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A multivariable robust adaptive controller using
reduced-order model
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In this paper a multivariable robust adaptive controller is presented for a plant with
bounded disturbances and unmodeled dynamics due to plant-model order
mismatches. The robust stability of the closed-loop system is achieved by using the
normalization technique and the least squares parameter estimation scheme with
dead zones. The weighting polynomial matrices are incorporated into the control
law, so that the open-loop unstable or/and nonminimum phase plants can be
handled.

1. Introduction

Most adaptive control systems are designed with the assumption that the plant
order is exactly known. However this is a critical restriction in practical application of
adaptive control since, in general, the plant order cannot be known exactly. It is then
natural to ask how an adaptive control system behaves when the plant is not perfectly
described by a given model. In addition, there are usually unmeasured bounded
disturbances, such as step load disturbances acting on plants. It was shown that such
unmodeled dynamics, however small, may cause instability in an adaptive control
system (Rohrs et al. 1982). Therefore considerable research has been attracted to this
field (Ortega and Yu 1987). Generally, the normalization and parameter estimation
with a dead zone are used in the design of a robust adaptive controller. Cluett et al.
(1987, 1988) suggested the robust adaptive controllers for single-input single-output
systems with a plant-model order mismatch and bounded disturbances by using a
projection parameter estimation or a least-squares parameter estimation.

The results reported in this paper differ from the related work in Cluett et al. (1987,
1988) as follows. (1) A robust adaptive controller for multi-input multi-output systems
with plant-model order mismatches and bounded disturbances is suggested.
(2) Although an augmented plant was used in Cluett et al. (1987) for incorporating the
weighting polynomials P, Q and R into the predictive control law in order to handle
some nonminimum phase plants, a weakness is that the original plant must be open-
loop stable. This limits the use of the suggested robust controller. Here the concept of
the generalized minimum variance with the weighting polynomial matrices P, Q and R
(Koivo, 1980) is considered in the design of the robust adaptive controller. The
advantage is that the open-loop unstable or/fand nonminimum phase systems can be
handled even in the existence of plant-model order mismatch and bounded
disturbances.
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2. A MIMO adaptive control scheme

2.1. Plant description
Consider a MIMO linear discrete-time plant, with constant but unknown
parameters, represented by the form

Alg™ " Wt)=Blg™ u(t—k)+&(1) M
where y(t)eR™, u(t)eR™ and (t)eR™ are plant output, input and bounded disturbance
vectors respectively, A(g~')=diag(A(g ")) and B(g~ ') is a polynomial matrix, where
Afg™Y) (1<i<m), Bi{g™") (1<i<m, 1<j<m) are polynomials in the backward-shift
operator ¢~ ' and A{0)%0. k is the time delay of the plant. Using the polynomial matrix
equation

Plg™Y)=F(g~YAlg ") +q *Glg™") @
where P(q~")=diag(P{q™")), F(g~")=diag(F{g™"). G(¢~')=diag(G{q™")) and the
order of F(g~') and G(g~ ') are k—1 and ng, ng=max(n—k, n,—1). Using (2),
equation (1) is written as

Plg™Yy(t+k)=alg™ YN+ Plg™ Ju(t) + (e +k) 3
where alg™)=G(q™ "), Blg~")=F(g ")B(g™"), 6(t+k)=F(q~ )&t + k). It is clear that
(1) still is a bounded disturbance vector. Equation (3) can be written as

P(q Wit +R)=X"Q+5ft+k), i=1,....,m @
where

Qf =[0,---,05  Beseeees BG5BT
X" =Dde),..., yt—),ult)",..., u(t—s)"]

and r=ng, s=ng+k—1.

Most actual plants are high order and in general, the model order is often chosen to
be less than the actual plant order for simplifying the design of the controller and
implementing the algorithm easily, even in non-adaptive cases. Suppose we choose
ry<r and s, <s as the model order, then (4) is rewritten as

P{q Wi =X{t— KD+ 00)=xt — k)0 + 2t — K p; + 81), i=1,....m  (5)
where

QF=[6F; pT1=[00,-- 05, Boseees Bes- -5 Bots- s Birs &y 15002505

Bl s By B, i)

X&) =[x 05 z{) 1=D0e),- ., e —ry);
u{t).r’- ..,U{I—SI)T;}"(!—PI - l)’""yi(t_r);u(t-"sl - I)Ts---su(t_s)-r]

2.2. Normalized model

If the unmodeled dynamics z{t—k)"p; in (5) are bounded they can be absorbed
in the bounded disturbances 3 (¢). It is evident that z{t — k)" p; may be unbounded since
z{t—k) involves y(.) and u(.). In order to guarantee the boundedness of z{(t—k)Tp,
similar to Cluett et al. (1987, 1988), the normalization technique is used here. The
normalized variable is defined as follows.

(1) =={t)/nf1) (6)
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ni(t)=max|: max |[x{t— k), C] (1))
1<j<h,
where

2O =Dy0),- ., yit—r)u®), ..., ult —s,)"]
and h,=r, +s, withr <r, and s <s,. [x{t — k)];is the jth element of y{t — k) and C, used
to prevent a division by zero, is any positive constant. Equation (5) is divided by n{t)
then we have

P{g Wi =xit— 00, +d}(t), i=1,...,m ®)

where

dXt) =zt — k) p; + &%(t)

The normalization used here has the advantage of guaranteeing the boundedness of
x%(t—k) and z(t — k). Noting that || p;| is bounded and n{t)> C, it is clear that di(f) is
bounded. Suppose M; to be an upper bound of |dj(t)], i.e.

supldi(t)| <M, Vt=0,i=1,...,m ©)

2.3. Robust adaptive controller
When parameters of the plant (1) are unknown, we use the estimate {t) instead of
0,. Define £{t) as an estimation error

elt)=PLq WL —x{t— k)0 —1), i=1,....m (10)
Then the normalized £ft) is
&(t)=Pdq™ )y} —xe— k)"0 —1) an

In order to handle the bounded variable d7(t) the recursive least-squares parameter
estimation scheme with dead zones given in Gu and Wang (1988) is used for the
normalized reduced-order model (8). for i=1,...,m

A vy HOP{t—2)xi(t —k)ei(®)
5{‘)—6{1 1) T l+x}‘(t—k)TP;(t—2)x‘;(t—k) (12)
Plt=1=Fit=2) ‘(t)f-(:x:(:)fr(:)rp.()ﬁtzh;): -f) ) (13)
_Jo if el <2M;
M= {‘y otherwise ye(z, 3(1 —1)/4) (14)

where O0<1<3/7.
The following adaptive control law is adopted.

x()"60(t) — R(g Wt + k) + Qg Ju(t)=0 (15)

where R(g~') and Q(g~!) are polynomial matrices in g !, w(t) is a bounded reference
vector and

x(t)=diag[x,(t),. .., X{t)]
0(e)=diag[0,(2), .., 0,(0)]
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Remark 1. An advantage of the recursive least-squares parameter estimation scheme
with dead zones used here is to ensure that the coefficient matrix of u(f) in (15) is
nonsingular for all ¢ by the choice of y in (14) (Gu and Wang, 1988).

Remark 2. We know from Koivo (1980) that the adaptive control law in (15) is
meaningful because when the parameters are known and £(¢) is the zero-mean white
noise vector, the generalized minimum variance control of the plant (1) is given by

X(O'Q—R(g™ "Wt +k)+0(g ™ Ju(t)=0
which implies minimization of the cost function
J=E{[P(g~ ")/t +k)— R(g~ )w(t+k)+Q(g~ Yu(t))*}

The cost function with the weighting polynomials P(g ), R(g~ ") and Q(g~!) was first
suggested by Clarke and Gawthrop (1975, 1979) for a self-tuning controller. The
adaptive controller presented here, however, is not of minimum variance because of the
presence of unmodeled dynamics and bounded disturbances.

3. Stability analysis

3.1. Basic assumptions
The basic assumptions necessary for the stability analysis in the paper are

Al: The time delay k is known.

A2 The upper bounds of the order of A(g~') and B(g ') are known.

A . The upper bound of |d{r)), i.e. M, (i=1,...,m), are known.

A4: The off-line choices of P(q~ ') and (g™ !) are such that the polynomial matrix

T(q~")=Plg ")Blg ")+ Qg )Ag™")
is stable, i.e. det T(z)=0 for |z|]>0.

Note the assumption A2 does not require knowledge of the plant order, but only an
upper bound of its order. The assumption A2 is used here to decide r, and s5,, which is
the dimension of y{t) in the normalization factor n{t).

3.2. Convergence properties of the normalized model

Some convergence properties of the normalized model (8) are given below.
Lemma 1. The estimation scheme (12)(14) has the following properties.

(1) v{)—vi{t—1)<0,

(i) :l-i-lg A0 ()? =0.
where v{t)=0(t)"P{t—1)"10), 8()=04t)— 0, i=1,...,m.

Proof. See Gu and Wang (1988).
Define the generalized error vector e(t)

e(t)=Py(t)— Rw(t) + Qu(t — k) (16)
Substituting (10) and (15) into (16) yields
eft)=z(t) +x(t— )" [6e —1)— e — k)] (17
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Then the normalized form of efr) is
ex(t)=£(0) + X3t — K" [6e— 1) — Bt — K] (18)

Lemma 2. 1If the estimation scheme (12)(14) is applied to the normalized system (8),
there exists T>0and fort =T, i=1,...,m,

@ 16—k —0—1)j=0, (19)
(i) lede)l <2Mn{1). (20)

Proof. Define H;={t|A{t)%0, teN*} for every i (I<i<m). N* represents a set of
natural numbers. We can prove that H; must be a finite set. Otherwise there is at least
one iy (1<i, <m)and its corresponding H,, isinfinite. Then H; can be represented by a
series of {t,} and t,— oo (n—c0). From (14) we have

A (t)=1>0 (21
Then from Lemma 1 (ii) it follows readily that

lim & (t,)=0

R+

When n is large enough, it must be

IRt <2M,,
From (14) it follows that 4, (t,)=0. This contradicts (21). Then for every i (1 <i<m) H; is
finite. Thus there exists ¢;=>0 and when t >t;, A{f)=0. Let

T= max {t;+k}

L<isEm
and from (12) and (14) it yields
0(t—k=00—1),t>T

which means the result (i). From (14), (18), (19) and the boundedness of x}(t — k) we have
result (i1).

3.3. Stability results
Introducing polynomial matrices A(g~?*), B(g~*), B(g~*) and (g~ ?) such that

Alg™")Bq ) =B(g "A(g™") (22)

Blg™)0la™")=0a Bl ") 23)

where det A=det A, A(0)=A(0), det B=det B, B(0)=B(0). We know that A(g~?),
B(g™"), B(g~ ') and (g ?) always exist (Wolovich, 1974).
Multiplying (16) on the left by 4 and using (1) we have

(PB+ AQ)u(t —k)= Ae(t)+ A,(t) (24)
where
A, ()= ARw(t)— PE(t)
Multiplying (16) on the left by B and using (1) and (23) we have
(BP+ QA)y(t)=Be(t)+ A1) (25)
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where

A,(0)=BRw(t) + 0¢(r)
From (22) and (23) we have
det (BP+QA)=det[B(P+ QB ' A)]=det [B(PB+QA)B 1]
—=det[(PA~'B+Q)A]=det[A~Y(PB+ AQ)A]
=det(PB+AQ) (26)

Lemma 3. Under the assumption A1-A4 there exist positive constants C, and C,
such that

Colxt—MI<C+  max  |efd), 0<t<N @7)
OstsN,1sjsm

where

x0T =007 ... ()]

Proof. Since A,(t) and A,(t) are bounded, according to assumption A4 and Lemma 3.2
(Goodwin et al. 1980), (24)26) imply that for all ¢ and i=1,...,m

<K, +K, max lefz), 0O<t<N (28)
OSt<N,1<jSm

lu{t—k)<K;+K,  max left), 0<t<N 29)
O0<t<N,1<j<m

Then (28) and (29) imply that

Ixt—kI<Ks+Ks max |ef7), 0<t<N
O<£tsEN,1<jEm

which means

Cillt—kI<C,+ max lefr)) O0<i<N

O=t=N,15jsm
where C; =1/K¢ and C,=K /K.

It is obvious that the linear boundedness condition (27) depends on the location of
the roots of the polynomial det T(g ~!). For any given A(g~ ') and B(g ~ ') it is possible to
select the polynomial matrices P(g~") and Q(g ') to satisfy this condition.

The stability results of the adaptive control system in the presence of bounded
disturbances and unmodeled dynamics are contained in the following theorem.

Theorem 1. Under the basic assumptions A1-A4 and if

C,>2M, where M= max M; (30)
1<i<m

then the adaptive control system formed by the plant (1), the estimation scheme
(12){14) and control law (15) have the following properties

@ {ll»®I} and {llu(t)i} are bounded.
(1) ledl<2Mnt), t=T, i=1,...,m.
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Proof. Lemma 2 (ii) and (30) yield

C,>2M> max {left)|/n{1)}
1<i€m
= max {le(r)|/max{|lx{t—K),C}}
1<i€tm

> max left)/max{|x(t—K)],C} @31)
1<i=s=m

Assume the sequence {[|x(z)||} to be unbounded. From lemma 3 there exists a
subsequence {t,} such that

Cillxt.—~RI<Cr+ max et (32)
Dividing both sides by [|x(t,—k)|| we obtain

Ci<Gfllxtn— R+ Joax letol/lxtn—k) (33)

Since ||x(t,—k)|—>oc0 as t,—c0, the first term on the right-hand side of (33) tends
towards zero. Equation (33) contradicts (31). Then the assumption that {[|x(t)|} is
unbounded is false and the property (i) is proven. From Lemma 2 (ii) the property (ii)
follows immediately.

From Theorem 1 one observes that the adaptive controller guarantees the BIBO
stability of the closed loop system and makes the generalized errors eft) bounded.
From (8)itis obvious that the unmodeled dynamics come from two parts, that is, plant—
model order mismatches and bounded disturbances. If the plant-model order
mismatches, i.e. r —r; and s —s,, are smaller and the norm of the unmodeled parameter
vector, {|p;||, is also smaller, the upper bound M; may be decreased. In practical
applications where the plant parameters are unknown, the values for M, i=1,...,m,
must be chosen reasonably according to the understanding of the plant.

4. Conclusions

Some improvements and extensions of earlier work (Cluett et al. 1987, 1988) have
been made in this paper. The open-loop unstable and/or non-minimum phase plants
can be handled by incorporating weight polynomial matrices into the controller. The
combination of the normalization technique and the parameter estimation scheme
with dead zones make the analysis of the robust stability and global convergence
considerably simpler.
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