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Mechanical networks model for the truss system
in structural engineering
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This paper demonstrates how to use a mechanical networks model to analyse a
three-dimensional truss system in structural engineering. A three-dimensional
numerical example with a complete program written in the APL programming
language is presented. The principles and concepts of this method are easily
understood, and the formulation and computation of the problem can be carried
out systematically and consistently. The main purpose is to develop a uniform,
systematic theory and method which can be employed in the design process to
analyse and synthesise a great number of engineering or non-engineering systems,
such as mechanical, electrical, economic systems. The mechanical networks model
presented in this paper has proved to be ideal for this type of analysis.

1. [Introduction

In recent years, there has been a rapid growth in interest in the basic theoretical and
methodological issues in the design process, which consists of two phases: analysis and
synthesis of systems. An important phase in the design process is the synthesis of a
system from elements in order to obtain a given performance. It is well known that
numerous solutions to any specific problem are possible; that is, it is possible to create
several alternative designs, each involving different systems of elements, to satisfy the
design criteria. The final design is chosen among all possible designs by analysis,
through a process of elimination. System synthesis, on the other hand, is largely an art,
that obtains considerable assistance from the analysis of systems already designed. The
most important matter is to develop a uniform, systematic analysis theory and method
which can be employed in the design process to treat a great number of engineering or
non-engineering systems, such as mechanical, electrical and economic systems. The
mechanical networks model presented in this paper has proved to be this kind of ideal
analysis method.

The development of the mechanical networks model has paved the way for the
analysis of three-dimensional truss systems based on the directed linear graph theory.
We have described the principles and concepts of the mechanical networks model
theoretically in the literature (Wang and Bjerke (1989 b)). We can now demonstrate
how the theory can be applied to solve a practical engineering problem. Truss systems,
one of the basic problems in structural engineering, are taken as an example to show the
validity of the mechanical network model. We have analysed the two-dimensional truss
systems previously and details can be reviewed in these references (Bjorke and Wang
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(1990), Bjerke (1988), Wang and Bjerke (1990)). Here we go further and analyse three-
dimensional truss systems and show how to separate the formulation of the topological
properties from the geometrical properties of the truss system, so as to facilitate their
final combination. A set of functions has been developed for the automatic computer
program. In order to simplify the problem, the paper is restricted to the static and linear
analysis of trussed structures, although the theory discussed have a considerably wider
scope of application, including static and dynamic, linear and nonlinear analysis.

2. Representation of a truss system

Figure 1 shows a schematic diagram of a simple three-dimensional truss system
which consists of four uniform members which are pinned together at node point 5 and
to a rigid base at node points 1, 2, 3 and 4. We assume that the stiffness of each member
is equal to 1 and that a force F acts on node point 5.

3. Primitive systems

According to the concept of mechanical networks model, a complete and whole
system in a structure can always be separated into several disconnected elements which
are independent in physical properties. These elements are called primitive systems. In
other words, a primitive system is a physical element which has terminal pairs at which
different measurements are made, that is, all measuring procedures (instruments) have,
at least conceptually, two terminal points. A measurement therefore always has to be
associated with a topological line having two boundary points coinciding with the
points in which the instrument is connected.

We can use a directed line to model the members of the truss system as the primitive
system shown in Fig. 2.

3.1. Dual variables

In a truss system, there are two different kinds of physical quantities to characterize
the mechanical properties of the element: force, F, and corresponding displacement, U.
In the mechanical network model we call the force an intervariable, I, and the
displacement a transvariable, E.

* Y ‘$®{1.2.01
2
k. =k =k, =k, =1
/ F=1[5-5, 5, 10]
@ (1.1.0)
F 4 RS
-
{1 s
(0 o.o;@ (1, 1, 1~M
p. * 2 —p-
SN
2 @ (2,0,0) X

Figure 1. A three-dimensional truss system.
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Figure 2. A graphical representation of the primitive system.
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Figure 3. The sign definition of dual variables.

3.2. Relationship between the dual variables
Hoke’s law can be used to relate the forces (transvariables) and displacements
(intervariables) in a uniform truss member:

F=(AEl) U=k U
where

F force of the member
U displacement of the member
A cross-sectional area
E elastic modulus
I length of the element
k stiffness of the element

Let us give the definition of the sign of a force (or the associated deformation) acting on
a truss element as the following:

It is positive (+), for compression (reduction).
It is negative (—), for tension (elongation).

In our mechanical networks model, we use the terminology intervariable, i, instead of
forces, F, and transvariables, e, instead of displacements, U. For the primitive system, i,
of a truss system, we can get

i =kie;
3.3. Y-matrix

Once the relationship of the element between the intervariable and transvariable
has been determined, it is very easy to establish the whole relationship of the system
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between these dual variables which is called the Y-matrix. Assigning the given stiffness
of each truss member, the Y-matrix is

ky 1

Y= ks = 1 )

4. Interconnected system

The complete interconnected system is modeled by a directed graph which
characterizes the topological properties of the system. The difference between electrical
systems and the mechanical systems is that the variables in an electrical system are
scalars, which are independent of the geometrical construction of the system, and the
variables in a mechanical system are vectors, which are dependent on the geometrical
construction.

That is the main reason why mechanical engineers never discovered the mechanical
networks model in the mechanical engineering, but the electrical engineers have
successfully developed the electrical networks theory in electrical engineering. Now it is
time for mechanical engineering. Of course, it is a very difficult and laborious task. But
if we can separate the formulation of topological properties from the geometrical
properties of the system, then suddenly a mechanical system can be treated almost the
same as an electrical system except that we need to superimpose the geometrical
properties into the topological properties.

We are sure that the electrical networks can be considered a special case of the
mechanical networks in which the geometrical transformation is set as zero. In this
sense, the mechanical networks model is a more general analytic method than electrical
networks. In this section we focus on the problem of how to separate the formulation of
the topological properties from the geometrical properties of the truss system to
determine the final combination.

4.1. Topological properties
4.1.1. Behaviour graph

By using of the graph theory, we can draw a behaviour graph to represent the
interconnection of the element, which gives the topological properties of the truss
system. The behaviour graph for the truss system is shown in Fig, 4.
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Figure 4. The behaviour graph of the truss system.
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4.1.2. Topological matrix
The behaviour graph enables us to directly obtain the corresponding topological
matrices of the truss system. These are as follows:

AU-matrix

nodes

lines 1 2 3 4 5
1-1 0 0 0 -1
2001 0 0 —1

AU=
310 01 0 —1
4L0 0 0 1 -1

A-matrix: (to remove the references: nodes 1, 2, 3 and 4)
node

lines 5

WM
[

4.2. Geometrical properties

We note that in structural systems we often define the dual variables in two
coordinate bases, one is the global coordinate system (node basis) and the other is the
local coordinate system (line basis). These coordinate systems are shown in Fig. 5. In a
truss system the node variables are measured in global coordinates and the element
variables are measured in local coordinates.

4.2.1. Transformation matrix

Consider the typical three-dimensional truss member, i, which is shown in Fig. 5.
The orientation of the member is defined by three angles a, f# and r with respect to the
global coordinate axes. A transformation matrix, TR, will be used to represent the
relationship between the global and local coordinate systems.

Figure 5. Global and local coordinates.
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In the local coordinates, the elementary displacement components U, and U, are of
no interest for the truss element as they are perpendicular to element i and do not cause
a change in the length of the element. The elementary displacement component U, is in
the axial direction of the element, and as it causes a change in the length of element i, it is
of great interest in determining the force on the element. Therefore only the
displacement U, has to be calculated into the transformation matrix TR and it will
make the form of the transformation matrix much simpler.

In order to unify the expressions in the mechanical networks model, we suggest that
it is better to consider the two node points in element i separately. The displacement of
the node of the truss member in the global coordinate system X-Y-Z can be
transformed into the elongation of the truss element itself in local coordinate system
x-y-z by using of the transformation matrix TR.

Suppose the displacement vector of point B (the head of arrow) is Uy which is
measured with respect to the global coordinates X-Y-Z, we can get the corresponding
displacement vector of the element i, Ux, which is measured with respect to the local
coordinates x-y-z as the following:

U,=(Ug,cosa+Upg,cos f+ Up, cosy)

Ugx
=[—cosa—cos f—cosy] [UBJ,] (2)
Ug.

The negative sign is obtained from the definition of the sign of the dual variables
mentioned above, as we assume U, is the elongation of truss element in Fig. 5. The
transformation matrix in the head point which is given — 1 in the topological matrix is:

T‘Riﬂlead) =[—cosa;—cos f;—cos ;] (3)

Using same principle and considering the definition of the sign, the transformation
matrix for the tail point which is given + 1 in the topological matrix is:

TR;ainy=[c0s o;cos f; cos y;] )

In this example, we can calculate the directional cosine for each element of the system
from the configuration of the truss system shown in Fig. 1:

cosa;= 05 cosfi,= 05, cosy, =0707
cosa,=—05 cosfi,= 05  cosy,=0707
cosaz= 0, cosfz=—0707, cosy;=0707

In the case of plane truss, y=0 and only angles o« and f are considered. The
transformation matrix is the same as the one given in (Bjerke and Wang (1990)), being
as follows:

T Riypeaay=[ —c0s o;—cos fi;] = —cos o;— sin o;] ()]
and
TRyny=[ cosa; cosfl=[ cosa; sina] (©)
where
a+p=90
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42.2. Combined A-matrix
The last step is to combine the topological and geometrical properties into a single
combined A-matrix which is an incidence matrix for a mechanical network model.

05 05 07071 [-1
A=TRsA= | —-05 05 0707 | = |-1
0 —0707 0707 ] |-1

[—05 —05 —0707 |
=| 05 —-05 —0707
0 0707 —0707

We introduce a special operational sign ‘*’ in order to carry out the transformation
multiplication, which combines both the topological matrix and geometrical matrix
into an A-matrix. Attention should be paid to ensure that the *+’ is an operator for
transformation multiplication, which is different from normal matrix multiplication.

5. Sources
The types of given sources in a truss system can be classified into four groups.

(1) Node intervariable sources Iy

The forces which are acting on the node points can be defined as the given node
transvariables sources, I,. These given intervariable sources are measured with respect
to the global coordinates (reference base), see Fig. 6(a).

(2) Node transvariable sources Ey

The displacements by which nodes are forced to move from the original position to a
new position can be defined as the given transvariables sources, Ey. The given
transvariable sources are measured with respect to the global coordinates (reference
base), sce Fig. 6(b).

(3) Elementary intervariable sources I

The forces which are acting in the elements can be defined as the given intervariable
sources, I. The given intervariable sources are measured with respect to the local
coordinates (element base). A system of weights and frictionless pulleys in parallel with
the element represents the given intervariable source which is shown in Fig. 7.

(4) Elementary transvariable sources E

E
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a

Figure 6. Node sources Iy and Ey in a truss system.
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Figure 7. Element sources I and E in a truss element.

The displacements by which elements are forced to make elongation or reduction can
be defined as elementary transvariable sources, E. A rigid turnbuckle in series with the
element represents the given transvariable source which is shown in Fig. 7. In other
cascs, the displacement caused by the heating or cooling of the elements of a truss
system can also be considered as the given transvariable sources.

In the mechanical networks model we can choose different methods to set up the
formulation and obtain the solution of the problems. In general, we use the node
method which corresponds to the stiffness method (displacement method) and the
mesh method which corresponds to the flexibility method (force method) in structural
problems. The four types of sources have to be transformed into one type of source
during the formulation procedures. The details of this formulation procedure will be
discussed in the next section.

6. Formulation and solution

Based on the Roth’s diagram (Bjerke and Wang (1990)), we can easily get the
formulation procedure for the truss system. First the node method is employed to solve
the problem.

6.1. The node method (stiffness method)
(1) The given sources:

The force F =[F, F, F,] acting on node point 5 is the given course, which is defined as
the node intervariable source Iy of the system, see Fig. 1.

Iy=[-5 5 10]
(2) Yy-matrix
Yy=A'YA ()]
(3) The transvariable (displacement) in nodes
ex="Yyly (19)
(4) The transvariable (displacement) in members
e=Aey (11)

(5) The intervariable (forces) in members
i=Ye '(1 2)
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6.2. The mesh method (flexibility method)

If we employ the mesh method to solve the truss problem, the tree and cotree have
to be defined. The number of the tree is exactly equal to the number of the static-
determination, and the number of the cotree is the number of the redundant elements in
the truss system.

(1) primitive system

Z matrix:
Z=(Y)! (13)
(2) Choose the trees and cotrees
T(tree)=123
Lcotree)=4
(3) Topological matrices
C-matrix:
Cy=—(A7) 'AL (14)
Cr
2]
B-matrix:
Bp=(Ay) 1 (16)
By
= l
B [ BL] (17)

(4) The transformation of the given sources:

In the mesh method, the given sources have to be transformed into mesh sources in
order to obtain the equivalent mesh sources, E; . The given source in the system is the
node intervariable source Iy which is the force acting on node point 5 of the truss
system.

E =C{(—Z(BIy)) (18)
(5) The transvariable (displacement) in meshes
Z,=CZC (19)
Y=Y (20)
iL=YE, 21)
(6) The transvariable (displacement) in members
i=Ciy, (22)
(7) The intervariable (forces) in members
i=Ye (23)

7. Automatic computer programming
A computer language system known as APL (A Programming Language) is
introduced as a programming language for the mechanical network model. Though the
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Program list

The two programs which are called TRUSS ANODE and TRUSS A MESH can be
executed on an IBM PC interactively. The terminal section is given below:

(1) Node method

MAKE TRUSSANODE
A COMPUTING OF A TRUSS SYSTEM
4 NODE METHOD

A PRIMITIVE SYSTEM

A Y-MATRIX
O¢«Y¢«TYPEADIAGONAL
1111

1000

0100

0010

0001
A TOPOLOGICAL MATRICES
A A-MATRISE
O0«A+« INSIDENCEAMATRIX
TYFE BRANIN TABLE
1234
5555

1 0 0 01

01 0 071

0 0 1 071

0 0 0 171

O+A«REMOVEAREFERENCE A

TYPE COLUMN-NUMBERS TO BE REMOVED

1234

-1

-1

-1

-1
O0«TR«TYPEAMATRIX
0.5 0.5 0.707
~0.5 0.5 0.707
0 “0.707 0.707
001

0.5 0.5 0.707
0.5 0.5 0.707
0 “0.707 0.707
0 0 1
TRNR¢«1 1 1 1
D¢A«(A,TRNR) TRANSAMUL TR
~0.5 ~0.5 ~0.707
0.5 -0.5 ~0.707
0 0.707 T0.707
0 0 ~1

A SOURCES
D«INe™5 5 10
"5 5 10

A FORMULATE AND SOLVE THE SYSTEM
D«YN«(TRA A) MUL Y MUL A

0.5 0 0

0 0.9998 0.2072
0 0.2072 2.5
ZN«INV YN

D+eN¢ZN MUL IN
10 4.245 3.645

A RESULTS:

A DISPLACEMENTS IN ELEMENTS
D+e+A MUL eN

0.2978 79.702 0.4212 ~3.649
R FORCES ON ELEMENTS

D«i¢ Y MUL e

0.2978 ~9.702 0.4212 ~3.649
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(2) Mesh method

MAKE TRUSSaAMESH
A MESH METHOD

A PRIMITIVE SYSTEM
A Y-MATRIX IS SAME AS THE NODE METHOD

D«Z«INV Y
1000
0100
0010
0001
A TOPOLOGICAL MATRICES
A A-MATRIX IS SAME AS THE NODE METHOD
A CHOSE TRES
DeTel 2 3
123
A C-MATRIX
D«C+T MAKEACAFROMARA A
~0.4143
“0.4143
~0.585%
1
DeB+T MAKEABAFROMA A
| “0.4143 70.4143
1 “0.4143 T0.4143
] 0.8285 ~0.5859
0 0 0
f SOURCE
D+EL¢(TRA C) MUL -Z MUL B MUL 1IN
“6.154

fa FORMULATE AND SOLVE THE SYSTEM
D+ZL+(TRA C) MUL Z MUL C

1.687

DeYL«INV ZL

0.5929
OeiL«YL MUL EL

3.64595

A RESULTS:

A FORCES ON ELEMENTS

OeieC MUL 1L

1.512 1.512 2.138 ~3.649
Deitotei+B MUL IN '
0.2978 ~9.702 0.4212 ~3.649
s DISPLACEMENT IN ELEMENTS
DeetoteZ MUL itot

0.2978 ~9.702 0.4212 ~3.649

151
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language was not developed specifically for networks computation, it is in fact very
suitable for the purpose. This is because:

(1) APL was designed at the outset to handle scalars, vectors, matrices, and rectangular
arrays in any number of dimensions, either numerical arrays or characters. Many basic
operations can be specified for arrays just as well as for scalars, without any loop
written in the program. Programs in APL therefore tend to contain few loops. The user
is encouraged to think of array operations without a logically irrelevant internal
sequence; this is aesthetically pleasing and often illuminating.

(2) There is a high degree of consistency in APL, resulting from a high degree of
generality in the definitions. Syntax is governed ruthlessly by a few simple rules. Once
the vocabulary is learned, the language is easy to remember. There is a remarkable
absence of arbitrary features that require frequent reference to the manual. The
language therefore has a peculiar dignity and reasonableness.

(3) Because character arrays are first-class citizens, addressed as easily as a numerical
array, scatterplots and other graphical displays can be programmed as readily as
numerical calculations.

(4) The implementation of the language as a conversational computing system affords
the flexibility that is badly needed but hard to find in special-purpose packages. It is
casy for the user to change the data or compare the different results.

7.1. Function list

In order to develop a general software package, we have built up a series of
functions which can be used to solve a great number of problems in different fields.
These functions are written in APL and run on an IBM PC. With the help of the
functions, it is very convenient and fast to write the program even if one does not know
very much about the details of APL. The functions mainly consist of three groups:
reading of data, topological matrices and computing operations. Some of the functions
which are used for the truss system in structural engineering are listed as follows:

(1) Reading of data:

TYPEAMATRIX
TYPEADIAGONAL

(2) Topological matrices:
INCIDENCE AMATRIX

REMOVE AREFERENCE
MAKEAFROM AA

(3) Computing operations
TRA
INV
MUL
TRANSAMUL
COs
SIN

The details about the functions can be found in our exercise guidance (Wang and
Bjerke (1990)).
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8. Conclusions

A mechanical network model has been successfully used to analyse a simple three-
dimensional truss system. The most important contribution here is to reveal the
difference between electrical networks and mechanical networks. We have used a truss
system to describe how first to separate the topological from the geometrical properties
of the three-dimensional truss system, and then to combine them into a single A-matrix
which leads to uniform, systematic formulation and computation of the given problem.
We can say that electrical networks which only contain the topological properties are a
special case of mechanical networks which contain both topological and geometrical
properties.

The general procedure by which the mechanical networks model can be used to
analyse the truss system in structure engineering is: (1) to establish the primitive system;
(2) to determine the topological matrices; (3) to find the geometrical transformation
matrix; (4) to obtain the combined matrices; (5) to formulate and compute systems. It
seems that this general procedure is suitable for numerous kinds of systems in different
areas of engineering (Bjorke (1988), Wang and Bjorke (1989a)).

The method seems simpler than most of the well-established methods of analysing
truss systems (Beaufait, Rowan, Hoadley and Hackett (1970), Fleming (1989)). It is a
great advantage that there is no increased difficulty in applying the procedure to more
complex systems. Changes in loads, dimensions, and so forth, are most easily
accommodated, because they only affect the input data and the fundamental procedure
of formulation and solution is exactly the same. The method is also very user-friendly
and convenient as the user executes the interactive computer program by a series of
functions. The application of a mechanical networks model to three-dimensional frame
systems and non-linear structural systems will be published later.

There are four kinds of methods in the mechanical network model: Node method,
mesh method, region method and cut-set method. In this paper, we have employed two
methods (node method and mesh method) to demonstrate the analytic procedure.
Which method is best for analysing a given system depends on many factors. One of
these is that we have to find the ¥y or Z, is the simplest and it is possible to be inverted.
We find that in the case of a truss system Z, is always the simplest. Another factor is
that we have to see the kinds of sources that are given. We can choose the method which
needs less transformation of sources. For example, in cases where I, is given, we prefer
to use the node method rather than the mesh method.

The author’s experience with the mechanical networks model has indicated that it is
a uniform and systematic analytic method for the design process.

REFERENCES

Beaurarr, F. W, Rowan, W. H,, HoapLey, P. G. and HackerT, R. M. (1970). Computer Methods
of-Structural Analysis (Prentice-Hall, Inc.).

BIoRKE, @. and WANG, K. (1990). Maskinteknisk Systemteori, Lecture notes, Norwegian Institute
of Technology, Trondheim, Norway.

BIorkE, Q. (198R). Toward a manufacturing systems theory—applications so far, Proceedings of
the conference manufacturing international ‘88", Atlanta, Georgia. April, 1988.

FLEMING, J. F. (1989). Computer Analysis of Structural Systems (McGraw-Hill Book Company).

WanNG, K. and BierkE, . (1989). The application of manufacturing system theory (MST) to
dynamics of a rigid-body system, Proceedings of the international conference on modeling
and simulation for optimization of manufacturing systems design and application,
Arizona, USA. pp. 101-113, 8-10 November, 1989,




154 Truss system model in structural engineering

WANG, K. and Byerke, ©. (1989). The validity of mechanical network, International conference on
systems science, Poland. September 1989,

WanNG, K. and Bierke, @. (1990). Qvingene av maskinteknisk systemteori, Exercise guidance,
Norwegian Institute of Technology, Trondheim, 1990.




