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An efficient pseudo-inverse solution to the inverse
kinematic problem for six-joint manipulators
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The use of the pseudo-inverse Jacobian matrix makes the solution of the inverse
kinematic problem well-defined even at singular configurations of the robot arm; in
the neighbourhood of a singularity, however, the computed solution often results
in high joint velocities which may not be feasible to the real manipulator.
Furthermore, the pseudo-inverse solution is computationally expensive, thus
preventing real-time applications.

[n this paper a systematic and efficient procedure to compute the pseudo inverse
of the Jacobian matrix is presented which takes advantage of the kinematic analysis
of the manipulator structure. In order to avoid excessive joint velocities close to
singularities, the manipulator is treated as singular in a suitably defined region
around each singularity. Inside this region a continuous joint velocity solution is
achieved by interpolation in the dependent directions. The method is applied to a
PUMA-like manipulator in simulations.

1. Introduction

The handling of singularities is one of the main problems in manipulator control. In
a singular configuration the end effector loses degrees of freedom, and the inverse
kinematic problem becomes overspecified.

Inverse kinematic solutions have traditionally been based on closed-form position
transformations, or on the use of the inverse Jacobian to transform velocities or
differential end-effector motion. These solution methods break down near singular
configurations, and this is experienced in the form of very high joint velocities and large
control deviations.

Singularities occur in the interior of the reachable workspace for typical six joint
manipulators unless the workspace is restricted by joint limits. This means that the
space where the end effector may be controlled in all directions will be a subset of the
workspace. The singularity associated with spherical wrists is especially problematic as
it is naturally characterized in wrist coordinates, but it can occur practically
everywhere in the reachable workspace; so a six joint manipulator may have five or less
degrees of freedom in significant parts of the workspace.

The use of redundant degrees of freedom is an interesting approach to handle the
problem of singularities (Whitney 1972). If an extra joint is added in the shoulder of a
PUMA-like manipulator, the end effector can have six degrees of freedom everywhere
in the workspace (Egeland 1989, Hollerbach 1984). However, the redundant manipu-
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lator will still have singular configurations which must be avoided or handled in the
inverse kinematic algorithm.

The problem of singularities has been solved by planning trajectories that avoid
singular configurations. Joint space interpolation has been proposed (Taylor 1979)
when the planned trajectory is close to a singularity. In this case large control
deviations in end-effector coordinates may result.

Balestrino, De Maria and Sciavicco (1984) and Wolovich and Elliott (1984)
independently proposed the use of closed-loop inverse kinematic schemes based on the
use of the Jacobian transpose in lieu of the Jacobian inverse. These methods do not
converge quite as fast as inverse-based methods, but they work well also in singular
configurations. The Jacobian transpose schemes have been further developed by
Sciavicco and Siciliano (1988) and Das, Slotine and Sheridan (1988) to solve the inverse
kinematic problem for redundant manipulators, and by Chiacchio and Siciliano (1988)
to improve the performance close to singular configurations. The main problem here is
to tune the algorithm for both robustness and high accuracy.

Wampler (1986) and Nakamura and Hanafusa (1986) used damped least-squares
methods to obtain a modified Jacobian that was nonsingular in the whole workspace,
and an approximate inverse kinematic solution was found. The problem here is to
select suitable values for the damping parameters. High damping factors give good
behaviour but reduced accuracy in the neighbourhood of singular points.

Whitney (1972) proposed to use nonsingular blocks of the Jacobian matrix to
calculate an approximate solution at singular configurations. Aboaf and Paul (1987)
studied the wrist singularity, and observed that the commanded angular velocity
around the degenerate axis could not be achieved with finite joint velocities. The
proposed solution was to eliminate this component from the reference velocity, and to
specify one extra reference in joint space. Also Khatib (1987) proposed to eliminate
commanded motion in degenerate directions, and demonstrated this for a three-link
planar manipulator. The manipulator could then be regarded as a redundant
manipulator in the subspace orthogonal to the degenerate direction. This makes it
possible to apply techniques from redundant manipulator theory (Baillieul, Hollerbach
and Brockett 1984, Egeland 1987, Khatib 1987, Nakamura, Hanafusa and Yoshikawa
1987, Sciavicco and Siciliano 1988, Wampler 1987). The main problem with this type
of solution is to specify the degenerate directions in a systematic way, and to have
smooth transitions between the usual inverse kinematic algorithm and the algorithms
used close to the singularities.

In this paper a new solution to the problem of singularities in inverse kinematics
recently proposed in Chiaverini and Egeland (1990) is illustrated in full. The method
can be used both in off-line planning and in real-time sensory control. The different
singularities of a particular manipulator are found and described as hypersurfaces in
joint space. The corresponding degenerate directions are described in link-fixed frames.
To avoid excessive joint velocities in the neighbourhood of the singular configurations,
appropriate regions are defined around each singularity where the manipulator is
treated as singular. Then an exact inverse kinematic solution is found in the space of
feasible end-effector motion through the use of a generalized inverse of the manipulator
Jacobian. This solution has the properties of minimum error in end-effector coordi-
nates and minimum norm is joint space. Interpolation is used in the degenerate
directions to achieve a continuous solution when the manipulator enters or leaves the
region. This interpolation is in the nullspace of the Jacobian. The method is applied to a
six-joint manipulator in simulations.
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2. Basic concepts

The direct kinematic equation describes the mapping of the n-dimensional joint
coordinate vector q into the m-dimensional task-space coordinate vector p as

P=19), (1)

where f, is a continuous nonlinear vector function.
The mapping between the joint velocity vector g and the task-space velocity vector
p can be obtained differentiating eqn. (1) with respect to time, yielding

p=J9)4, 2)

where J (q) is the m x n task Jacobian matrix associated with f(g). If for some g, the
task Jacobian matrix happens to be rank deficient, the corresponding configuration is
said to be singular.

Eqns. (1) and (2) constitute the direct kinematics of an assigned manipulator.

Since the manipulator task is usually defined by specifying a task-space trajectory, it
is desirable to reconstruct the corresponding joint-space trajectory in order to apply
control in joint coordinates. The computation of suitable mappings of the task-space
variables into the joint-space variables constitutes the inverse kinematic problem.

When n>m the manipulator is said to be redundant. In this case infinitely many
joint solutions corresponding to the same task-space vector can be determined. In a
singular configuration the end effector loses mobility in spite of the extra degrees of
freedom available. Singularity avoidance can be achieved by using the internal motion
to obtain a different joint solution; however, singular configurations will still be present
requiring special handling in the solution of the inverse kinematic problem.

When n=m the manipulator is said to be nonredundant. In this case the condition
defining singular configurations can be stated more simply as det J (¢,)=0; moreover,
the inverse kinematic problem has a finite number of solutions almost everywhere in
the task space.

The case n<m has no practical interest, since the manipulator would be unable to
provide all the degrees of freedom required by the task.

Throughout the paper the case m= 6 will be considered. The task-space vector p is
defined so that the first three components are the Cartesian coordinates of the end
effector, and the last three a suitable minimal representation of end-effector orientation.

When a three-parameter description of orientation (such as Euler angles or Roll-
Pitch-Yaw representation) is used as in p, there will always be mathematical
singularities where the mapping (2) is singular although the end effector has six degrees
of freedom.

Description without mathematical singularities are based on end-effector velocity
or on differential motion. The end-effector velocity vector v is defined as

v=(:;), ®

where v, is the three-dimensional vector of translational velocities in base coordinates
and w is the three-dimensional vector of angular velocities in base coordinates. The
mapping

v=J(q)d @

will be singular only in configurations corresponding to actual mechanical singular-
ities; rank deficiencies in the 6 x n matrix J, indeed, imply a loss of mobility related to
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some subspace of the end-effector velocity space which cannot be spanned in that
configuration. The matrix J is termed the base Jacobian or simply the Jacobian of the
manipulator.

The relation between the base Jacobian J and the task Jacobian J,, is given by

J(9)=T,.(PN(q), &)

where J,(p) is a 6x6 transformation matrix that is a function only of p. The
singularities of the J,, matrix are the mathematical singularities of the mapping (2).

To overcome the problems related to the use of the p vector, an alternative
possibility of minimal description can be exploited. It consists in using different minimal
descriptions of orientations in different regions of the manipulator task space, so that
cach description be singularity-frec inside the corresponding region. However,
problems arise when the assigned trajectory crosses a region boundary which in turn
implies a discontinuity in the representation of orientation.

In the following, it is assumed that a coordinate transformation matrix is used to
describe absolute rotation, while velocity and differential end-effector motion is
described in terms of v and dx=wvdt. We will therefore mainly be working on the
mapping (4) and

ox=1J(g)dq, ©)

where dg =¢gdt is the vector of differential joint motions.

It can be seen (Nakamura and Hanafusa 1986) that the inverse kinematic problem
in position, velocity or acceleration can be solved using linear equations with the
Jacobian matrix as the coefficient matrix. Therefore, eqn. (6) will be used to discuss the
inverse kinematic problem without loss of generality.

3. Problem statement

In the following the inverse kinematic problem for nonredundant manipulators will
be discussed.

The most direct approach to resolve differential joint motions dq corresponding to
the differential end-effector motion éx is based on the use of the inverse Jacobian matrix
as follows

Sq=J"(g)dx. (7
This solution presents two major limitations:

(@) J '(g) is not defined at a singular configuration; this implies that it is not
possible to determine a joint motion ¢ corresponding to an assigned dx;

(b) in the neighbourhood of a singular configuration eqn. (7) gives an exact
solution that often results in high joint velocities representing an infeasible
solution for the manipulator.

As a better approach to the inverse kinematic solution, the use of generalized
inverses of the Jacobian matrix has been proposed. It must be noticed here that several
techniques presented in the literature and consisting in removing end-effector reference
components (Aboaf and Paul 1987, Khatib 1987) or in using nonsingular blocks of
the Jacobian matrix (Whitney 1972) can be in some way arranged in this kind of
approach.
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We have worked with the pseudo inverse of the Jacobian. The pseudo inverse J' of J
is a unique matrix which satisfies the conditions in Zadeh and Desoer (1963).

JWUu=u YueV(I)'=2J") (8)
Jtov=0 VveR(J)y =AY 9)
Jv+w)=Tv+J'w VeeR(J) VYweR(J)". (10)

The pseudo inverse can alternatively be defined with the equations in Ben-Israel and
Greville (1974).

JIy=J (1
Jrt=y (12)
JINT=JJ* (13)
Jnr=J. (14)
The pseudo inverse has the property that the dg given by
og=J"ox (15)

is the least-squares solution with minimum norm for egn. (6); that is it the solution
satisfying
min [|dg|| (16)
ba

of all the dq that fulfill the equation
msin lIox—J(q)oql, (17

where ||+ || denotes the Euclidean norm.

Although solution (15) is defined even for singular configurations, high joint
velocities will still result in the neighbourhood of singularities. This happens because
egn. (15)is equivalent to egn. (7) at nonsingular configurations, while it discontinuously
offers an approximate solution at singularities. Moreover, this latter aspect is source of
additional problems since it implies discontinuous solutions in joint space.

In order to exploit the potential of solution (15) two main problems remain
unsolved:

(a) a systematic and efficient procedure to compute the pseudo inverse of the
Jacobian matrix is needed;
(b) the continuity of the joint space solution must be ensured.

A solution to these problems is presented in this paper.

4. Computation of pseudo-inverse Jacobian

In the following a systematic framework to compute the pseudo inverse is
developed based on a modification of an algorithm proposed by Mayne (1969). The
algorithm at issuc consists of the following steps:

(1) given an mxn matrix J with m<n and rank (J)=r<m, by means of row
operations (equivalent to premultiplicatior by an m x m matrix P) reduce J to

the matrix
J,
(J 2) ua
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where J, is an r x n matrix of full rank, and J, is an (m—r)x n matrix';
(2) The pseudo inverse of the matrix J is given by

J*=J{GG")'G, (19)
where the r x m matrix G is computed as follows
G=JJ". (20)

The J' matrix given by (19) and (20) satisfies the conditions (8), (9) and (10) and is the
pseudo inverse of J.

This can be shown as in Mayne (1969) by first noting that GG has rank r and is
invertible as the columns of GT=JJT span the range of J which is of dimension r.

If uc#(J™) then u=J}a for some r-dimensional vector a. Then

T Iu=JY(GG") ‘Gl I a=u @1)

which means that (8) is satisfied.
If ve A (JT) then JTv=0. Then

Jo=JT(GG") 'J Jv=0, (22)

so (9) is also satisfied. Finally, the condition (10) is trivially true for J t

It is clear that the main problem with this algorithm is to select the matrix P used in
the generation of J,. In the remainder a new systematic approach to derive a suitable
matrix P is presented. To this end we firstly introduce the concept of feasible motion
and dependent end-effector directions.

Let 9(J(§)) be the range space of the matrix J at the § configuration. If § is
nonsingular, then

dim[2(J(§))]=m. (23)
When § is singular, instead,
dim[Z(J(§)]=r r<m. (24)

#(J(§)) is the subspace of feasible motion in the m-dimensional space of end-effector
differential motion at the § configuration. Equation (24) states that this subspace has a
dimension r less than m at a singular configuration. This means that a differential end-
effector motion can be specified arbitrarily only in r directions; the motion in the
remaining m —r directions is determined dependently. These directions are termed the
dependent directions.

Assume that a six-dimensional base is found where the r first base vectors span %(J).
If a feasible end-effector motion dx is transformed to this base, it will have components

ox,
)

where dx,eR" and 6x,eR™". The components of dx; are independent, while the
components in dx, depends on dx,.
Consider now the equation defining the matrix (18):

TAY
PJ=( Jz)’ (26)

!In Mayne’s algorithm (1969) J, was the zero matrix.
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postmultiplying by dq gives
P5x=(5xl), @7

0%,
where 8%,€R" and 6%,eR™ . As the rank of J , is the same as the rank of J, it is clear that
the right-hand-side vector has the same form as in (25) with r independent components
first and then m—r dependent components. Since dxeZ(J), we recognize that the matrix
P is indeed a projector onto a base of the end-effector motion space where the first r
base vectors span the subspace of feasible motion, and the last m —r vectors represent
dependent directions.
The problem now is to build this special base as simply as possible.

5. Description of the dependent directions

For a particular manipulator it is usually possible to find classes of singular
configurations consisting of all singularities for which the same mechanical origin can
be determined. The wrist singularity, for instance, is actually a class of singular
configurations rather than one singular configuration.

A class of singular configurations which can be determined according to the above
concept will be termed a structural singularity. The structural singularities for a
particular manipulator can be described in terms of hypersurfaces in joint space. We
assume that a given manipulator has a finite and small number of structural
singularities. This might not be true for all possible kinematic designs, but we are only
interested in good designs with few singularities.

Just as the singularities are described in joint space, the dependent axes can be
described in terms of axes that are fixed in some link cordinate system. The physical
interpretation of this is that the end-effector can be given full mobility in a singularity
by suitably including m—r extra joints in the arm. In fact for common industrial
manipulators the degenerate directions can be selected along axes in the coordinate
systems specified by the Denavit-Hartenberg convention, and this makes it possible to
find the projection matrix P in eqn. (26) with very little extra computation.

To justify this claim a six-joint manipulator with the conventional design of three
inner joints for positioning and three outer rotary joints for end-effector orientation is
investigated.

Two types of dependent axes may appear in singular configurations.

The end effector may lose one rotational degree of freedom around some axis. Surely
this degenerate axis must be orthogonal to the rotational axis of joint six. If the
manipulator has the usual design where joint axes five and six are orthogonal it is clear
that the degenerate axis is also orthogonal to the rotational axis of joint five. Then,
according to the Denavit—Hartenberg convention the dependent axis must x5 which is
the x-axis in coordinate frame five. This singularity is termed the wrist singularity. Note
that there might be a rotation around an axis parallel to the dependent axis; the
degeneracy is that this rotation is dependent on the r independent components of the
feasible motion.

The end effector may also lose translational freedom along one or two axes. This
may occur in two situations. The first is when there are two or three neighbouring pitch
joints with parallel axes and all the pitch joints except the first are stretched out. This
singularity is termed the elbow singularity. The dependent axis is in the direction of the
offset between the joints, and this is an x-axis in the Denavit-Hartenberg convention.
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The second situation is when a roll joint which is supposed to provide a translation has
a zero arm. This is normally only possible for joint 1, and it occurs when the wrist point
is on joint axis 1. This singularlity is termed the shoulder singularity. The dependent
axis of the shoulder singularity will be in the direction of the axis joint 2 for the
architecture of the PUMA and Cincinnati T3, and this is the z,-axis according to the
Denavit-Hartenberg formalism.

In the following we will assume that the dependent axes are along some axis in the
Denavit-Hatenberg frames. The extension to cases where the dependent axis is along
some other link-fixed axis is straightforward.

Let § be a singular configuration for which a dependent axis is described in the
coordinate frame i fixed in link i. Assume that the degeneracy is a dependent velocity
along one of the axes of frame i, and let C}(§) be the 3 x 3 coordinate transformation
matrix which transforms a vector decomposed in frame 0 to frame i. The end-effector
velocity decomposed in frame i

t;=Co(@)v, (28)

will then have one component which is dependent for all feasible end-effector velocities
v,. This means that the projection matrix

Ci(g) ©
ﬁ:( ) ,) 29)

can be used. The permutation matrix P in eqn. (26) is obtained by exchanging the
dependent row with the last row in P.

If the degeneracy is in the form of a dependent rotation around an axis in the frame j
fixed in link j, the angular velocity decomposed in frame j

' =Ci(§)o (30)

has one component which is dependent for all feasible end-effector rotations. Here,
Ci(g) is the 3x 3 coordinate transformation matrix from frame O to frame j. The

projection matrix
I
F=( Cf::q‘}) b

can then be used; as above the matrix P is found by exchanging the dependent row in P
with the last row.

The application to multiple singularities of this type is straightforward. With a
degenerate translation along an axis in frame i and a dependent rotation around an axis
in frame j the projection matrix is simply

_ (Ci@) 0 )
"‘( 0 Ci@) G2

With two dependent translations along axes in frames i and j, the solution is more
complicated if the dependent axes are not orthogonal. However, in a six-joint
manipulator with vertical first axis and horizontal and parallel second and third axes,
the two possible translational degeneracies are the shoulder and elbow singularities,
and these have orthogonal dependent axes. Then the projection matrix P is as with a
single translational degeneracy.
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It must be noticed here that, since we are working on structural singularities, the
structure of the projection matrices can be found once and for all for a given
manipulator as there are only a limited number of different cases.

6. Restriction of motion close to singular configurations

Close to a singular configuration the inverse kinematic problem becomes ill-
conditioned as a small change in end-effector position may give a very large change in
joint position. To solve this problem and to ensure a continuous solution when the
trajectory goes through a singularity, a region is introduced around the singular
configuration where the manipulator is treated as if it were singular. This region is
termed the restricted region.

The pseudo inverse of the Jacobian is calculated using eqns. (19) and (20). Assume
that the rank of the Jacobian is 7 in a singular configuration §. Then J,(§) has
dimension 7 x m. According to the concept of restricted regions the 7 x m matrix J,(g) is
used in the computation of the pseudo inverse in the whole restricted region and not
only in the singularity. As a result of this, the computed pseudo inverse becomes
discontinuous at the border of the restricted region instead of at the singularity.

The computed pseudo inverse is denoted J~ and is defined by

J~=T{(GG")'G 33)
G=JJT (34)

where J, has the same structure in the whole restricted region.

In the case where the dependent axes are orthogonal and fixed in Denavit
Hartenberg frames it is simple to specify the restricted regions. The size of the regions
should be selected so that the end effector can achieve an assigned velocity in all
directions outside the restricted region.

The singularities of the PUMA-type kinematic structure are used in the following
examples to demonstrate how the regions can be specified.

First the wrist is studied. The singularity occurs when the first and the third wrist
axes are colinear. This condition is satisfied by all the configurations belonging to the
joint-space hypersurface

9s=0. (35)

The xs-axis is selected as the dependent direction. The angular velocity of the end
effector in frame 5 coordinates is

03 ={(wy, w,, 0, )" (36)
The angular velocity around the xs-axis is
Wy, = {4 sin(gs). @7

The restricted region is found as the region where the end effector cannot achieve a
given @,, with |g,|<43°% it is given by

lgs| < arcsin (@,,/¢5*), (38)

where the region boundaries are computed only once.
The second singularity is a pitch joint singularity; it is described by the hypersurface

g;=0. (39)
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The degeneracy is a translation in the x, direction which cannot be independently
specified. The end-effector translational velocity in frame 2 coordinates is

ut2=(vx1 vy; 083)1' (40)
The velocity in the x, direction from joint 3 is

Uy, = —§ad, sin(qs), 41)
where d, is the length of link 3. The restricted region is in this case given by
|g3] < arcsin (,/3ds)) (42)

if it is specified that the end effector must be able to achieve an assigned 7, outside the
restricted region with [ga| <45

Finally the roll joint singularity is investigated. The singularity in this case occurs
when the wrist point is on the rotational axis of joint 1; the corresponding joint-space
hypersurface is given by

rw=a,sin(q,)+d, sin{g; +q3)=0, (43)

where a, is the length of link 2 and d, is the length of link 3. The dependent axis is the z,
axis where the translation depends on the orientation of the end effector. Note that this
dependent axis is orthogonal to the dependent x, axis studied above. The velocity in
the z, direction is

v, ="y (44)
and the restricted region can be calculated from
Il <6.,/47™, 45

where #,, again is the velocity requirement outside the restricted region.

7. Nullspace motion and continuity of the joint-space solution

The manipulator is treated as singular in the restricted regions, which means that
the commanded task space motion is only achieved for r degrees of freedom. The
remaining n—r degrees of freedom must be commanded so that the solution is
continuous when the manipulator enters or leaves the region. These degrees of freedom
are in the nullspace of the manipulator Jacobian.

The obvious solution to this problem is to interpolate between the singularity and a
point on the border of the restricted region termed the border point and which has
coordinates q,. This is done in our scheme, however we would like to emphasise that the
interpolation is only performed in the dependent directions, and that an exact solution
is used in the space of feasible end-effector motion. The scheme resembles the solution
by Aboaf and Paul (1987). However in their work joint 4 was given maximum velocity
in the restricted region associated with the wrist singularity, and this may result in a
discontinuous velocity in joint 4 due to a change of sign when the manipulator leaves
the restricted region.

The differential motion in joint space is found from

oq=J"(q)ox+(I—J"(g)(q))z, (46)

where (I—J~J) projects an arbitrary vector z into .A4'(J,) which is identical to the
nullspace of J in the singularity.
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We first assume that the manipulator enters the restricted region of a singularity of
multiplicity one, that is r=m— 1. A continuous solution is then obtained by using

z=0J"(q,)0x, 47

where « is the interpolation factor which is zero in the singularity and unity on the
border.

In the case of multiple singularities, one interpolation factor has to be used for each
singularity to ensure continuity when the manipulator comes from one restricted
region to another region associated with a singularity of a different dimension. A
continuous solution could now be obtained using multiple border points, but this gives
a complex solution with much computation.

We therefore chose to interpolate only the dependent motion associated with the
wrist singularity in the case of multiple singularities. The wrist singularity is the most
problematic as it can appear anywhere in the reachable workspace. A small
discontinuity in the dependent motion associated with the shoulder and elbow can be
tolerated, however it would also be possible to remove the discontinuity by low-pass
filtering.

8. Comparison with other approaches: an example

In this section an example proposed by Wampler (1986) is revisited. The simple case
considered is suitable for a comparison with other existing approaches.

Let the assigned manipulator consist of a single link of unit length with a rotational
joint, and suppose that only the position of the endpoint along an horizontal line is the
considered task-space coordinate x.

If 3is the angle measuring the rotation of the link from the horizontal line, the direct
kinematics of the manipulator is given by

x=cos ()
i=(—sin(oyg ™l (“8)
It is easily recognized that
J()=(—sin(9) (49)

is the 1x 1 Jacobian matrix of the assigned manipulator and 9=0 is a singular
configuration.

Inverse-kinematic velocity solution describes the mapping of the end-effector
velocity space into the joint velocity space. In the simple monodimensional case the
mapping just consists in a scaling factor depending on the position of the link; this
scaling factor, defined as

p(9)=9/x, (50)

will be termed the velocity ratio in the § configuration. In the following for simplicity of
notation the dependence on the configuration will be dropped.
The inverse-based solution is given by

l v
=(*sin(9)) » D

it is not defined in 9 =0 and gives high velocity ratios as § approaches the singularity.
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A solution defined even in the singular configuration is provided by a pseudo
inverse of the Jacobian matrix. In this case it can be simply written as

Y
§= ("s‘in(g))" 0

0 3=0.

(52)

High velocity ratios will still result in the neighbourhood of the singularity.
Bounded velocity ratios can be obtained modifying this latter solution. If a
threshold value ¢ is introduced, the joint velocity can be computed as

Ly,
e (_siﬁ (Sj)x [sin(9)| =& 53)
0 [sin(9)] <e&.

For an allowed maximum velocity ratio p,,,, we choose ¢=1/p,.,.

Although solution (53) has overcome our earlier problems, it does not constitute a
feasible control strategy. Indeed, if the manipulator crosses the singular region, a
discontinuous joint velocity results when the value of sin(9) imples a switch in the
velocity law. Moreover, inside the singular region the degenerate direction cannot be
controlled.

A more complete way of exploiting the generalized-inverse approach has been
presented in this paper. The proposed solution, indeed, allows to achieve the desired
continuous behaviour. In the case at issue the restricted region is defined by [sin (9)| <&
and the border point is 3, =arcsin (g); choosing the interpolation factor a=9/9,, the
solution is given by

1 .
( - m) X |sin(9)=¢
9= (54)

9. .
( s&b)x |sin ()] <e.

A simple linear interpolation has been used here, whereas different possibilities can
be exploited. The central point is that as long as the manipulator is treated as singular,
what is lost in the trajectory achievement can be gained by fulfilling additional
requirements. The basic requirement to ensure is the continuity of the velocity law,
while a different shaping of the null-space term can be designed to meet different
criteria.

The damped least-squares solution is

sin(9) )

‘( sin2(3)+k2)x’ (53)
where k must be suitably chosen. For a direct comparison, we suppose that the same
maximum velocity ratio p,,, is assigned (see Fig. 1); it can be seen that this
means k=1/2p_...

Let us now compare the performance of the solutions (54) and (55).
Outside the singular region the proposed solution represents the exact solution.
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Figure 1. Direct compensation: a, exact solution; b, damped least-squares solution; c, proposed
solution.

The damped least-squares method, instead, gives an error which takes its maximum
value in correspondence of the 9, angle; notice that with the assumed design thiserroris
equal to the 20 per cent of the maximum velocity ratio. A different choice of k allows for
better tracking performance. If a maximum error equal to the 1 per cent of p,,,, is
desired, a peak in the velocity ratio up to 5 times the assigned p,,,,, will result. Moreover,
a faster change in the velocity characteristic in the very neighbourhood of 9=0 is
required.

Inside the singular region, both approaches are based on modification of the exact
transformation (51) in order to exchange precision with feasibility of the solution;
quality rather than accuracy of the solution is therefore at issue. It can be seen that the
damped least-squares solution (55) results in higher velocity ratios and in sharper
transition of the velocity characteristic in the neighbourhood of the singularity, unless
designs giving unacceptable errors in larger regions of the workspace are considered.
On the other hand it must be noticed that the velocity characteristic for the proposed
solution (54) is not fixed inside the restricted region; if it is convenient, a different null-
space term can be used instead of the linear one without affecting the performance of
the solution far from the singularity.

A direct comparison with the Jacobian-transpose methods is not possible, since
they are inherently iterative methods. This means that, instead of an instantaneous
mapping of the end-effector velocity into the joint velocity, a tracking-error dependent
joint velocity law is used. For the assigned manipulator the Jacobian-transpose
solution is given by

§=PBlsin (9)[xa—cos (9)], (56)
where f is a suitable gain and x, is the time-varying reference trajectory for the task-

space coordinate x. It must be noticed that the transpose solution is well defined also in
the singular configuration.
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9. (Case studies and simulation results

An industrial manipulator has been considered for practical implementation of the
proposed algorithm. The manipulator is the MANUTEC_R3 robot possessing six
joints arranged in a PUMA-like geometry (see Fig. 2).

The given kinematic structure presents the typical elbow, shoulder, and wrist
singularities. According to Section 6, the restricted regions are specified as follows:

lgs| <arcsin (0-05)=g,, (wrist)
g3 <arcsin (0:05)=g;, (clbow) (57)
Ir,| <005 (shoulder).

In the wrist and elbow cases, this choice means to assign an upper bound of 20 on
the velocity ratio along the dependent direction; in the shoulder case, in particular, the
restricted region can be visualized as a cylinder of 5 cm radius around the shoulder axis
of the manipulator.

When the manipulator enters at least one of the above regions, it is treated as
singular; this means that the solution (7) is switched to the selution (46,47). To the
purpose, some extra computation is needed.

Figure 2. Model of the MANUTEC_R3 robot.
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First the matrix P is computed either as

I 0
58
(0 C%(q)) o8
in the wrist singularity case alone, or as
Ciq) ©
( 0 1 (59)
in the elbow and/or shoulder singularity case, or as
Cilg) 0 )
60
( LU o (') ()

in all other singular cases. Note that the matrices Ci(q) are already available since they
are needed in the computation of the direct kinematic function.

Then the block P, of the matrix P (needed to build the matrix J,) is obtained by
removing the rows of the matrix P which correspond to dependent directions; namely
the first, third, and the fourth row respectively in the case of elbow, shoulder, and wrist
singularity. The proposed pseudo inverse will then be computed as in eqns. (33) and
(34), since J=P,J.

The computation of the border point g, is performed in successive steps. First it is
assumed g,=g¢; then in the wrist singularity case it is g,,=d,, and in the elbow
singularity case it is g,, = §,,,. The shoulder singularity case is not trivial because of the
nonlinear coupling between g, and g;. Our choice is to search g, solving eqn. (43)
with g3 =g..

The interpolation factor « is simply computed as

o =sin(q5)/sin (§p,) > qs/4p,- (61)

The algorithm has been implemented developing FORTRAN subroutines to be
linked to the library of the CYPROS simulation package; the host computer was a
80386/80387 (24 MHz) machine. Although a high-level language and a general-purpose
simulation package were used, the available hardware allowed real-time runnings at
15ms sampling time for the Euler integration method. In the following, however,
results obtained with a sampling time of 1 ms will be presented.

As a first example, a task space trajectory along which the wrist singularity occurs is
given (Figs. 3-8). It consists of a straight line (of 0-72m) to be described with fixed
orientation in 3s following a trapezoidal profile velocity law (1s of cruise time is
assigned). In Figs. 3 and 4 the joint angle histories are depicted; it can be verified that the
singularity (i.e. g5 =0) occurs at t~ 1-5s. Figs. 5 and 6 show the joint velocity histories;
the effectiveness of the interpolation can be appreciated by looking at the smooth and
continuous behaviour of ¢, and §¢ curves around the singularity which are instead
expected to peak close to the singular configuration. Finally, the task-space errors are
reported, namely linear and angular velocity errors (Fig. 7) and position and
orientation errors (Fig. 8). Remarkably, the magnitude of the velocity transformation
errors in the singular region is comparable to that outside the region—where the exact
velocity solution is used—which is inherently due to the discrete implementation of the
algorithm. This result is even more interesting if related to the smooth joint velocity
histories obtained.




S. Chiaverini and O. Egeland

216

3.0

2.0

1.0

0’0
(ped) Th = ©
(ped) 2b - <
(ped) gb - ©

time (3)

Figure 3. Joint-angle 1-3 histories.
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Figure 4. Joint angle 4-6 histories.
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A challenging test for the scheme is constituted by a trajectory which requires to be
entirely described with the manipulator in singularity (Figs. 9-12). This is the case of a
straight-line trajectory lying on the axis of the robot shoulder; in particular, the
manipulator 1s gradually folded while keeping constant hand orientation. Notice that
the starting configuration chosen implies that all three singularities occur. The adopted
solution gives no motion to joints 1, 4, and 6 as it enjoys the minimum-norm property;
the corresponding curves are therefore omitted. During the earliest stage of the
trajectory the manipulator is almost upright; in this phase the commanded motion is
not feasible and only the wrist interpolation factor is used. This results in slow arm
motion and large task-space velocity errors. As the manipulator leaves the elbow
singularity, the commanded motion becomes feasible and joint velocities are increased;
subsequently, the wrist singularity is left too. This happens quite suddenly because no
elbow interpolation is used. Throughout the transition, peaks on the joint velocity
histories are thus experienced. The latest part of the trajectory is properly fulfilled
despite the remaining shoulder singularity, as the commanded motion has become
feasible.

Further improvement of the tracking performance can obviously be gained if the
proposed velocity transformation is integrated in a closed-loop inverse kinematic
scheme, thus allowing compensation of the tracking error. In this case, however, larger
joint velocities may be required.

10. Conclusion

A singularity handling technique for six-joint manipulators has been presented. The
inverse kinematic solution is exact in all feasible directions, while an approximation is
used in the dependent directions. In the case of a single singularity the solution is
continuous, while small discontinuities occur at multiple singularities. The method was
demonstrated for the MANUTEC_R3 manipulator, and very good results were
obtained with a trajectory through the wrist singularity. The method can be easily
extended to other types of manipulators.
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