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When applying feedback linearization techniques actuator dynamics is usually
neglected. This is crucial for actuators with large time constants. A large class of
systems, e.g. chemical processes, belong to this category. In such cases conventional
feedback linearization techniques based on adaptive control or sliding control
perform poorly. This paper discusses an approach which allows the inclusion of the
actuator dynamics in the controller design. The design methodology has validation
both for adaptive feedback linearization as well as sliding control. An augmented
Lyapunov-like function candidate including the actuator states was used to prove
global stability. This is done by applying Barbalat’s Lyapunov-like lemma for non-
autonomous systems. The control law is simulated for both the nominal and
adaptive cases. In the adaptive case both the plant parameters and the actuator time
constant are assumed to be unknown.

1. Introduction

Feedback linearization techniques allow the designer to compensate for non-
linearities in a plant when designing the control law. Controllers based on feedback
linearization have high performance and may be used for a large number of operating
conditions. The major problem with feedback linearization techniques is robustness
due to imprecise cancellations of model non-linearities and neglected actuator
dynamics. In the case of parametric uncertainties, global asymptotically stable
controllers may be found by using Lyapunov stability theory. Two useful results from
the stability theory are adaptive feedback linearization and sliding control. Both
approaches have been successfully applied in robotic control for several years, Slotine
and Li (1987). Sliding control has also been applied in the control of underwater
vehicles which are highly non-linear and time-varying in their parameters, Yoerger and
Slotine (1985). This paper shows how adaptive feedback linearization can be applied to
non-linear systems with significant actuator dynamics. Such systems frequently appear
in process control as well as in the control of mechanical systems.

2. Nominal design

In nominal design we will assume perfect knowledge of both the plant dynamics and
the actuator dynamics. The adaptive case will be discussed in the next section.
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2.1. Review of input—output feedback linearization
We briefly review some of the results from Sastry and Isidori (1989) and Slotine and
Li (1991). Consider an SISO non-linear minimum phase system described as:
X =f(X)+b(X)u )]

where X =[x, %,..., x"~ V]" is a measurable state vector and the scalar u is the control
input. This control problem may be reduced to that of controlling the linear system:

X =0, @
A stable closed loop system is obtained for v, defined as:
d "
=" —(‘—,;H,) # @

where X =x—x, is the tracking error, x, is the desired state vector and 4, is a positive
constant which may be interpreted as the control bandwidth. If b(X) in Eqn. 1 is non-
singular for all X, the actual control input u is calculated as:

1

u= v.—f(X 4
%) (v.—f(X)) @
Slotine and Li (1987) define a sliding surface:
d -1
S=(z+"==) % ©)
The relationship between v, and s is simply:
§+A5=x"—p =0 (6)

This ensures that the sliding surface s—0 and thus X—0. For cases n=1 and n=2 these
expressions are simply:

n=l, S=x~ vx=37:¢—1,x~
n=2, s=X+AKX v ,=F%—2AX—A2%

Let o> 0 be the reference model’s eigenvalues and let r, be the commanded input. This
suggests the reference model can be chosen as:

n=1, X;+oxz=or,
n=2, X;+2o%,4+0>x,=0r,

or in generai:
d " ;
(a+a) Xg=0Ty 0]

2.2. Actuator dynamics
Consider a non-linear SISO system in the form:

x=f(x)+b(x)u (8)

=~ =) o
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where T is the actuator time constant and «' is the actuator input. To apply the results
from the previous section, we must first calculate i:

. [2f(x) 6‘b[x) f(x) 31?(3’6}
x= ( ax T oox YFTbM= (

which suggests the non-linear control law:

u'=b(—z)|: (agi"" L) )(f(x)+b(x)u}]+u (1)

A major disadvantage with this approach is that we have to calculate ¢ f(x)/dx and
db(x)/0x. In the adaptive case, we also have to measure X which is quite restrictive. This
suggests a new scheme. By splitting the design into two parts: (1) design of an inner loop
and (2) design of an outer loop, a much simpler decoupling strategy is found.

)(f( )+ blx ]u)-—(u ) (10)

Design of inner loop
Again, assume that the actuator dynamics is as described in Egn. 9. If we define the
desired behaviour of the actuator dynamics as:

g+ A u,=Ar, (12)

where 4, is a positive constant and r, is an unknown commanded input will be
interpreted later. Define a Lyapunov-like function candidate:

V,(a,t)=4&i* where i=u—u, (13)
Selecting the control law:
u=Tyv,+u (14)
with v, defined as:
Dug =tig— Al (15)
yields the error equation:
U+2A4=0 (16)
and thus:
=—2,i2<0 (17)

According to Barbalat’s Lyapunov-hke lemma this ensures that the inner loop is
globally asymptotically stable, ie. u converges to u, in finite time for all initial
values. Eliminating  from Eqns. 9 and 16 and substituting Eqn. 12 yields the
following expression for r,,.

1 1
r,=(1 “ﬁ)“"n,“' (18)

Design of outer loop

Let the controller be chosen as Egn. 14 with v, defined as in Egqn. 15. The
commanded input r, in the reference model Eqn. 12 is found from the following
assumption:
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Assumption 1: High bandwidth inner loop
In the design of the inner loop, 4, is assumed to be selected such that:

Ti>1
This implies that Eqn. 18 simplifies to:
r,xu
which suggests the inner loop commanded input r, to be selected as Eqn. 4, namely:
1
r,=—co—(,—f(X 19
by /) (19)

This particular choice of r, implies that the closed loop system consists of a high
bandwidth inner loop with bandwidth 4, decoupling the actuator dynamics and an
outer loop with bandwidth A, decoupling the plant dynamics, see Fig. 1.

Define a Lyapunov-like function candidate:

Vs, t)=14 s (20)
where s is defined in Eqn. 5. Differentiating V¥, with respect to time yields:
V=88 =s(f(X)+b(X)u—v,— A5) @1

From assumption 1, we have: u=r, which implies that:
V,=—25%<0

which again according to Barbalat’s lemma ensures that s and % converge to zero.

3. Adaptive feedback linearization

Adaptive feedback lincarization is described in detail by Slotine and Coetsee (1986)
and Slotine and Li (1987, 1991). To generalize these results for the case where we have
actuator dynamics, let us consider a system in the form:

X =£(X)+bu
= —-;_,(u— o) 22)

where b is an unknown constant with known sign, f is a nonlinear function with
unknown constant or slowly varying parameters and Tis a positive unknown time
constant. To derive a control law that ensures perfect tracking in spite of parametric
uncertainties, we select the control law as:

v="Tv,+u (23)

Ty

LN RPN Ty = Ty

(198)

(12)

(9) (1) -

Figure 1. Closed loop system dynamics. The numbers in brackets denote the equation
numbers.
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where the hat denotes the adaptive estimate and v, and v, are defined as in the nominal
case. Assume that f(X) is linear in its parameters 0, such that f(X) may be written as:

[(X)=9"(X,v,)0
where ¢(X,v,) is a non-linear known regression vector. Combining Eqns. 22 and 23

yields: .
§+25=x"—v, =b[—(‘£—£) +(%—%)vx:| =be(X,0)0

a+1,a=a_v,,=;,fv.,, T>0 (24)

where, =60 is the parameter error vector and T= T— T'is the time constant error.
In the adaptive case the inner loop commanded input r, is found as:

1 1 T
r,=(]—Tl")u+T1"u’—TA“v,, (25)

where the last term is due to the uncertainties in the actuator time constant. Again, we
assume that A, can be selected such that T'A, > 1 which implies that r, =~ u. This suggests
that the commanded input r, is to be selected as:

1
i) (vx —f (X)) (26)

To derive the parameter update laws, we propose a Lyapunov-like function candidate:
1
V(s,ﬁ,:)=§(sz+az+£Tz+|b|6Tra), T>0 (27)

where, f§ is a positive constant and I is a positive matrix of appropriate dimension,
usually diagonal. The following adaption laws:

0= —sgn(B) 'e7(X,v,)s
s 1
T= ——uv, (28)
B
V=—1s*—2,42<0 (29)
According to Barbalat’s lemma this ensures that the sliding surface s converges to zero
and thus X converges to zero. It is important to notice that the parameter estimates will
be bounded. To implement the controller we must replace the parameter update laws
with: =6 and T= T Thisis based on the assumption that the true plant parameters are
constant or at least slowly varying, i.c. #=0 and T=0.
4. Case study

4.1. Simplified model of a marine vehicle
The motion of a marine vehicle in surge may be described as:

lead to:

X = —ax|x| 4+ bu

= — ,lr(u—u’)
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where a, b and T are unknown constant parameters. Defining the decoupling
parameters v, and v, as:
Up=Xg— AKX
v,=t;— A0
the control law becomes:
w="Tuv,+u
Defining the parameters 8, =¢ and 6, =1, the desired states u,, x, are calculated from:
r.=@"0=>0,x|x|+0,v,
g+ A, =A,r,
Xgtoxg=or,

Global stability is guaranteed if the parameter update laws are chosen as:

1
él=——xlxls
71
1
0,=——v
2 72 x5
1= lv"a
B

where the sliding surface s is simply s=X.

4.2 Simulation result

In the first simulation we assumed that the plant and actuator parameters were
perfectly known, i.e. a=0-5, b= 10, and T was varied as: T=0-1s (Fig. 2), T=1s (Fig. 3)
and T=10s (Fig. 4). Each simulation was performed for two different cases:

Case 1: Decoupling of both the actuator (inner loop) and the plant (outer loop)
according to the scheme presented in Section 2.

Case 2: Decoupling of the plant (outer loop) only, but the actuator dynamics (inner
loop) is still included in the simulations.

The sampling rate used in the simulations was 10 Hz while the control bandwidths were
selected as: 4, =10 and A, = 1. The commanded input r, was switched between r,=0-3
andr,=0-1. For T=0-1 s the tracking error %, the plant input u and the actuator input ¢/
were practically equal for Cases 1 and 2. Fig. 2 illustrates the time responses for both
cases. When we increase the actuator time constant T by a factor of 10, the results are
quite different, Fig. 3. In Case 1, the tracking error is quite similar to that of Fig. 2. For
the case where we only decouple the plant, we notice a significant increase in the
tracking error. This trend is clearer for T=10s, Fig. 4. Here the performance is quite
unsatisfactory for Case 2, while Case 1 still yields good performance. The simulation
results for the nominal case illustrate that the non-linear decoupling should include the
actuator dynamics when the time constant for the actuator dynamics exceeds
approximately 0-1s. For other systems this limit may of course vary.
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In the case of parametric uncertainties in the model, adaptive feedback linearization
should be used. In the last simulation, Fig. 5, we have assumed that both the plant and
actuator parameters were unknown. The unknown parameters were initially chosen as:
6=[0,0-05]" and T=1 while the true parameters were § =[0-05,0-1]7 and T=10. The
adaptation gains were selected as: y, =001, p, =0-01 and f=0:001 to demonstrate the
adaptive case while /,=300and A, =1. The relative large value for 4, ensures that r,~ u
which is essential for good performance of the outer loop. In the adaptive case, Fig. 5, it
is seen that the performance is quite good even for parametric uncertainties. As
expected, the unknown parameters do not converge to a global optimum. The scheme
still generates parameter values that ensure that the tracking error converges to zero. If
parameter convergence is important, the desired trajectory must satisfy certain
‘sufficient richness conditions’, e.g. see Slotine and Li (1987). Also note that the inner
loop u converges much faster than the outer loop x due to the bandwidth specification:
2,=300 > A,=1. These results illustrate that the actuator time constant like the plant
parameters do not have to be perfectly known in advance. The result that the actuator
time constant may be estimated and included in the feedback linearization scheme may
be quite applicable in control system design.

5. Conclusions

An algorithm for adaptive feedback linearization of non-linear systems which
includes the systems actuator dynamics has been derived. The control synthesis is
divided into two steps: (1) design of a high bandwidth inner loop which decouples the
actuator dynamics, and (2) design of an outer loop controller which decouples the plant
dynamics. The actuator dynamics does not have to be linear as in this paper. It is
straightforward to rederive the scheme for the case when the actuator dynamics are
non-linear. In the simulation study, adaptive feedback linearization of a system with
significant actuator dynamics was found to yield good performance even for large
parametric uncertainties. A generalization to MIMO systems will be essentially
mathematical.
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