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By prefiltering the input/output data and employing certain decentralized estim-
ation techniques, it is possible to improve the robustness of some estimators
significantly. Earlier papers on these techniques have been focused on local
convergence properties of certain bootstrap estimators based upon these techni-
ques. This paper is devoted to (1) global convergence properties, and (2) convergence
rates when the underlying system is stiff.

1. Introduction

Parameter estimators based upon standard estimation techniques, viz. least
squares (LS) methods, instrumental variable (IV) methods, etc. do occasionally have
difficulties with systems that have a somewhat ill-conditioned nature, .g. stiff systems.
By prefiltering the input/output data and employing certain decentralized estimation
techniques it is, however, possible to improve the robustness significantly. Previous
papers on the methods presented in this paper have been focused on robustness
properties and local convergence analysis, see Henriksen (1988, 1989) and Young et al.
(1987). In this paper we shall focus our attention on two aspects: (1) global convergence
analysis, and (2) convergence properties when the underlying system is stiff.

The paper is organized as follows. In § 2 we present a brief outline of the system and
a resume of previous results concerning local convergence properties and robustness.
§3 is devoted to analysis of global convergence properties. Some results on
convergence rates of the estimators when the underlying system is stiff are presented
in §4.

2. System description and previous results
We consider a system described by the linear discrete-time model

A(q-l}y:=B{q_l)“t+v: (1)

where y, is the output at time ¢, 4, is the input, and v, is the disturbance or residual. {v,} is
assumed to be a zero-mean stochastic process with a rational nonsingular spectral
density matrix. The processes {u,} and {v,} are assumed to be independent and the
system is assumed to be asymptotically stable.

Received 15 February 1991.
+The Norwegian Institute of Technology, Division of Engineering Cybernetics, N-7034
Trondheim, Norway.




224 R. Henriksen and E. Weyer

In the previous papers by Henriksen (1988, 1989) it was originally assumed that the
model (1) could be MIMO (multi-input, multi-output). The most neat and interesting
results were obtained, however, by assuming the system to be SISO (single-input,
single-output). We shall consequently, for the sake of simplicity, also make this
assumption in the sequel.

The polynomials A(g ") and B(g ') are factored as, respectively,

Alg " )=A,(g WAxg™") @
B(g~")=B,(q ")Bxq ") (3)

where
Aa™)=1+alg ralg 4 adg @
ANq Y )=1+alq ' +alqg  + ... +aj g™ )
Bl(q_l)=1+b}q_l+b%q_2+...+b:“q_'“l ©)
By(q " )=blq '+big*+...+blg ™ @

and where n, +n, =n, the degree of A(g~ '), whereas m, +m,=m, the degree of B(g ).
Assuming the polynomials 4,(¢ ') and B,(¢ ') to be known, we can define two
new variables, viz.

w,=A5(q" Yy r=Byq ®)
and (1) takes the form
Aylg™"Yw,=B,(@ I+, )

which is a reduced model of the system.
Similarly, assuming A4,(g ') and B,(g~ ') to be known, we can define

z=Ayq Vs s=Biq (10)
which would lead to the reduced model
A g l)zr =Byq” l)s! +, (l l)

Equations (8)11) form the basis for the estimators considered in this paper. We can
rewrite (9) and (11) as, respectively,

W=y BHrty, (12)
2,=¢ 0+, (13)

where
Y= =Wy tsees =W T 1see s Teomy ] (14)
p=I[al,...,a;,b3,...., 051" (15)
b= —z—1s--s = ZimppSt—13-- 2 S —my] " (16)
0=I[ai,...,a2,b%,....0., 1" (17)

From (12) and (13) we can derive the following LS estimator

b= Zvwr| [ £ vinni] (19)




Convergence aspects of some robust estimators 225

0|5 5 st | 55 tﬁ,z,] (19)

Since neither of the true values f* and 0* generally are known beforehand, the two
estimators (18) and (19) will have to be employed in a bootstrap fashion by replacing
W,, ¥, 2, and s, with, respectively,

w=A,(g"",0)y; F=B,qg %0, (20)

21=Al(q_laﬁ)y|; §I=Bl(q_1’ﬂ)ul (21)

For more details, see Henriksen (1988, 1989).
From (18) and (19) we can also immediately derive an I'V estimator. It has the form

1 N . N
b xSt 3 3 )| @)
o-| L5 dar| L5 d @3)
N & 99 N./& 2t

where
Vo= =W treeer = WompFem oo eesFrom 1T (24)
w=A;"q ")Blg~ ") (25)
Ge=L—Zi—1ses = Zppp St 1ree s S—my]” (26)
z,=A;'q ")Bl@ ", (27)

The convergence properties of the above estimators have been thoroughly investigated
by Henriksen (1988, 1989) who uses the batch form above, and by Weyer (1988) who
uses the recursive variants of the estimators. Provided certain standard consistency
conditions are satisfied (e.g. (1) the polynomials A(g ') and B(q ') are coprime, (2) the
input process {u,} is stationary, ergodic with respect to second-order moments, and
persistently exciting of order m (LS) (n+ m in the noisefree case) or of order n+m (IV),
etc., sce Henriksen 1989, or S6derstrom and Stoica 1983), we now summarize the local
convergence properties in what follows.

After some elaborate computations it can be derived that local convergence (about
the point (f*, 6%)) of the LS estimator can be determined from the eigenvalues of the
matrix

F=[Eyy1 "EY. i [Edipi 1 "Edf (28)

whereas local convergence of the IV variant can be determined from the eigenvalues of
the matrix

F=[Eyd{1  E G TEG I EGY T (29)
where E denotes the expectation operator.
Fact 1. If Ais an eigenvalue of F (or F), then 1 is real and 0< A< 1. Moreover, A=1 is

an eigenvalue of F (or F) of multiplicity k=i + jif and only if A,(q~*) and A,(¢~ ") have
exactly i common zeros, and By(g ') and B,(q~ ') have exactly j common zeros.

Fact 2. The above bootstrap estimators converge locally if both the polynomials
Aj(g™") and Ax(g~ ") and the polynomials B,(g~ ') and B,(g ') are coprime.
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Fact 2 holds for the IV variant provided {u,} and {v,} are uncorrelated, but a similar
thing could occur if the two processes ate correlated. Note that we in the above facts
also have assumed A(g~ ') and B(g™") to be coprime.

Simulation experiments with these estimators clearly reveal that in cases with stiff
systems where ordinary LS and IV estimators turn out to fail, the variants in this paper
work quite well, see Young et al. (1987) and Henriksen (1988, 1989).

3. Global convergence analysis

For the purpose of doing the global convergence analysis, we decided to rewrite the
estimators in the previous section in recursive form. This allows us to use the ODE-
method developed by Ljung (1977) to carry out our analysis, see also Ljung and
Soderstrom (1983).

The recursive form of the LS variant is given by the equations

|
P.=P¢-1+t(lfhllff—ﬂ—1) (30)
fimboe s+ P r VT, G
1
Q=Qu-1+ (69 ~0i-) (32
6=0, ,+ 0, dle— 0., ()
where w,_,, [=0,1,...,n, can be approximated by
Weor=A200 " 0r- 1= ) Vi (34)
or by
w,_,=A2(q_ 1» 0:—1)_}’;-1 (35)

Note that (35) requires that all w,_,, t=1,...,n, are computed at each time instant.
Similarly, z,_,, I=0,1,...,n, can be approximated by

z=Ag77, ﬂt—‘l)yl—l (36)
or by

z,_,=A,(q_',ﬁ,)y,_, (37)

In Egns. (36)«37), note that the last update of f,i.e., B, _, or f, is being used as soon as it
is available (instead of using f,_,_, or B._ ., respectively). If we do the same thing in the
bootstrap estimator (18)-(19) this can be shown to double the rate of convergence
locally, see Weyer (1988).

In a similar fashion, the first of the IV variants takes the recursive form

1 ~
P1=P:-1+;('pt¢;r_Pt—l) (38)

1 ~
ﬂ,=ﬁ,_1+;P,_1¢,(W,—l‘,—lll;rﬁ‘_1} (39)

Q=01+ (T 0im) (40)

4
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0=0.1+,076e— 470, ) @
where the following approximations can be used:

Wy =A; l(q_ !, 3:-:—1)3{‘1_1:‘;:—:—1' g:-:— Uy 42)

or
ﬁ:—l=‘41—l(q_lvﬁt—I)B(q_l,ﬁt—hét—l}ut-l (43)
Z_,=A'q _1,9:—:— 1)B(‘I_lsf§:-—n gc—:— ) - (44)

or
Zi=A; l(q_l, ét—l)B{q-l;Bngl—l)“t—l (45)

We shall now carry out the global analysis for the recursive LS variant (30)(33). Define

k=LA 6T o)
[P0l . [w o
relo ol el 0] @
p=[w,—r,z]" (48)
This allows us to rewrite (30)+33) as
R=R, i+ (LTI, ) “)
A T (50)

We assume that a projection is used in the estimation algorithm to keep K, in Dy, where
Dy, is a compact subset of R"*™ such that keD,, implies that the system (1) is
asymptotically stable. It is also assumed that we use a projection to keep R, positive
definite.

In accordance with Ljung (1977), see also Ljung and Séderstrom (1983), the
convergence properties of (49)+50) can be determined from the stability properties of
the associated differential equations

d
=R @ (0 (1)
2 R(©)=Gix(e)—Re) (52
where
S=Tim & 5 BT 0e(09)= BT ) 53
Gi= lim & 3 EITITT()= EQL 0T () (59
N—w t=1

and where g(k)=p,(x)—II[(x)x. Here g(x), p{x) and II(x) denote the stationary
processes that would be obtained if, in the recursions generating ¢, p, and IT,
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respectively, the sequence of estimates , is replaced by a constant parameter vector k.
We assume that these limits exist with probability 1 (w.p.1)for all ke D,,. E is defined as

N
Eh(t)= lim L Y. Eh(t)
N=w N t=1
Local analysis of (51)452) reveals exactly the same results as were obtained by
Henriksen (1988, 1989) and which are summarized in Fact 1 and Fact 2. This also holds
for the 1V variant.
In order to investigate the global stability properties of (51)+52) and hence the
global convergence properties of (49)«50), we introduce the Liapunov function

V((z), R(x) =3E[A,(g™ ', H)Ax(a ", 0)y.—Bi(a™ ', )Bx(a ™, O)u,)? (55)

We assume that the data sequence {y,u,} is such that this function will exist for
all keD,,.
We are now able to present the following result.

Theorem 1. Assume A(g~ ') and B(g ™ ') to be coprime. Then the LS variant converges
globally.

Proof. See the Appendix.

The proof of the above theorem reveals that the LS variant theoretically also
converges when the coprimeness condition is not met. However, the only possible
stationary point of (51}-(52), f(x(z))=0, in this case turn out to be nonhyperbolic, i.c.,
there are local eigenvalues on the imaginary axis (a hyperbolic point is a stationary
point where all local eigenvalues have real parts #0). These eigenvalues will in our case
be situated in the point z=0, and their multiplicity p will be exactly equal to the sum of
the common zeros in 4,(q~')and A,(g~ '), and in B,(¢” ') and B,(g™"). Locally such a
point will be unstable if > 1, whereas it is stable, but not asymptotically stable, if u= L.
Anyway, the convergence property of the LS variant, which is reflected by (51)52), will
in this case be very doubtful, and this has been fully confirmed by simulation
experiments. Convergence has never been achieved when the coprimeness condition is
not met.

On the other hand, if the coprimeness condition is met, then the local eigenvalues
will all be strictly negative and real, which means that the stationary point will always
be asymptotically stable. Convergence of the LS variant can in this case always be
expected, but the convergence rate will be very low if, e.g., 4,(g~ ") and 4,(q ') have
zeros which are close together (in relative terms).

Although the foregoing analysis does not exclude convergence when the coprime-
ness condition is not met (in fact, the analysis reveals that the LS variant does
theoretically also converge in this case), there are several reasons why we should avoid
that. First, the local convergence properties are very doubtful when this condition is not
met. Second, the theorem presented in the next section shows that the convergence rate
increases when the stiffness of the system increases, i.e., when the zeros of 4,(¢ ') and
A,(g~") are wide apart (relatively). Third, if the system is not stiff, there is actually no
need to use this LS variant, since an ordinary LS estimator in this case will perform
better.

What is said above about the LS variant does not necessarily apply to the IV
variant, since we have not succeeded in proving global convergence of that.
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4. Convergence rates when the underlying system is stiff

We are now going to analyse the convergence rates of our estimators when the
underlying system is stiff. Since stiffness is a property which we connect with the
eigenvalues or poles of the system, we shall for the sake of simplicity assume B(g~')=0,
i.e, the system is driven by noise only. This is equivalent to saying that B(g ~!) is known.
We shall, for the sake of simplicity, limit ourselves to analysing the LS variant, which
implies that {v,} has to be white. We assume Ev?=o¢2. Furthermore, 4,(¢”") and
A,(g™") are assumed to be coprime and the system is stable.

The terms Ey ] etc. of the matrix F (Eqn. (28)) are now calculated directly using
the power spectral density and the inverse z-transform. We obtain, for example,

M -1
02
q’w(z)—m [z,...,2"] (56)
and
1 dz
T -
E"’l"{"’l‘ - znj § 2|= . (Dvw(z) z
7!
=azﬂ;1 Toulk) : [1,....% 1]
B 1
A U f I W 4§ 1. oyt
=o?| ! : B : : (57)
1 1 o ny) | Y
where y,, k=1,2,...,n, are the zeros of A¥(z), where
Af(2)=z"A,z7") (58)
and where
ro(k)=1im — - % (59)

e AT@ALD)

We have in the above also assumed the zeros of A¥(z) to be distinct. Similar expressions
are obtained for Ey,¢T, Edp Y and Ed,pf.

A stiff system is characterized by the fact that the poles can be grouped into two
parts {7,,%2,...,¥,} and {y,4,.-.,¥,} where the first one represents the slow dynamics,
whereas the second one represents the fast dynamics. We define

Paow=sup {1—=Pl} (60)
Yini= 1, ..., P
Prast = inf { 1- h’il} (61)
Firi=p+1l,..., n

In a truly stiff system p,,,,, will be close to zero, whereas py,, is not. We can therefore
take the ratio pp.,/p..w as @ measure of a system’s stiffness by noting that the ratio
increases as the stiffness increases.
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We now assume that, say, 4,(g~ ") represents the slow dynamics of the underlying
system, whereas A,(q ") represents the fast dynamics. This enables us to present the
following result.

Theorem 2. As the stiffness tends to infinity, all eigenvalues of F (or of F)tend to zero.
Proof. See the Appendix

Corollary 1. The convergence rate of the LS variant (and the two IV variants)
increases as the stiffness increases. Moreover, as the stiffness tends to infinity, the local
convergence (of the batch variants) will tend to become instantaneous.

5. Conclusion

We have considered the problem of estimating stifl systems by employing some
specific decentralized estimators which are based upon filtering the input/output data
in a certain manner. The estimators can be designed as LS or as IV variants. Local
convergence properties have been thoroughly examined by Henriksen (1988, 1989) in
previous papers. We have in this paper focused our attention on: (1) global convergence
analysis, and (2) convergence rates for stiff systems. The global convergence analysis did
in some way confirm what the local analysis gave, i.¢., the estimators converge globally
if the coprimencss condition is met. Moreover, the global analysis also showed that
convergence theoretically would take place even when the coprimeness condition is not
met. However, the convergence point (the true parameters (5%, 6*)) is in this case not
hyperbolic, and very slow convergence, if any, can in this case be expected.

The analysis of the convergence rate showed what follows in order to ensure good
convergence properties. For one thing, the slow and the fast modes of the system should
be separated, ie., put in the factors 4,(¢~ 1) and A,(q ") respectively. For another,
when the stiffness of the system increases, so does the convergence rate.

From the above it is apparent that some a priori knowledge of the system, e.g., that
the system is stiff will be helpful in using these estimators for identification purposes.
The estimators work better the stiffer the system is, as opposed to ordinary LS or IV
variants, which often fail completely for stiff systems. On the other hand, if the system is
not stiff, convergence of our estimators becomes slower, whereas ordinary LS and IV
variants in this case normally would perform better.

Appendix
Proof of Theorem 1
We have the following expression

d . - _ X
7.V ele), R@) = E(A,(g YA a V) y.—Bi(g™"Byg™ )

d - - .
x g Aa NAxq™ Yy~ Bilg MBalg )RS () (A1)

Careful evaluations lead to

LV (u(e) R = — SR () (A2
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] _/iz(q“ D¥-1 ]

—Aq™ Yi—n,
Byg ",

ﬁz(q l)uf—llh

St)=E(A g~ VAAqa~ ") y.—Bi(g ")Bog™ ") -
—Alg ")y,

(A3)

—A g™ YV,
Bl(q_l)ul—l

| B e, |

where 4,(g" )= A,(g" %, B(z)) and so on. We now substitute for y, y,_,, etc. in (A 3)
from

y=Bila DBAaY) 1 .

ATV AgT VAN

where A,(¢g"")=A,(g" ", p*) and so on. Assuming {v,} to be white and independent of

{u,}, it is easily seen that we have to focus our attention on the factor in front of the
vector in (A 3). Having substituted for y,, this factor takes the form

(ﬁ (g )Aq ")By(g )By(g ")

(A4)

Ag NAxg™Y)
and f(x)=0 if and only if
Adg™VAAg MB\a IBAg ) =As(a Vg™ )Big )BaaY)  (A6)

Apparently, f(k*)=0 and there are no other values of ¥ which make f(x)=0 when
A(g™") and B(g ') are coprime. Since R(z) and hence R ~!(z) are positive definite, we
have that

—Bx(q")ﬁz(q"))u. (AS5)

LV R<0; wlo) 2 (A7)

Now, the ODE-method developed by Ljung (1977), see also Ljung and Soderstrom
(1983), tells us that the estimate x,, will converge to x* or it will get stuck at the
boundary of D,,. The estimate can get stuck at the boundary only if there is a trajectory
of (51)(52) that points out from D,, i.e., if V(x, R) is decreasing as x leaves D, at some
point. Now, at the boundary of the system’s stability region D, V(k, R) tends to infinity.
Hence, if the boundary of D, is chosen close enough to the boundary of D, no
trajectory will point out from D,,, and the algorithm will not converge to the boundary
of D,,. This implies that the LS variant must converge w.p.1 to x*.

Notice that the system itself may be much more complex than the resulting model.
But the model we end up with is the best approximation of the system in terms of a
quadratic criterion. In the preceding calculation the true system hides behind the
symbol E.
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Note that our analysis reveals that the coprimeness condition does not have to be
met in order to have convergence. However, the point x* is in that case not hyperbolic,
which means that real convergence of the LS estimator will be very doubtful or at least
poor. This is in accordance with the local analysis which was done by Henriksen (1988,

1989).

Proof of Theorem 2

We assume all zeros of A(g~') to be distinct. This implies that the zeros of
A¥(z)=2"A(z" ') are distinct. The following expressions for Ey ¢F, E¢, ¢ and Epy!

are obtained, see Eqns. (56)59),

B

gt =0 3, rall)| J[l,---.'ﬁ"‘]
1

-
Ebdi=0* 3 r| | [y

L 1

-
EQi=0*§ ral)| 1|l

L1

where a,,...,a,, are the zeros of A%(z)=z"A,(z™"). Furthermore,

. Z—%
r.(k)=lim —
wB=1m 4,0

Z—0
ry )= lim —— 2%
wll)=Im A,

. Z—oy
rol)=bm e 4,

Making use of (28), (57), and (A 8){A 10) we find the matrix F to be

’rw(l) .
| R SR Bl IO ¢ )] 1 ... yp!
R reglm) | LU o
L ro(ny) |
" ral1) 7
1o a2 1 7 rgel) 1 ... op™!
1 ... ap! redny) | L1 ..ot
i rgg(ny) |

(A8)

(A9)

(A 10)

(A11)

(A12)

(A13)

(A 14)
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We recognize matrices number 1 and number 4 to be inverse Vandermonde matrices.
Since we have assumed the poles of the system to be distinct, this means that

Jeo>0ViVj i#jlni—vi>€0 A loy—a)>e,

This has to hold when the poles of the system tend to the unit circle, and the inverse
Vandermonde matrices are therefore finite.

Notice that the zeros of 4,(z) and A¥(z) (and of A,(z) and A%(z)) are each other’s
mirror images in the unit circle (i.e. if y is a zero of A¥(z) then 1/7 is a zero of A,(z). §
denotes the complex conjugate of y).

If we let a zero of A¥(z), say y;, tend to the unit circle, it follows that 1/7; also tends to
the unit circle. If y; is real it must be the case that y; tends to 1/y,, i.e., y; tends to a zero of
A,(z). Likewise, if y; is complex, then ; tends to 1/7; which is a zero of A,(z). The terms
which appear in matrices number 2 and number 5 in (A 14) is by the above and
Eqn. (59) given by

nz

rooli) _ o A2 [ o [T =7

i) Sy (A15)
Tooll)  zon A2 7% TR
il:ll 'yk k]':ll (?i C(& )

Touli) i A,(2) _kl:[l ?xxl:ll (o, —a 1Y) e

——=1 ~n ny
l‘”(l) z—ra; Al(z) lj Ol I:l (ag_f&_ l)

Now, letting all zeros of A¥(z) tend to the unit circle, which implies that the stiffness
tends to infinity, we find that every element of matrix number 2 in (A 14) tends to zero,
i.e., the matrix tends to zero. Therefore, the matrix F will also have to tend to the zero
matrix. By Gershgorin’s theorem, if 4 is an eigenvalue of F=(f; ), then for some j
(1<j<n)

i< S f A17
=<, § 1 (a17)

Since all elements of F tend to zero, it immediately follows that A tends to zero, i.e., all
eigenvalues of F tend to zero.

The above argument was made with the implicit assumption that the zeros of A%(z)
remain fixed. This is sufficient to ensure that the eigenvalues tend to zero. It should,
however, from (A 15)(A 16) be clear that we also can allow the zeros of A%(z) to tend to
the unit circle. Notice however that we have assumed all zeros of A*(z) distinct. This
means that there is a positive distance, § >0, between these zeros, and this must also be
the case in the limit.
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