. The simplest is to assume that
the loop has small perturbations du around a nominal value of u. Thus we get the
differential equation for the perturbations of the auxiliary loop

() C)
dx du

If we specify that (10) is to have prescribed eigenvalues defined by the eigenvalue matrix
A, such that

Siu=—K(*) (10)

o =Adu (1)

we get

(12)

K(-}=—A(?‘Qaf‘")"

dx Ou
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Figure 3. The dynamic effect of nonlinear decoupling employing ‘iterative inverse’.

The eigenvalues A should be specified to be much larger than the eigenvalues of the
uncontrolled process so that the dynamics of the auxiliary loop will not influence the
total control too much. When they are large, the block diagram of Fig. 2 may be
reduced to that shown in Fig. 3 which illustrates that the decoupling has been achieved,
but with a slight dynamic action ahead of the integration process.

The matrix G may now be chosen to give an acceptable response from the outer
loop in Fig. 3. It is easily seen that G= — A or G= —} A will give satisfactory results.

3. Nonlinear decoupling applied to cascade control
As has already been pointed out, the matrix DB of (7) must have an inverse in order
that nonlinear decoupling can exist. The equivalent requirement is that

9g(*) of(-)

ox  Ou

of (12) is to have an inverse. The choice of the property vector z is not at all obvious. In
fact, in many cases the structure of the mathematical model of (1) is such that it is
impossible to conceive of a property vector which makes elementary nonlinear
decoupling feasible. Such is the case when the process consists of a number of cascaded
dynamic elements, the end output of which represents the most reasonable property
description. In such a case the elementary nonlinear decoupling structure will not exist.

If the elementary conditions for an inverse to exist are not satisfied, it may still be
possible to arrange the system so that an ‘indirect’ control of the property vector can be
realized using the principle of nonlinear decoupling.

Consider the system

% =f1(xy,4) (13)
Xy =f(x1,X2) (14)
X3 =f3(x3,X3) (15)

Here x,, with dim x, =dim u =r, is the substate which has ‘the strongest connection’ to
the control vector u. Then x,, having dim x, =r, is an intermediate state which can be
regarded as having x, as its controls. Furthermore x;, having dim x;=r, can be
regarded as being controlled by x, and is the one related to the property vector so that

z=g(x3)
Now nonlinear decoupling can be applied sequentially as follows:
1. Determination of the control vector based upon
=K, ()%~ fi(+)) (16)
%14=Gy(x10— X)) (17)
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2. The active control of (14) will be via (x, ) such that
J

X0 =Ko+ Nx2a—f(")) (18)

%24=G3(X20—X5) (19)

3. And finally the indirect control via x, of the property vector through (15) by
. ool 980

X20=KH( )(za— ox, £ )) (20)

Z4=G03(z9—g(x3)) (21)

A block diagram of this solution is shown in Fig. 4 where it is clearly seen that we have a
typical structure of cascade control or inner loops. These loops are different however,
from those known in elementary linear control in that they are nonlinear loops.

Obviously the bandwidths of these loops become progressively lower going
outwards, but since the innermost loops usually can be made very fast, the outer loops
will still have acceptable bandwidths. However, since the new dynamics has been
introduced, the nonlinear decoupling will no long be ideal.

Another approach to this type of problem which has been studied by a number of
authors (Freund 1975, Isidori 1986, Kravaris and Soroush 1988, Sastry and Isidori
1989) leads to a type of derivative feedback from the property vector which yields an
effective linearization of the system.

An example used by Kravaris and Soroush (1988) to illustrate that particular
method, is used here to illustrate nonlinear decoupling applied to cascade control.

Example
The system under consideration is (Kravaris and Soroush 1988, Lie 1990)

Xy = —X3+X,4, (22)
Xy =x7—2x,4, (23)
Xy= —x3%; + x4+ (1 +x,)x,u, (24)
Xa=U, (25)

[ ] [ l]
22 +2

z i?d ild u

}N

1)

Figure 4. WNonlinear decoupling applied to cascade control.
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It is immediately clear that the matrix

x, 0
og(*) of(-) _[1 0 0 0 =2, O [ x 0] @
dx o {0 1 0 O)[(+x)x; O |—-2x, O

0 1

is singular. This means that the elementary nonlinear decoupling does not exist.
Observing (22)26) it is obvious that the state x, can be controlled at infinite
bandwidth through a strong feedback to u,. Thereby x, can be regarded as a new
control input replacing u,. Furthermore the state x; may be controlled through a
nonlinear decoupling with x, as the input. A strong feedback around x5 will then
eliminate the dynamics of (24) with the result that x; may be regarded as the control
input to (22). Thereby (22) and (23) are the only equations left and elementary nonlinear
decoupling may be applied to these.

In this example the state variable x, plays the role of the state vector x, in (16)
above, the state variable x, plays the role of x, in (18) and as given by (26), the first two
state variables represent the property vector equivalent to x, in (21).

A block diagram showing the final solution is given in Fig. 5. Here loop I governs
x4, loop II governs x5, loop III governs x, and loop IV governs x;.

4. Limitations on the control vector-avoiding integrator wind-up

When applying the ‘iterative inverse’ technique discussed above, particular
attention should be paid to the problem of limitations on the control vector. In most
physical processes there will be definite limitations on the magnitude that can be
achieved in each of the control variables. This is especially so when a control variable is

Figure 6. Anti wind up-algorithm applied to system with saturation in control vector.
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the flow through a valve or the torque produced by a motor. In the ‘iterative inverse’
approach the control vector is generated by a set of integrators, which will be subject to
‘wind up’ if no precautions are taken. The solution to this problem is shown in Fig. 6
which is the same as Fig. 2, except for the ‘anti-wind up’ element that has been added.
This element acts as a feedback around all the integrators ensuring that u does not
exceed its limit values. The effect of this mechanism is very significant as will be seen in
the example below.

Example
Assume a scalar process model to be

X=—x+(1+axju (28)
zZ=Xx (29)
Employing the iterative inverse, we get

17 A
K="(a—f) “Trax 0

The resulting system has the structure of Fig. 2 and is now studied under different
conditions in Fig. 7. A unit step is applied to zo=x, when g=50, A= — 100, a=1.
Figures 7 (a) and (b) illustrate the resulting control actions u(t) and the state x(t) with
and without limitation on the control (i, =5). As is clearly scen, the limitation of the
control gives a significant wind-up action which is definitely detrimental. Similar
curves are shown in Figs. 8 (@) and 8 (b) for the case when u,,,,, = 2-5. This shows an even
more severe influence of the control limitation compared to the case without any
limitation. Figures 9(a) and 9 (b) show the same case as in Fig. 7, but with anti-wind-up

20 . : - - — cypros 3.10/%11 —

254 - : a)
=5, A=-100, g=50. a=1

3 Y prax
20| - - .

3 Cypros 3.10/K11 )
2.
5 . b)
x(t} with saturation
I R EE O I . 3
L] B R - SR L et v P prl . g
1:
0.5{i- . .
i *{t) without saturation
o 0.2 0.4 0.6 0.8 1. 1.2 1.4 1.6 1.8 1

Figure 7. Time response of system in Eqns. (28)29) with system structure as in Fig. 2 following
a step in z, (control saturation u,,, = 5-0).
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Figure 9. Same problem is in Fig. 7 but with system structure of Fig. 6 with anti wind up-
algorithm.
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feedback around the integrator in the auxiliary loop (the gain of the anti-wind-up loop
is K,=0,01). Here it is clear that the detrimental effect of the control limitations is
totally removed, but the response speed of the state is lower than in the unlimited case
as is to be expected.

5. WNonlinear decoupling in processes with non-minimum-phase behaviour

A multivariable nonlinear process may exhibit physical phenomena which show
non-minimum-phase behaviour. As is well known, the inversion of such a dynamic
phenomenon may lead to the necessity of a predictive compensator. For example, the
inverse of a transportation lag is a predictor. But even though non-minimum-phase
elements may appear in a multivariable process description, it does not necessarily
means that the inverse dynamics does not exist. The only requirement for the inverse to
exist, is that matrix DB of (7) is nonsingular. The non-minimum-phase behaviour of the
process will appear in matrix B and in some cases make matrix DB singular or (DB) !
ill conditioned. An example of a complex dynamic process which exhibits non-
minimum-phase behaviour, is the Fluid Catalytic Cracker (FCC), but in this case the
DB matrix is non-singular and thus a nonlinear decoupling can be realized for this
process.

6. The robustness of nonlinear decoupling

The basic solution of decoupling as described in Fig. 2 assumes that the
mathematical model as given in (1) is known. This is obviously an ideal requirement
which will only be satisfied with a certain degree of accuracy in a real case. The function
g(+)of (2)is something chosen by the control designer and may therefore be assumed to
be perfectly accurate. The uncertainty applies only to the structure and the parameters
of the function f(-).

If for simplicity we assume that z=x, requiring that dim u#=dim x we get the
simplest case.

The uncertainty of the model can be related to its parameters and/or to its structure.
The latter most frequently means that the number of state variables in the real process is
different (usually larger) than the number of state variables in the model. In our first
attempt to analyze the robustness problem, we shall assume that the model structure is
correct, that is the number of state variables of the system is the same as that of the
model. Furthermore, in order to simplify the problem we shall assume that the process
is linear so that

%=A,x+B,u @31)

where 4, and B, refer to the real process.
Now we have

A,=(I+EA,, (32)

B,=(I+EpB, (33)

where A,, and B, refer to the model implemented in the control strategy and E ,, E; are
respective uncertainty matrices.
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We then get
%=(I+E)Ax+(I+EpB,B, (G(xo—x)— A,x)
=(I+ Eg)G(xq—x)+(E—Eg)A,x
~(I + Eg)G(xy—x) (34)

where the feedback matrix G has large elements compared to those of the matrix
(E,— Ep)A,.. Apparently this system can tolerate fairly large uncertainties E, and Eg
before the system behaviour becomes much different from the ideal behaviour. This
result is mainly due to the fact that the model structure was assumed to be correct. It
confirms the well-known result that strong feedback around a process makes the total
system insensitive to process parameter variations.

It follows from (33) that the uncertainty matrix E, will become larger when the
matrix B, is close to being singular. This is seen by inverting (33) which leads to

B,'=B,(I+Ey) '~B,'(I-Ep) (35)
and
1 . | R
B adj szmad] B,,*(I—Ep) (36)
which yields
Eg= I—% adj B,(adjB,) ' (37
P

If B, is close to singularity, then | B | -0 whereas | B,,| remains larger. That indicates that
E g will attain large values since | B,| appears in the denominator of (37). The lesson to be
learned from this is that nonlinear decoupling is bound to be less robust when B is close
to singularity. This is not surprising because it means that the inverse model is ill-
conditioned. This again tells us that since the B matrix is a result of the way that the
control variables have been chosen, we should take care and try to physically arrange
our control variables so that the B matrix does not have an ill-conditioned inverse.
Another way to express this is that the eigenvalues of matrix B are to be of the same
order of magnitude.

Another approach to the question of robustness of nonlinear decoupling is
demonstrated in Lie and Balchen (1990).

Comparing the requirement of (DB) being nonsingular with the conditions for
controllability we conclude that the first is most rigorous, i.e. even though a system is
controllable it may not lend itself to decoupling.

7. The problem with unmeasured states

In the previous developments it has been assumed that the total state vector x is
fully available in the computations. This may not be realistic in some cases, therefore
this problem needs some attention.

Usually the solution to this problem in process control is to apply a state estimator
and in some cases this may be feasible. The state vector then needed in the calculation,
will be obtained from the state estimator as shown in Fig. 10 rather than from the
process. Here y is the vector of measurements from the real process and  are those
estimated by the state estimator utilizing a model of the process. Here an ‘Extended
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Figure 11. Direct calculation of a nonmeasurable states by means of submodel without
corrective feedback.

Kalman Filter’ structure is employed. The solution is somewhat contradictory,
however, because the ‘Extended Kalman Filter’ assumes an internal feedback which
involves the same problem as the one we are trying to solve by means of nonlinear
decoupling. In practice, however, this problem may not be so severe because many of
the states of the process are actually directly measurable and therefore do not have to be
estimated. Thus only the unmeasured states are to be included in the estimator. In some
cases the estimator for the unmeasured states may even be approximated by the model
for these states driven by the control variables and the measured states without any
corrective feedback from the output measurements as shown in Fig, 11.

8. Nonlinear decoupling in batch control

Batch processes have attained a new popularity in recent years because of their
simplicity and the possibility for small scale production of sophisticated products. In
the control of batch processes, it is often important to individually control the different
states of the process in order to arrive at prescribed values of these states at given times,
for example. Nonlinear decoupling will be a very powerful tool to achieve such goals.
This is particularly so because nonlinear decoupling has resulted in as many first order
processes (integrators) as the number of state variables in the process and the batch
control of each of these processes is a very simple matter. However, since it is likely that
the control variables will reach their saturation values, it is important to apply the ‘anti-
wind-up’ facility described above.

9. Combining nonlinear decoupling with other control strategies

The main idea with nonlinear decoupling is to remove severe effects of nonlinear-
ities and interactions in the processes. This idea may be advantageous to any kind of
control strategy.

The simplest control strategy is probably that of multiple monovariable PID-
controllers applied to a multivariable process. This simple solution may work perfectly
well when the process is not too nonlinear and the interactions are not detrimental to
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that particular control method. But in other cases it will be difficult to make it produce
acceptable performance. If nonlinear decoupling of the process is applied before the
multiple PI-controller (diagonal controller) this may give an excellent solution. As can
be seen from the previous discussion, this only means that the control matrix G, which
is a diagonal proportional controller, is simply replaced by a diagonal Pl-controller (i.e.
each of the elements have an integrating element in parallel). This will not change the
‘high frequency’ behaviour of the system, rather improve the Tow frequency’ accuracy
of the control.

A similar argument can be made with regard to adaptive control. It is frequently
suggested that adaptive control could be applied to processes involving major
nonlinear phenomena in order to compensate for large changes in gains and dynamics.
In some cases this may turn out to be possible, in others impossible. When the physical
mechanisms of the process are known so that mathematical modeling is feasible, a
nonlinear decoupling could be applied to the process in order to remove the largest
contributions to nonlinear behaviour and interactions. The result will be a process with
less nonlinear behaviour and interactions which could well be controlled by a set of
adaptive controllers (or even constant controllers as described above). Figure 12
illustrates these arguments. The choice of method is in fact related to how much

Figure 13. The similarity between (a) non linear decoupling and (b) “sliding mode control’.
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knowledge is available about the process. This again has to do with the qualifications of
the control system designer. There is a general tendency towards the opinion that better
process understanding, i.e. process modeling, is the best way to arrive at better control
systems.

Finally, the relationships between nonlinear decoupling and the so-called ‘sliding
mode-control’ will be indicated (Utkin 1977, Slotine and Li 1991).

Consider the system described by (5) and (6), where ¥ =u and z =z are scalars. The
nonlinear decoupling solution for this system is shown in Fig. 13 (a) whereas the ‘sliding
mode control’ solution is shown in Fig. 13(b).

What has been termed property vector (variable) above is called ‘sliding surface’ in
the sliding mode literature.

The behaviour of the two solutions is quite similar when gain G in Fig. 13(a) is
increased towards infinity and limitation (antiwind-up element) is imposed on the
control variable u. Note that since the decoupling system from Z, to z in the ideal case is
an integrator there will be no stability problem in either solution.

10. Conclusions

The principles of nonlinear decoupling or inverse dynamics control have been
reviewed and some significant properties of this powerful technique have been
illustrated. Particular attention has been paid to the ‘iterative inverse’ which is a very
direct way of applying the process model to the determination of the control actions
that perform nonlinear decoupling. Also a method of ‘multi step’ nonlinear decoupling
has been introduced for cases when the dimension of the control vector is significantly
smaller than the dimension of the state. Finally, the applications of combining
nonlinear decoupling with other control strategies, e.g. adaptive control, and the
relationship to ‘sliding mode control’ have been pointed out.
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