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An algorithm for design of decentralized
suboptimal controllers with a specified structure
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In this paper we present a method for the design of controllers with a specified
arbitrary structure for linear multivariable time invariant systems. Both decen-
tralized controllers as well as feedback from a reduced state vector can be designed
by this method. The controller will become optimal in the sense that it yields a
minimum of a quadratic cost criterion and suboptimal in the sense that it yields a
higher value of this criterion than a controller without restrictions. The algorithm
makes it possible to specify a stability margin on the feedback system. This means
that the feedback system will have eigenvalucs located to the left of a certain line
(—o) in the complex plane. The unknown parameters of the controller are collected
in a parameter vector. The algorithm is based upon a modified Newton-method for
searching towards the ‘optimal’ parameter vector. The algorithm ensures that the
closed loop system is stable at any iteration in the case of an initially stable plant,
and after the final iteration in the case of an initially unstable plant.

1. Introduction

Levine and Athans (1970) gave a necessary condition for ‘optimality’ when a
feedback is established from a reduced state vector for a linear time invariant system.
This result involves the solution of a set of nonlinear matrix equations which is a
difficult task. This same problem is dealt with in Solheim (1976). The above method
does not allow specification of a decentralized control structure.

Kosut (1970) generalizes the result into two algorithms for the determination of a
suboptimal decentralized controller. Suboptimal here means that the controller does
not necessarily give a minimum of the criterion. Furthermore, neither of the methods
presented by Kosut guarantee that the closed loop system will be stable. This must be
checked explicitly. Geromel and Bernussou (1979) present an algorithm for the design
of suboptimal decentralized controllers based upon a search method of feasible
directions’. This algorithm is based upon the solution of two linear matrix Liapunov
equations at each iteration, and needs to be initialized with a stabilizing control. An
advantage of this method is that it guarantees a stable solution at each iteration.
However, the algorithm converges very slowly because is based upon searching along a
line in the gradient direction. It also turns out that the algorithm solves an unnecessary
problem, namely the determination of the gradient of the criterion for the case of no
restrictions on the controller and thereafter sets the gradients in the undesired
directions to zero. Geromel and Bernussou also do not indicate any possibility for
including a specified stability margin in the criterion.
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The algorithm to be presented here allows us to design ‘optimal’ decentralized
controllers with specified structures. It is only necessary to solve one matrix Liapunov
equation at each function evaluation, which guarantees the stability. Furthermore, the
algorithm does not involve any unnecessary computation because the search for the
unknown parameter vector is done in the gradient direction.

If an initial stabilizing controller exists, for example the zero control if the nominal
system is stable, a method for unconstrained optimization is employed in the
algorithm. In this case the closed loop system is guaranteed to be stable at each
iteration and the solution converges to a local minimum. In the case that the system is
initially unstable, and an initial stabilizing controller does not exist, constraints to
ensure that the final closed loop system is stable are added to the problem, and a
method for constrained optimization is employed.

The specification of a certain margin of stability for the resulting closed loop system
is based on Anderson and Moore (1971).

Section 2 will define the problem. Section 3 describes the method of inclusion of the
stability margin in the criterion. Section 4 presents a new method for the deisgn of linear
controllers with a specific arbitrary structure. Section S deals with the problem of
tuning controllers, which may possess some structure, for initial unstable plants. In
Section 6 some examples are presented, one on the use of the algorithm for the design of
controllers for a binary distillation column and another for tuning controllers for an
initially unstable plant.

2. Problem definition
Assume a time invariant linear system of the form

Xx=Ax+ Bu (1)
and the quadratic objective functional

J= I *(Ox + uTPu) dt %)

where x is an n-dimensional state vector, u is an r-dimensional control input vector, A
and B are constant matrices of appropriate dimensions and Q and P are n x n non-
negative and r x r positive definite weighting matrices, respectively.

The problem is to design a controller matrix G of dimension r x n so that the system
(1) gets the linear feedback

u=Gx (3)
and so that the following requirements are satisfied

G has an arbitrary specified structure (diagonal, blockdiagonal, sparse etc.).

G is determined so that the quadratic performance criterion (2) is minimized.

G is determined so that the system (1) with controller (3) gets a specified stability
margin.

The algorithm will make it possible to determine decentralized P, PI and PID
controllers for multivarible processes in a systematic manner. Furthermore the
determination of feedback from a reduced state vector is made possible. This means
that the controller matrix G has certain rows with only zeros.
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If an m-dimensional vector y of measurements is given by the linear equation
y=Dx @

then the problem above may be formulated as the output feedback design problem. The
linear feedback is in this case given by

u=G,y=G,Dx )

An alternative criterion to (2), to be minimized subject to (1) and (5), is
J= I (x"D'Q,Dx + u"Pu) dt (6)
I

This problem is the same as that in (2) and (3) substituted for Q—»D"Q,D and G-G,D.

3. Specification of stability margin
We assume that the overall system (with the controller) is specified to have a

stability margin such that all eigenvalues have real parts less than —a. Therefore we
modify the criterion (2) as suggested by Anderson and Moore (1971) to

J= I exp Qat)x"Qx + u" Pu)dt )
L1

Furthermore we introduce
x=exp(af)x and a=exp(at)u ®)
Now we have a modified problem of the same form as that introduced in Section 2
x=(A+oDx+Bi ©)
J= I (x"Qx+a"Pi)dt (10)

4]

By solving this LQ optimal control problem, (determine a controller for (9) so that the
closed loop system is stable and (10) is minimized), we obtain a linear feedback
controller of the form

i=Gx (11)

which is seen to be a linear feedback controller of the form u=Gx for the original
system, and which yields the desired stability margin. This means that when G is
determined for the modified problem in (9) and (10), the system in (1) will converge
faster than an exponential with time constant 1/o because

x=exp(—at)x (12)

in which x is a stable trajectory.

4. Solution algorithm

Independent of how G is determined the following must be satisfied (Bryson and
Ho 1969)

min J=exp (2at1)x"(t,)Rx(t,) =exp (2ay) tr (x(t,)x(£1)R) (13)
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where R must satisfy the equation
(A+al + BG)'R+ R(A+al + BG)+Q+G"PG=0 (14)

The parameter vector 8 is defined as the unknown nonzero elements in G. In addition
comes a matrix F which specifies the structure. This is described in the definitions
below.

Definition 1. The elements in the r x n dimensional structure matrix F is defined by:

1 if g; #0
L= ‘ 15

We note that F satisfies FxG=G where x denotes element by element matrix
multiplication.

Definition 2. Given a general r x nmatrix G. The p-dimensional parameter vector 6 can
be formed from the column vectors of G given a matrix structure defined by F. We will
introduce the column structure string (css) operator in order to effect such
transformations:

0=css(G, F) (16)

In order to effect the transformation from the vector 0 to a matrix G, when a matrix
structure is defined by the matrix F, we introduce the inverse column structure string
operator:

G=css™ (0, F) 17

Let p=dim @ which is equal to the number of nonzero elements in F. The problem of
determining the optimal feedback matrix G is thereby converted to that of determining
6 from the following optimization problem (where for the sake of simplicity t, =0).

(A+al + BG)'R+ R(A+al + BG)= —(Q + G'PG) (18)
minJ =minJ = tr(x(0)x"(0)R) (19)
] G

Itis seen that the initial state x(0) appears in (19) which means that the optimal criterion
value depends on the initial state. If we do not impose restrictions on the controller, the
optimal solution G of (19) will be independent of x(0). However, when the controller is
to have a special structure, the optimal solution G will depend on the initial state. This
problem can be avoided by regarding x(0) as a stochastic variable and assuming

E(x(0)=0, E(x(0)x"(0)=1I (20)

For a given G, (18) will become a matrix Liapunov equation with R as unknown. If G is
such that (4 +of + BG) s a stable matrix and (Q + G"PG) is positive definite, then there
is a guarantee that the solution R of (18) will be positive definite and symmetric.
The symmetry is guaranteed because the right-hand side of (18) is symmetric and
the positive definiteness is known from Liapunov’s second method. Note that when the
control input weight matrix P = P" >0 then G"PG >0 and that Q is assumed to be non-
negative. This implies that (Q + GTPG) is at least non-negative. Note also that for a
solution of the Liapunov equation to exist, the eigenvalues 1 of (4 +al + BG) must
satisfy 4;+4;#0,i,j=1,...,n and that the solution is not unique when (4 + af + BG) is
singular. This means that a unique solution exists when (4 +al + BG) is stable.
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The matrix Liapunov Equation (18) is linear in R for a given G. In order to
determine the value of the functional J(6) in (19), R must be determined from (18) and
this is therefore an important part of the optimization problem. A special study has
been done to find the best method for solving matrix Liapunov equations (Di Ruscio
1988). In this work we used the method by Chen (1968). However, Chen’s method has
little to recommend it from a numerical point of view compared to applying the
Bartels-Stewart algorithm (1972) or the algorithm by Golub et al. (1979).

Introducing k as an index of iteration, the following algorithm is developed for
determining the value of the functional J(8,) for a given 8,.

Algorithm 4.1, computing J(8,)

(1) Given a parameter vector 8,. Transform 6, to the feedback G, with feedback
structure given by F, ie.

G=css~ (6, F) (1)
(2) Determine R, for a given G, which is a solution to the Liapunov equation.
(A+aol+ BG,)"R,+ R,(A +ol + BG,)= —(Q + G] PG,) (22)

(3) Determine the value of the functional
JO)=tr (R 3)

Now a search technique for the determination of the optimal parameter vector
can be employed (Schittkowski 1984, Wolfe 1978). The optimization problem in (18)
and: (19) is nonlinear in . We now propose to employ a Newton method where the
gradient of J(0) with respect to # and the Hessian matrix are determined numerically by
perturbation of 6. The algorithm is described in detail in Wolfe (1978). A description is
given below.

Algorithm 4.2, solution procedure

(1) Specify an initial parameter vector 8,. Determine the feedback matrix by the
transformation Gy=css ™ *(8,, F). The iteration must be initialized with a
choice of G, such that (A +a«l + BG,) is stable.

(2) Determine the gradient g,=aJ/d6, numerically. Values of functional J are
determined by Algorithm 4.1. See also comments below.

(3) Test convergence. If all elements of g, are less than a specified small value the
gradient search is terminated.

(4) Determine the Hessian matrix H,=032J/86% > 0.

(5) Determine search direction p, from H,p, = —g,. Update the parameter vector
from 6, ; =6, + o, p, where o, is a line search parameter determined such that
0<J(0,+1)<J(8,) is satisfied. Return to item 2.

The elementary form of Newtons method can run into problems if the following
appears:

H, ! exists and is positive definite but p, is so large that J, ., > J,.

The direction py is orthogonal to g,.

H; ! exists but is not positive definite.

H, ' does not exist.




160 D. Di Ruscio and J. G. Balchen

The actual algorithm which is implemented is modified to handle this situation. (For a
detailed description see Wolfe (1978) ch. 3.3).

Item 1 in the algorithm assumes an initial value of @ which stabilizes the closed loop
system. If the process (without closed-loop control) is stable the initial value of 8 can be
set to zero. If the nominal system is unstable, constraints to ensure that the final closed
loop system is stable may be included in the algorithm. This problem is further
discussed in Section 5.

Item 2 in the algorithm above is the determination of the gradient g, = 8J/60,. This
is done numerically from the expression

& _J(O+he)—J(6,—he))
%0, 2h > J

where e; is an p-dimensional unit vector with 1 in position j and the rest of the elements
0. h is a small (computer dependent) quantity. The values of the functional J are
determined as described above. The Hessian matrix in item 3 is determined numerically
from the gradient calculations. This is described in Wolfe (1978) ch. 3-5p. 109.

In item 5 it is noted that the functional value must satisfy J(0) =0. The reason for
this is simply because

=1,...,p (29

J(6)=tr(R)=tr(STAS)=tr(A)>0 (25

where A is a diagonal eigenvalue matrix, Sis an orthogonal eigenvector matrix and R is
positive definite. The case J=0 corresponds to the case with @=0 and no control.

The suboptimal cost may be compared with the expected optimal cost by the
performance index

y= tr(R)
tr(R )
where R,,, is the optimal solution to the problem, i.c. the case without constraints on
the controller structure. The suboptimal cost can also be compared with any other cost.

=1 (26)

5. The output feedback design and the stabilization problem

In Section 4 we have solved the problem of designing a linear optimal constant
feedback from a (reduced) state vector, where the feedback matrix G may have some
structure.

Suppose that one now introduces the constraints that the control u be generated via
output linear feedback, as stated in Section 2, Equations (4), (5) and (6). The solution to
this problem is the same as that in Section 4. Substituting G—G,D and Q—DTQ D in
Equation (14) gives

(A+al+ BG,D)"R+ R(A + ol + BG,D)= —(D"Q,D+(G,D)"PG,D) 27

If an initial stabilizing matrix G, is available, then the optimization algorithm
presented in Section 4 is sufficient to determine the optimal parameter vector @.

If the system is open-loop unstable, then we have two problems to deal with, one of
existence and one of the construction of a stabilizing feedback matrix. The existing
problem has a yes/no answer. This problem is dealt with by, among others, Anderson
et al. (1975), Anderson and Scott (1977). If a construction algorithm fails, it indicates
non-existence of a stabilization controiler.
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The construction problem may be solved by adding some constraints to the
optimization problem in Section 4 to ensure that the final closed loop matrix A + BG or
A+ BG,Dis stable. Routh or Hurwitz conditions may be used to determine constraints
from the closed loop matrix characteristic polynomial, however for this problem it
seems to be more elegant to restrict the solution R of (27) to be positive semi-definite. If
a non-negative R is found, and the system is detectable, then the closed loop system is
stable. This is due to Liapunov’s second method.

Constraints may be set on the eigenvalues of R, however it may be better with
determinant (Sylvester) conditions. In addition we suggest to specify simple bounds on
the optimal controller parameter vector 6. Then we have the following optimization
problem.

minJ =min J =tr(R) (28)
0 Gy
subject to inequality constraints
c;=det(R)>0, i=1,....n (30)
and fixed bounds
OPing 0, <O, i=1,...,p (30)

where R is the solution to the linear matrix Liapunov equation (27).

Two well known optimization algorithms, NPSOL by (Gill et al. 1986) and NLPQ
by (Schittkowski, 1984) may be used to solve the problem. In this work we use NLPQ,
which has been found to be reasonable.

A numerical example of the design problem of an unstable plant is given in Section
6.2.

6. Numerical examples

6.1. Example 1, distillation column

In this example we wish to use the algorithm to determine a multivariable PI-
controller for a binary distillation column. We impose the restriction that the only
states available as measurements for feedback are the compositions at the top (xg) and
the bottom (x,). For comparison we will also study the system under control when all
states (compositions at all trays) are available. Data for the columns are given in
Appendix A. The control structure is shown in the block diagram, Figure (1), where H,
is a symbol for the plant (model).

If only the composition dynamics are considered a linearization of the non-linear
model (see e.g., Di Ruscio 1987) will give the following linear model

X=Ax+Bu+Cv (31)
y=Dx (32

where A, B and C are given in Appendix A. A state space model for the multivariable
Pl-controller will be

i=Dx (33)

u=G,y+G,z=G,Dx+G,z (34)
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Figure 1. System with multivariable PI-controller.

In the augmented state-based form this will become
] [4 0] [x].[B] .[C
:)7[p o] |z]T[o]|* o]
o[}
z

(33)

(36)

where G=[G,D G,]. We now use the algorithm in Section 4 employing the following

values of the state weight matrix Q and the control input weight matrix P
Q=diag[Q; @]
Q,=diag[10° 0 0 0 0 0 0 10%]
Q,=diag[200 20]
P=diag[1 1]

(7
(38)
(39
(40)

As is seen only deviations around the stationary values (setpoints) for the top and
bottom compositions are considered. Rules for the choice of the weighting matrices Q
and P are given in Balchen (1988). We shoose to have one order of mangitude more
weight on x, than x, to compensate for the relative difference in numerical values of x,
and xg. The results for some different structures of the controller are listed below. The
index y, Equation (26), is used to compare the suboptimal costs in case 1 and 2 with the

optimal cost in case 3.

Case 1. Feedback from x, and x.
In this case the measurement matrix D is given by

p_[t 0000000
10000 O0O0O0 1

The following subcases are considered
(@) Multivariable Pl-controller
G | 1379 -275] . _[-11 36
11978 —112 271 1195 —0-14

J(C)=925413 y=1-03

@y

(42)

(43)
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(b) Diagonal Pl-controller (correct pairing)

0 —-202 0 -33
G‘=[239-o 0] Gz:[ms 0] (44
J(G)=97560-1 =108 (45)
(¢) Diagonal Pl-controller (wrong pairing)
—3344 0 —34-2 0
G"[ 0 —11-2] Gz:[ 0 —1-9] (6)
J(G)=130452-4 y=1-45 47)

Case 2. Feedback from x, and xg with specified margin of stability.
We specify that the closed loop eignevalues should be located to the left of a line
—a= —001 in the complex plane. The controller structure is the same as in case 1(b).

0 —202 0 —161
G'=[257-6 0] Gz=[32—3 0] (“8)

J(G)=1375782 y=1-53 (49)

Case 3. Feedback from all states

For comparison with the above controllers we compute the controller which has
feedback from all states (compositions on all trays). The result is found using the above
algorithm. It could also have been found by solving the Riccati-equation directly

c —1522 —104 —13 —06 —12 —-24 -51 -—229 (50)
Y 2123 15t 24 02 —-06 —15 —29 —93

—06 —45] .
G,_[ a1 _02] J(G)=899941 y=10 (51)

The following comments can be made about these results:

Applying restrictions on the controller-structure will generally lead to higher values
of the objective functional J. Note that it may in rare situations happen that the
optimal controller turns out to have a specific structure.

Imposing a specified stability margin also increases the objective functional The
system must act faster.

For case 2 we see that the absolute values of the elements in G, has increased while
G, is approximately unchanged compared to case 1 (b). This means that the integral
time T; has decreased while the proportional constant k, is approximately
unchanged in both control loops. This is seen from the relations (correct pairing

case)
[0 Kk |1 O KT}
G‘_[kﬁ o]’ G’_[kia’?‘? 0 ] ©2

In Figure (2) we show some results obtained from simulation experiments with the
above controllers when a positive step change in the feed flow to the column of 109 is
applied.
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208.0

1 min

8.8 : 89.9 . ) 148.8

Figure 2. Simulation results, mn

6.2. Example 2, unstable plant
Consider the open loop unstable plant

0 1 0 -1 1
A=[0 0 1 B= 10 (53)

2 -1 -2 01

0 5 -1
b= [—1 ~1 0] 9
The weighting matrices are chosen as
1 1 0
10

Q0=gD™D=|1 26 —5| P=p [0 1] (53)

0 -5 1
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The designer has the freedom in choosing the scalar weights g and p. Starting with the
zero control, g=1 and p=1 the following controllers are found.
(a) Full output controller

0966 0069
G=_ 1643 J(G)=804 (56)

(b) Diagonal output controller

[ —0986 0 |
G= ] 1583 | J(G)=805 57
(c) Diagonal output controller
0 2189
G=[4'l3l 0] J(G)=172-5 (58)

7. Conclusions

An algorithm has been developed for the ‘optimal’ tuning of linear feedback
controllers, from the states or from a reduced state vector or from the system outputs,
which may have some structure.

If an initial stabilizing controller is available, it has been shown that the application
of a modified Newton method for unconstrained optimization facilitiates a relative
simple solution to the problem of determining a multivariable controller with possible
restrictions to its structure. If an initial stabilizing controller does not exist, constraints
to ensure that the final closed loop systems is stable are added to the optimization
problem, and a method for constrained optimization is employed.

The algorithm needs only the solution of one matrix Liapunov equation for the
determination of the value of the functional to be minimized at each iteration. This is a
relatively simple task even for large systems. Furthermore the algorithm is believed to
be useful in the design of decentralized controllers where a special structure is desirable.

An interesting feature, in our opinion, is also the fact that the solution will always be
stable, at each iteration step in the case of an initially stable plant, and after the final
iteration in the case of an imtially unstable plant.

This algorithm can in the same manner be used to design stable decentralized
estimators. The question of robustness can be solved by implementing an outer
optimization loop for the determination of the state weight matrix Q and control
weight matrix P such that the closed loop system, in addition to minimizing the LQ-
criterion, also minimizes some robust criterion. One such robust criterion is the
structured singular value (g), Doyle et al. (1982). This problem is solved by Valderhaug,
Di Ruscio and Balchen (1990) for the case of no restrictions to the controller structure.
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A .
Distillation column data ppendix
Assumptions

Constant molar flows

No vapor holdup (immediate vapor response)

Vapor-Liquid Equilibrium (VLE) and perfect mixing on all trays

Column constants
Number of equilibrium (theoretical) trays excluding the reboiler N=6
Feed tray location Npy=3
Liquid in reboiler Myg=10mol
Liquid holdup on each tray My;=5mol, i=1,....N
Liguid holdup in accumulator Mg,=10mol
Relative volatility o«=2-993
Hydraulic tray constant K =305
Control input to the system
Reflux R=2022

Vapor flow V=2-5mel
Disturbances to the system
Feed flow F=102
Mole fraction of light component in feed xp=0-5
The stationary composition profile is given by
x*=[0040 0099 0213 0379 0569 0757 0889 0960]"

Linearizing the non-linear model around the stationary values gives the following time
invariant linear model where the state vector x=(dx,,...,dxy., ), control input vector
u=(dR,dV)" and disturbance input vector v=(dF,dx;)" are deviations around
stationary values

=Ax+bBu+Lre
where A, B and C are given below

[ —069 030 0 0 0 0 0]
126 —161 059 0 0 0 0
0 102 —131 059 0 0 0
A 0 0 072 —106 039 0 0 0
0 0 0 048 —072 039 0 0
0 0 0 032 —063 039 0
0 0 0 0 0 023 —-059 039
|0 0 0 0 0 0 010 —025 |

[ 0006 —0007] [ 00059 0

0022 —0027 00224 0

0033 —0039 00327 0

0037 —0039 00236 0

5=l 6037 —ooe || €T 0 01961

0026 —0021 0 0

0014 —0011 0 0

o 0 0 0 |




