MODELING, IDENTIFICATION AND CONTROL, 1990, voL. 11, No. 2, 109121
d0i:10.4173/mic.1990.2.4

Practical trajectory learning algorithms for robot manipulators

ERLING LUNDEY and JENS G. BALCHEN

Several alternative learning control algorithms are discussed, both from an inverse
dynamics and an optimization point of view. The learning laws are derived in
discrete time and do not need acceleration measurements. A simple algorithm using
a constant learning operator is proposed to run in addition to a simple (PD)
feedback controller. Its performance is comparable to other algorithms, and it
works under non-ideal conditions where the others fail. Two simulation examples
on(1)learning dynamic control, and (2) learning optimal redundancy resolution, are
presented.

1. Introduction

Industrial manipulators usually perform the same task over and over again. In most
systems the task is defined in terms of a joint space reference trajectory which is tracked
by means of conventional single loop controllers. It is commonly known that even for
almost rigid manipulators the tracking may not be very accurate. In practice, trajectory
programming can be considered as an ‘art’ where the manipulator’s lack of accuracy is
compensated when designing the reference trajectory: Through an iterative (and
manual) process the reference input is adjusted so that the actual response of the
manipulator is close to the desired trajectory (which may be different from the reference
trajectory given as input).

During the last years, most research on manipulator control has resulted in
advanced, computationally expensive, feedback algorithms such as the inverse
dynamics method and adaptive control strategies. However, industrial applications of
these methods are rare, mainly because of their complexity.

On the other hand, iterative learning algorithms for robot trajectory tracking have
been proposed by a number of researchers (e.g. Arimoto et al. 1984; Hauser 1987 and
Craig 1988). The idea is to reduce tracking errors by a trial-and-error procedure: The
same task is repeated several times, after each repetition a feedforward control signal is
improved by some learning rule. Provided that the conditions under which the
manipulator is performing are sufficiently deterministic and invariant from repetition
to repetition, the control will converge to the ‘ideal’ one. The learning control strategy
can serve as an effective means for

improving the performance (accuracy, speed) of tracking tasks when the manipu-
lator dynamics are partly unknown, and when feedback control is insufficient.

solving difficult optiL.ization problems by trial and error; such as optimal
redundancy resolution.

Received 15 August 1990.

t Center for Robotic Research, Division of Engineering Cybernetics, The Norwegian
Institute of Technology, 7034 Trondheim, Norway.

This paper was presented at the IEEE International Conference in Robotics and Autom-
ation, Cincinnati, Ohio, USA, May 13-18, 1990, and is reprinted with permission, from the
Proceedings of the conference.

@© 1990 IEEE.

110 E. Lunde and J. G. Balchen

In this paper, several learning algorithms are proposed. The robustness and the
performance of the learning algorithms are improved by adding feedback loops to the
control system. We demonstrate the feasibility of the algorithms through simulation
experiments using two planar manipulators with two and three degrees of freedom
respectively.

2. The control problem
The rigid manipulator dynamics are given by

M(g)g+nig,§)=1 }

(g, §)=Clg, 94+ FG+griq)

where g is the vector of joint coordinates, t the generalized joint forces, M(g) the inertia
matrix, C(g, §)g the vector of centrifugal and Corioli’s forces, F¢ viscous friction forces,
and gr{(q) the gravitational forces. The joint position and torque vectors are restricted
by geQ<=R", €T cR". The initial state is ¢(0)=g,, 4(0)=g,- The kinematic position
and velocity transformations are given by

p=Hhq), dim(g)=n @
p=Jg)g, dim(p)=m 6)

where p is the task space position vector and J(g)=0h(g)/dq is the manipulator
Jacobian.,

For the subsequent discussion we reformulate the above equations on a general
state space form

(1)

%=f(x)+ B(x)u } @

y=g(x)

x= x,:|=[q"]’ u=1
| X2 q

_ q | 0
i YR q)]’ B"‘"[M- I(q)]

[y, P hig)]
=" =[P} g0=| P
Y _J’z] [P} “ [J(q)q
We will also need the output Jacobian matrix

dg(x) [J(x) O]
0x _[j(x) J(x)

Actuator models can easily be included, and for most motors (e.g. DC-motors) this
will not change the structure of (4). The control signal # will then be the motor input.
However, we will assume that u=1 throughout this paper.

The manipulator task is to track a given task space reference trajectory r(t), te[0, T],
and the corresponding tracking error is defined as e=r —y. The reference trajectory is
realizable if it can be tracked perfectly: e(t)=0 with g(t)eQ and (t)T for all te[0, T].
Corresponding to r(t) are the trajectories x*(f) and u*(¢), we call these the desired
trajectories, the error terms are denoted dx=x*—x and du=u*—u.

where

Glx)=

Trajectory learning algorithms 111

Feedforward 4 T)
| Manipulator
law
b
Feedback
law

Figure 1. Feedforward and feedback control.

3. Feedback versus feedforward control

Even though feedback methods are the most used for manipulator control,
feedforward control has some important advantages that should be utilized. For
example, when solving finite time, optimal control problems we usually get open-loop
solutions, while infinite time LQ-problems give closed-loop solutions.

For a perfectly rigid manipulator, the tracking error can quite easily be made
satisfactorily small using any of several possible feedback algorithms: high-gain PD-
controllers, the inverse dynamics method, or adaptive control (Samson 1987, Craig
1988). A feedback controlled system is robust with respect to disturbances and
unmodeled effects such as gear backlash, non-viscous friction and varying load. On the
other hand, because of unmodeled high frequency dynamics the feedback gains (and the
system bandwidth) are upward bounded to ensure closed-loop stability.

Open-loop algorithms compute the control trajectory u . (¢) for all te[0, T], prior to
execution of the task—and then simply feed it forward when executing the task. Open-
loop control does not introduce stability problems (but might of course excite resonant
modes of the manipulator). Hence, the system bandwidth may be considerably higher
than for the closed-loop case. However, an open-loop algorithm is very sensitive to
disturbances and unmodeled dynamics.

Real-life robotic systems work under conditions of both deterministic and non-
deterministic nature. The control system could therefore quite reasonably contain two
parts: (i) a feedforward law effectively solving the a priori known details of the problem,
or improving tracking by learning the feedforward torque, and (ii) a feedback law
providing inaccurate, but robust tracking (see Figure 1).

4. Review of learning trajectory control

Several researchers have been investigating the problem of learning to track a
reference trajectory. The learning algorithms are almost invariantly based on
calculating an additive correction term to the feedforward control trajectory. The
underlying ‘philosophy’ is to invert the dynamics (1) or (4) (which is also the idea behind
the computed torque method):

u=B*(x)(%—f(x)) (5

where B* is a generalized inverse of B. Most probably the dynamic model will not be
completely known, we may then investigate whether an approximation will produce
satisfactory results.

112 E. Lunde and J. G. Balchen

Most learning algorithms can be summarized by the following expression
u'* (e)=ui() + L(.)Def(z)

where the super-script denotes the iteration number, L(.) is a learning operator—linear
or nonlinear, and D is a differential operator, e.g.,

d d
D dtf’ or dt+lf, Az=0
(Arimoto et al. 1984).

A concise and general description of a typical algorithm and its convergence
properties has been given by Hauser (1987). The algorithm for system (4) takes the
following form

u () =u'()) + L/ (0)ée) (©)

where the (realizable) reference trajectory r(t) is given on a finite interval [0, T, and
L(y'(1)) is a nonlinear learning operator. The initial state is asstimed to be equal to the
desired: e(0)=0. A condition for convergence is found as

I — LGB <p<1, for all te[0,T] Q)

Note that (6) requires a reliable measurement or estimate of the acceleration signal
(g or p).

4.1. Linearized dynamics

If for some reason we have a control # close to the desired control trajectory u*
(ie. the one that gives perfect tracking), then the manipulator dynamics can be
approximated by a linear time-varying equation (Oh et al. 1988). Linearize equation (4)
around the state and control trajectories X and @

X >~ (f %)+ BX)il)ox + B(X)ou
= A(t)ox + B(t)ou

where f, denotes the partial derivative of f with respect to x. An obvious learning rule
might now be, assuming that y=x and e=4dx,

u @) =u(0)+ BT ()E®)— Ae(r)

where B* should be chosen as the Moore-Penrose inverse B* =(B"B)~'B"=[0, M].
The matrix A(t)is quite complicated and therefore often omitted. The learning operator
L=B"* satisfies condition (7), since G(x)=1 and I —LB=I—B*B=1—MM 1=0.
Also, observe that B*é= Még which makes sense.

Craig (1988) and Atkeson and Mclntyre (1986) have proposed to apply the
computed torque method (inverse dynamics)

1=M(q)v+#(g, d) ®)

where v is a new control input, and the hats indicate estimates of the real functions.
Craig added a feedback loop v, =7+ K84+ K ,69. Then the simple learning law

Vil =vi +64+K,0¢+K ,0q

where 0< K, <K, is shown to compensate the effect of model errors.

Trajectory learning algorithms 113

Bondi et al. (1988) proposed a high-gain feedback law of the kind
tp=—K.4—K,Gg—Kg+gr
where gr=gr(q,), i.c., gravity is exactly compensated at t=0. The learning law
T =1+ K0G + K 64" + K ,6q°
is shown to converge when K,, K,, K,— 0 (large ‘enough’).

4.2. Performance limitations

Most authors present convergence proofs for their learning algorithms. These are
quite often based on methods from functional analysis, e.g., showing that (6) defines a
contraction mapping (Arimoto et al. 1984; Hauser 1987). Others rely on the near-
linearity of the feedback controlled system (Atkeson and Mclntyre 1986, Craig 1988),
then allowing techniques from the frequency analysis. Some limitations of the results
are listed below:

The algorithms require acceleration measurements which may not be available.
Numerical differentiation is noise sensitive and should be used with care.

Uniform convergence can only be ensured when e(0)=0, but can we expect
reasonable performance when this is not the case? The algorithms including only é
will give a tracking offset.

The reference trajectory is assumed to be realizable, what if this is not true (e.g., for a
step reference)? Position errors should be taken into account.

Even though the convergence is proved, this may not ensure good performance:

Most proofs based on contraction mappings show convergence in terms of the
norm

lell.= sup e™*|le(®)ll, >0
1[0, 7]

where |le||,—0 for u large ‘enough’. This means that the weight on errors decreases
exponentially with time.

5. Issues for practical learning algorithms

We will in this section discuss some issues important for the implementation and
the robustness of trajectory learning algorithms. The first practical consideration deals
with the implementation of the algorithms on a digital computer.

5.1. Discrete-time algorithms
Assume that the control system operates with sampling time AT, The time interval

[0, T] is partitioned into N intervals given by {to,ty,...,¢y} where t,=kAT The

measurements y(t) are sampled at 1, ¢,,..., and the control u(t} is held constant through

the intervals [¢,, 1, . ,). The state space equations (4) can then be approximated by the

difference equations

Xy 1= Y0 + P(xJuy } ©)

Ve=9g(%)

where x, =x(t,) etc. Clearly, the input u, can only affect the outputs y, ; ;, Yx425--- -

114 E. Lunde and J. G. Balchen

The approximation é(t,)=(e(t, . 1) —eltx—,))/2AT is valid for small AT Hence, the
acceleration based learning law (6) has the discrete-time counterpart

ety s 1) —€t—y)

u () =ult) + LOA) 5 (10)
with the convergence condition, given e, =0,
- OGO <p<1, O<k<N (11)

Note that ®(x,)— B(x,)/AT as AT—0, and (10) converges to (6).

Remark. The central difference é(t,)~(e,,, —e;_,)/2AT is a quadratic approxi-
mation, while the more common forward difference é(t,)~(e, ., —e)/AT is a less
accurate linear approximation (Dahlquist and Bjork 1974).

So far, the discussion on the learning problem has been based on the inverse
dynamics strategy. Further insight on the learning problem is obtained by an
optimization approach (see also Togai and Yamano 1986).

5.2. Local optimization
Let us define a criterion function to be minimized

1 1
V("h)=§||ek+1||3=§e}-+1Qex+1 (12)

where Q is a positive definite weight matrix. The first and second partial derivatives of V
with respect to u;, becomes

V.Ve=—(Gx)®(x,))" ey + 4 (13)
ViuVe = (G)®(x))) QG(x,) () (14)

Higher order derivatives vanish.

Observe that since the inertia matrix M(q) is positive definite (Craig 1988) the
matrix ®(x,) will have full column rank for all x,. The physical interpretation is obvious:
every non-zero input vector gives a non-zero contribution to the state vector at the next
time instance: ®(x;)u, =0<>u, =0. The following important result indicates that most
gradient based optimization methods will converge:

Result 1. The criterion function V(i) is convex for all G(x;} with full column rank.

That is, the Hessian V, ¥, is positive definite. For example, Newton’s method
(Luenberger 1984) gives the learning law

u:.-'— ! =ulh - [van(xD]_ lvaV(x‘k)
=t +Lig) 4, (15)

which satisfies (11) with p=0.
The convergence properties of (15) can now be studied from an optimization point
of view.

If =0, then e, = G(x)®(x,)0uy and V(u,) is purely quadratic. Hence, Newton’s
method is known to converge in one iteration, i.e., e} =0. In the next iteration e, is

Trajectory learning algorithms 115

eliminated, and so on. The error correction propagates forward in time. By
subtracting u* from both sides of (15) we get

dug' =dup— Liyes = (I — LoGxo)(x0))oup
which defines a contraction mapping when

I — LiG(xp)@(xp)ll <1

For a bounded, but non-realizable reference trajectory, e.g., for e, #0, the learning
algorithm should emphasize position errors, and the input constraints must be
taken into account. In the learning law (15), this can be achieved by tuning the
weight matrix Q properly (see section 6).

Remark. The criterion function (12) measures the output errors, if it is replaced with
3llex+ s —ex— 41 the acceleration learning scheme (10) results. The latter criterion gives
the same Hessian matrix V,,V;, and similar local convergence.

However, the local analysis tells us little about the global properties of the
algorithms. As the learning propagates from t,, how does it behave near the end of the
trajectories? The control update Lie} , ; may not be reasonable when being applied at
the i+ 1th iteration since the state vector xi%% may have changed significantly from
x4+ 1- A major concern is therefore to keep the output trajectories within reasonable
bounds.

5.3. Including feedback loops

Second order systems without damping oscillate. This will definitely be harmful to
the learning algorithm, since it means that the part of the trajectories that have not yet
been learned might oscillate more or less randomly. In addition to the natural damping
(friction), velocity feedback helps smoothing the response, e.g., we may apply the
feedforward/feedback control law

u=us—up=t;—KJg
where K, is positive definite.

More advanced feedback laws may be applied to improve the learning perfor-
mance, e.g., the inverse dynamics method or decoupled PD-controllers. In this way the
nominal performance (without learning) will be closer to the optimum, and the learning
algorithms will be more robust and converge faster.

5.4. Task space tracking

When tracking a reference in the task space, two situations need special attention.

The output Jacobian G(x) and the manipulator Jacobian J(g) both loose rank in
singular configurations. Consequently, a numerical learning algorithm using the
inverse G~ !(x) will break down in near-singular configurations. Assume that the
reference can be tracked without entering singularities, our task is then to keep the state
trajectories away from the singularities during learning.

For a redundant manipulator, the Hessian V,,J; is singular, and Newton’s method
(15) can not be realized. However, any ‘sub-optimal’ learning operator satisfying the
condition (11) can be used. Several approaches for redundancy resolution have been

116 E. Lunde and J. G. Balchen

proposed in the literature (see Nenchev (1989) for a review), of which the method of
gradient projection is one of the best known. The learning law can now be extended to

7]
“iﬂ'_'”i‘FLieiﬂ_aP(x‘k)ak"{xiﬂ) (16)

where w(x) is a criterion function to be maximized (minimized), P(x) is a projection
matrix into the null space of G(x)®(x), and « is a step size parameter.

The inverse dynamics strategy gives the learning operator L, =(G(x)®(x,))"* (the
pseudoinverse) which satisfies

I — (GO * GO = | Pe) <1
That is, if e, =0, then du}* ' = P(x})éuj lies in the null space of G(x})®(x}), such that the
output error . .
€31 =G0q" 00 You =0

Furthermore, the above pseudoinverse solution minimizes the torque measure [|u{]>

6. Simulation examples

Several experiments have been carried out comparing the performance of the
different learning algorithms proposed in the previous section. Two learning laws were
derived:

Law 1: " ' =up+ Li(€f . — €4 1)/2

Law 2: " ' =uj+ Liei 1y
with three candidates for the learning operator

Operator a: L =[G(x})®(x})] ", the pseudoinverse.
Operator b: L =[G(xj)]* L, where L is a constant matrix.
Operator c: Li =[G(x})®(xi)]7Q, the steepest descent method.

The global positional tracking performance was measured in terms of the criterion
function

1 (7
J'=—']-1J.o lle,(e)* dt

A reference trajectory was chosen as
n(:)=[°‘“ ‘°°s(“"”]+r1.o (17

a sin (wt))

The initial guess for the feedforward control trajectory was u7,=0. No acceleration
measurement was available. The iterative algorithm was terminated when J' <1074,
when i=50, or when no further improvement was achieved. For the discrete-time
simulation we used the fourth-order Runge-Kutta method with sample time
AT =0-005. The learning algorithms were realized with ®=AT - B.

Example 1. Joint space tracking

The two-link manipulator shown in Fig. 2 was used for experiments on dynamic
control in joint space, G(x)=1I. The reference parameters were: a =0-5, w=2xn, T=05.
The initial state was equal to the desired, x,=[1, —1,0,0]", and e, =0. No gravity was
present.

Trajectory learning algorithms 117

| \

{a

Figure 2. The test manipulator. Link mass: m, =m, = 10-0, link length: I, =1, =10, both links

are homogeneous bars.

Learning Performance Number of
algorithm index iterations
Law 1, Op. a 41 50
Law 2,0p. a e} —
Law 2, Op. b 09 27
Law 2, Op. ¢ 77 50
la&2b 07 5
Feedback only 1980 -

Table 1. Example 1.B: Joint trajectory l&aming. (The performance index is normalized by
J/o

A: The manipulator joints were weakly damped assuming a viscous friction
coeflicient F;=1 for each joint. Learning law 1 with Operator a converged in 7
iterations to J =1-3- 1073, All possible learning algorithms gave strongly oscillating
behaviour. In fact, all the algorithms would break down for high frequency references
when the floating-point processor reached its upper limit.

B: The manipulator was equipped with the feedback control u g, =K ,e; + K e, with
K,=diag(10, 10) and K,=diag(50, 50).

The acceleration based law, l.a converged fast to a near-optimal solution (in 5
iterations), before proceeding monotonically but slowly towards the minimum. This
deficiency is due to approximation errors in the discrete-time learning law. See table 1
for the simulation results. The algorithm performed almost equally well when assuming
a constant inertia matrix M(g(0)): The assumption is valid for bounded variations in g,;
the convergence condition (7) is satisfied for —1-8<g,< —0-5 and for all g,.

Three alternative algorithms based on law 2, with learning operators a, b and ¢,
respectively, were also tested. The Newton method 2.a now diverged. The constant
learning operator (2.b) was tuned to

L_[5%0 0 50 0
Lo 0 0 50

which satisfies 0-83 < |[I — L® ™ '(g)|| <096 h r all g. Figure 3 shows the propagation of
the angular error for joint 1 using algorithra 2.b. The weight matrix of the steepest
descent operator was chosen as

Q=[Q' Q‘} 0, = diag(0:5, 0'5), 0, = diag (005, 005)
0 0

118 E. Lunde and J. G. Balchen

Figure 3. Example 1.B: Error compensation, angle joint 1 (after 0, 5, 10, 15, 20, 25 iterations).

[} 81 8.2 8.3 .4 8.3

Figure 4. Example 1.C: Step reference tracking, angle joint 1 (after 0, 1, 5, 10, 27 iterations).

The slow near-optimum convergence of the latter algorithm is typical for fixed gain
steepest descent methods (Luenberger 1984).

Finally, the algorithms 1.a and 2.b were combined giving the fastest convergence so
far.

C: A non-realizable reference trajectory was specified
r®=] "+ ots<ts A—t)=t | st
0=, g1, l &1y —2t—t)+t, q1,0 s

The step occurred at t,=0-2, the other simulation parameters were the same as the
above. The inputs are constrained by |u| <U, i=1,2, with the choice U =200.

Trajectory learning algorithms 119

The corresponding desired acceleration is zero everywhere, except for ¢t =¢, where it
is infinitely large. Consequently, learning Law 1 cannot be used. Therefore, the output
error driven Law 2 with the constant learning operator 2 was applied. The algorithm
converged in 27 iterations, and the result for joint 1 is shown in figure 4.

Remark 1. The criterion function J does in general not decrease monotonically,
Ji*1 & J'. Thus, the intermediate solutions occurring before the learning is completed
may be non-feasible.

Remark 2. Including gravity does not essentially change the learning behaviour.
This is due to the integral effect of the iterative algorithms.

Example 2. Task space tracking. Redundant manipulator.
A planar three link manipulator was simulated ([;=1-0, i=1, 2, 3). When consider-
ing the kinematics only (a trajectory generation problem), the model can be written

Xy =X Xy =1y =9(x) (18)

where u is a joint acceleration input. The initial configuration was g, =[n/3, —2n/3,

27/3]1". The reference trajectory (17) was used with o =0-25, w=2x, T=3-0, i.e., drawing

a circle of radius o three times in the (p,, p,)-plane. The sample time was AT=0-02.
We used the following simplified output Jacobian in the learning algorithms:

[0 0
G"‘”[0 J(x)]

The approximation is accurate for low velocity tracking.

A: The tracking task was attempted learned using the algorithms 1.@ and 2.b. First,
learning was applied to the undamped model (18). Both algorithms forced the
manipulator into singular configurations after a few iterations.

Then, the response was damped by adding a velocity feedback x,=—Dx,+u,
where D=diag(10, 10, 10). Algorithm 1.z converged in 33 iterations to J=7-3+10"".
Algorithm 2.b converged in 9 iterations to J=55-10"5,

L] 0.3 1 1.3 2 2.3 3

Figure 5. Example 2.B: Maximizing the manipulability measure. Joint trajectories before (b)
and after (a) maximizing the manipulability measure.

120 E. Lunde and J. G. Balchen

B: Since the manipulator has redundant degrees of freedom, an additional cost
function may be optimized along the trajectory. The manipulability measure

w(x)=/(det(J(x)JT(x)))

is maximized in the configurations ‘furtnest away’ from the singular ones (Nenchev
1989).

Based on the above solution with algorithm 2.b, the learning law (16) was applied.
The gradient @w(x)/@x was calculated numerically. The optimization was run for 25
iterations with the step size parameter a =5, followed by a new learning session to re-
establish the tracking accuracy. The time integral of w(x) was used as a global measure
of manipulability: it was improved from 1-66, to 2-10 after optimization. The joint
trajectories before and after optimization is shown in Fig. 6. They clearly indicate that
the initial configuration was not optimal.

7. Conclusions

From the previous sections, and in particular section 6, we might draw some
conclusions regarding trajectory learning algorithms:

Feedback loops give more robust learning, and remove the need for ‘intelligent’
initial guesses for the feedforward trajectory 7.

The algorithms including the acceleration error are sensitive to ‘non-regularities’,
such as initial errors e, #0, which leads to very high accelerations and divergency.

All algorithms compensate gravity quickly—this is due to the integral effect of the
iterative algorithms. Nonlinearities and coupling forces were taken care of even for
algorithm 2.b which was diagonal in nature.

Experience from simulation experiments shows that learning convergence is
sensitive to tuning parameters such as learning and feedback gains.

The learning law based on output errors and constant learning gain (2.b)
demonstrated good convergence properties and robust performance.

The learning strategy presented is local as opposed to a global method where the
control trajectory is updated using information of the overall response (Lunde and
Balchen 1988). Though more complex, the global approach is able to describe general
optimal control problems.

ACKNOWLEDGMENT

This work was supported by a grant from the Royal Norwegian Council for
Scientific and Industrial Research.

REFERENCES

ARIMOTO, S., KAWAMURA, S. and MrvAzAK], F. (1984). Bettering operation of robots by learning.
J. of Robotic Systems, 1, 123-140.

ATKESON, C. G. and MCINTYRE, J. (1986). Robot trajectory learning through practice. Proc. IEEE
Int. Conf. on Rob. and Autom., 3, 1737-1742.

Bonoi, P., CasaLiNo, G. and GAMBARDELLA, L. (1988). On the iterative learning control theory
for robotic manipulators. IEEE J. Rob. and Autom., 4, 14-22,

Trajectory learning algorithms 121

Cralg, 1. J. (1988). Adaptive control of mechanical manipulators. Addison-Wesley, Reading,
Massachusetts.

DanLQuist, G. and BI6RK, A. (1974). Numerical methods. Prentice-Hall, Englewood Cliffs, New
Jersey.

Hauser, J. E. (1987). Learning control for a class of nonlinear systems. Proc. 26th CDC, 859-860.

LuenBerGeR, D. G. (1984). Linear and nonlinear programming. Addison-Wesley, Reading,
Massachusetts.

Lunpg, E. and BaLcueN, J. G. (1988) Learning control of redundant degrees of freedom robots
by optimization in parameterized control space. Modeling, Identification and Control, 9,
207-222.

NEncHEvV, D. N. (1989). Redundancy resolution through local optimization: a review. J. of
Robotic Systems, 6, T69-798.

OH, S.-R., BIEN, Z. and Sun, H. H. (1988). An iterative learning control method with application
for the robot manipulator. IEEE J. Rob. and Autom., 4, 508-514.

Samson, C. (1987). Robust control of a class of non-linear systems and application to robotics.
Int. J. Adaptive Control and Signal Processing, 1, 49-68.

Tocia, M. and Yamomoto, O. (1986). Learning control and its optimality: analysis and its

application to controlling industrial robots. Prec. IEEE Int. Conf. on Rob. and Autom.,
1, 248-253.

