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A note on a necessary condition for optimality

DAVID DI RUSCIOt

Keywords: Linear optimal control, multivariable systems, pole placements, eigen-
values, control theory.

A necessary condition is derived for the optimality of a linear multivariable
feedback control system with respect to a quadratic performance index of infinite
settling time.

1. [Introduction

In linear quadratic system design the relation between the quadratic weights and
the dynamic characteristics of the closed-loop system is of interest. This problem has
been solved for a second order system (Di Ruscio and Balchen, 1990). In the general
case, very little is known about these relations.

Let 4, i=1,...,n be the open-loop poles and 5, i=1, ..., n be the closed-loop poles.
Mac Farlane (1970) presented an inequality between the product of the open-loop
poles and the product of the closed-loop poles,

TTisi> 1

Koussiouris (1982) (later corrected by Amin, 1984) presented an inequality between the
sum of squares of the open-loop poles and closed-loop system poles,

These relations are, as we can see, conservative because the quadratic weights do
not appear in the relations. In this paper an exact relation between the open-loop and
closed-loop system poles is presented. We will show that the relation by Amin and
Koussiouris is a special case of our relation.

2. Theory
Let A be the n x n real state system matrix and B the n x r real control input matrix.

Let Q be the n x n real symmetric state weight matrix and P the r x r real symmetric
positive definite control input weight matrix. Then we have the following theorem.

Theorem

Ifs; i=1,...,nare the closed-loop system poles and 4;,i=1,...,n are the open-loop
system poles, then s;, i=1,...,n are related to A or 4, Q and the positive semidefinite
matrix H=BP~'B" by the following equality,

):" st=tr(A%)+tr(HQ) 1)
i=1
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or equivalently
3, (Resy'—(ims)?) =§;l {(Re 1)? —(Im 2)%} +tr (HQ) @

Proof
The Hamiltonian matrix is derived from optimal control theory by augmenting the
co-states to the state space model. The Hamiltonian is

el A H] g \
"[—Q —A‘]E )

F has 2n eigenvalues (n stable and n unstable) located symmetrically about the
imaginary axis. The stable eigenvalues are identical to the eigenvalues of the closed-
loop system matrix (4 + BG)=(4— HR), where G is the feedback matrix and R the

symmetric solution of the algebraic Riccati equation. This can be seen from the
following similarity transformation

I 0]t A —H IO_A—HR —H ] @
[R ,] [—Q —AT][R ]"[ 0 —(A—HRY

This means that the closed-loop eigenvalue spectrum can be derived from F without
solving the algebraic Riccati equation.
Let p(F) denote the spectrum (set of 2n eigenvalues) of F. Then we have that

pF)=s,i=1,...,2n (%)
5= —S8,4p i=1,...,” (6)
2n
tr(F)=_Z‘1 5=0 @
We also have tha

pdFY)=st, i=1,...,2n (8)
sizzsz.'ll’ i=19-'-’n (9)
tr(F)=23 (10)

i=1

We now need an expression for tr(F2). We have
[ A*+HQ HAT—AH]
ATQ—QA (A2+HQ)"

2 _

(1)

From (11) we have
tr(F?)=tr (A2 + HQ)+tr (A% + HQ)") =2tr (42 + HQ) (12)
From (10) and (12) we get

n

Y s?=tr(4)+tr(HQ) (13)

i=1

and the theorem is proved.
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Q can be written as Q=S"S (Q >0 and rank (S)=rank (Q)). Then we have that
tr(HQ)=tr (HSTS)=tr (SHST) >0 (14)

because the matrix SHST is symmetric and positive semidefinite. Combining (2) and
(14) we deduce the inequality presented in Amin (1984) and partly in Koussiouris
(1982), i.e.

2. {Res)’—(Ims)’}> } {(Re )’ —(Im 1)’} (15)
i=1 i=1
An alternative way to establish the theorem is as follows. We have
(A—HR)>=(A— HRYA—HR)=A%?+ H(—RA+RHR)— AHR (16)
Combining equation (16) and the algebraic Riccati equation gives
(A—HRY*=A*+HQ+(HA"—AH)R 17

Take the trace on both sides of equation (17), note that tr [(HA"— AH)R] =0, and
equation (1) is proved.
The same procedure as above can be used to determine expressions for

$ % k=1,2,3,...
i=1
For k=2 we have

{il si= ‘_il {((Res)* —(Im 5)*)* —4(Re 5)*(Im 5)°}

—tr(A*+4QA2H—20AHA" + (HQ))
=tr[(A%+ HQX A2+ HQ)+(A"Q — QANHA" — AH)] (18)

Finally, note that this procedure cannot be used to determine expressions for

T 1 k=1,2,3,... (19)
i=1
because
tr(FA~1)=0, k=1,2,3,... 20)

3. Conclusions
A necessary condition is presented for the optimality of a linear multivariable

feedback control system with respect to a quadratic performance index of infinite
settling time.
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