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On estimating the error of local thermodynamic models.
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A general méthod is developed for predicting the deviation between local and
rigorous thermodynamic property models. The method is based on a quadratic
error structure. The curvature matrix is updated after each parameter revision.
The updating scheme utilizes the observed deviation as a measure for correcting
the matrix and thus does not require any additional rigorous model evaluations.
A recursive least squares procedure with variable forgetting is adopted for the
parameter updating. A local model structure for K-value evaluations is applied
in a dynamic simulation model of a batch distillation column. The efficiency and
accuracy of the proposed method are tested for two different mixtures; a nearly
ideal and a strongly non-ideal mixture.

1. Introduction

As more sophisticated thermodynamic models are introduced, which more accu-
rately take into account highly non-ideal systems, they become computationally
more expensive. Costly thermodynamic model evaluations are primarily caused by
complicated correlations, solution of non-linear equations by iteration {often slowly
converging) and numerical differentiation to generate partial derivatives. Therefore,
methods are needed which are more efficient in their use of these models. The com-
putational burdens involved in large scale, process flow sheeting simulations are
extensive; as much as 70-90% of the time is spent on thermodynamic and physical
(TP) property estimations. It is easy to see that there is much to gain from more
efficient use of these models. For dynamic process simulation, it may even become a
necessity, if the computations are to proceed in real time or faster.

There are several possible strategies for more efficient use of TP models. Accord-
ing to Grens (1983), four approaches are usually taken to improve phase—
equilibrium calculations:

1. Reformulation of the calculation — the convergence properties of the iteration
procedure can be influenced by the choice of convergence function and iter-
ation variables.
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2. Convergence acceleration of fix-point schemes — the convergence rate of fix-
point schemes can be improved by various methods such as by the dominant
eigenvalue method..

3. Free-energy minimization techniques — this is an alternative statement of the
equilibrium condition.

4. Use of local approximations to the thermodynamic functions — this is accom-
plished by replacement of the rigorous TP models by local approximations.
The local approximation is a simple analytic function fitted to the rigorous
model over a limited range and periodically revised to provide the best fit in
the region of interest.

Among the remedial actions listed above, the last approach is the one treated
here. Besides having a modular structure, this approach seems to have the widest
applicability. It is independent of the actual rigorous model used and it is especially
well-suited for dynamic process simulation. The idea is to have a general procedure
that can be applied to a wide variety of local TP property models. It is also desir-
able to have a procedure that is transparent so that the application program does
not see any difference between the rigorous TP package and the local TP procedure
as depicted in Fig. 1. As it appears in Fig. 1, the independent variables of the locai
and the rigorous models are not identical. This is because the local model is explic-
itly dependent on only a subset (x) of the variables (z) that the rigorous model is a
function of.

It is essential that the local model has an explicit structure. Furthermore, the
local approximation, J, should be based on a simplification of the rigorous model if
possible, but polynomials and other arbitrary functions may also be used. Local
models based on physical considerations will, however, be more efficient as they are
valid over a much larger region before the parameters need to be revised. Major
effects should therefore be represented by an approximately correct mathematical
structure, whereas minor effects are represented by the adjustable parameters. It is,
however, desirable to have as few parameters as possible for each local model.
Another desirable quality of local thermodynamic models is that they can provide
the partial derivatives directly by analytical differentiation, although the reliability
of such a measure is questioned by Chimowitz et al. (1983).

Several papers have been published on local models during the last ten years or
so, and a review of some works is given by Grens (1983), while more recent works
include Chimowitz et al. (1984), Macchietto et al. (1986), Clark and Reklaitis (1986)
and Johns (1985). Models are mainly developed for K-values and fugacity coeffi-
cients, but others, such as vapour pressure, liquid activity coefficients and enthalpy
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Figure 1. The conventional approach (a) and the application of local model (b). Frequent
and less frequent calls are indicated by (=) and (—), respectively.
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evaluations, are also treated. The simplified K-value model applied here is one that
neglects the interaction between the component itself and the remaining mixture
constituents. Only pressure, temperature and liquid mole fraction dependencies are
explicitly represented in the following mathematical structure:

In (K; P) = 0y; + 0,/T + 03(1 — x;* (1)

More advanced local models that take into account non-ideal effects are proposed
by Chimowitz et al. (1983), though these are found not to be necessary here.

The class of local models that is investigated here includes the one above and
most other known local models suggested. All are linear in the parameters and can
be expressed as:

Px) = 0"x @

Here, x may be labeled the observation vector or the vector of independent vari-
ables and contains some of the process state variables or transformations of these. 0
is the vector of adjustable parameters. For model (1) above, the property for the ith
compoenent is In (K; P) and the observation vector is given by:

xT=[1, YT, (1 — x)*] 3)

Note that the observation vector x in (2) will normally contain a constant element.
Then, x cannot attain all possible values and therefore the local model will normally
not go through the origin. Alternatively, the local model can be written as
#(x) = ¢ + 6"x. Here the dimension of the @ vector and the x vector is one less
than in equation (2). When x is augmented with a constant, it does not affect the
analysis as presented here. Expression (2) is chosen because the parameters are gath-
ered in one single vector.

One of the problems with applying local thermodynamic models in process
simulation, which is the main issue of concern in this work, is that there are no
adequate procedures for deciding when to update the local model parameters. Since
the local parameters are to be updated in an adaptive manner, the deviation of the
local model from the exact rigorous model has to be estimated somehow. As soon as
the error exceeds the specified tolerance, the parameters must be updated to give a
good fit to the rigorous model in the region of interest. The local model should be
sufficiently accurate, but at the same time it should not be updated more than
needed to attain the required accuracy.

While the method, as proposed by Macchietto et al. (1986), based on selecting a
time. interval where the next update is to be done, may be effective, it is found to be
theoretically inadequate because the error is not an explicit function of time. Also
the error function proposed by Clark and Reklaitis (1986) is found to be insufficient
as it is an ad hoc method. In the present paper, however, we propose a method for
predicting the error, that is general in character and that is based on the true inde-
pendent variables. With this method, changes in the independent variables which
fall outside the region of validity are detected immediately and the local model is
updated.

2. Parameter estimation

The deterministic local model (2) is estimated by means of ordinary least squares
fitting to the rigorous model. As the local parameters are to be updated in an adapt-
ive manner, a recursive least squares procedure is applied. In such procedures it is
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common to introduce forgetting in the updating of the covariance matrix in order to
weight adjacent information more than remote. The algorithm may also be imple-
mented with variable forgetting as the one proposed by Fortescue et al. (1981).

Ot =6 + Ky yyptisy @
Brv1 = Yerr — VX 1) )
Kivy = Poxyyq[1 + x50 Py 71 ©)
Ppry =1 — Ko rXis P 2y @
Avr =1 — piaq[1 — x4 1K1 1/Z0 ®)

A problem that may occur with this algorithm is that the covariance matrix Py,
will increase exponentially if there is no or little excitation of x and if A is less than
one. This may create a situation known as blow-up, implying that the parameter
vector will become extremely sensitive to even small deviations between the rigorous
and the local model. Scelid et al. (1985) have solved this problem by proposing an
algorithm where the amount of information introduced for each parameter is equal
to the amount forgotten. The diagonal elements of the covariance matrix P, , are
thus held constant. Although there could be possibilities that some elements of the
observation vector may be insufficiently excited during the simulation and thereby
the danger of encountering blow-up situations, this was not observed, and therefore
algorithm (4)+8) was used without problems for the examples studied here.

The local model parameters and the covariance matrix have to be initialized
since the procedure is recursive. The approach applied here is to postpone the simu-
lation until the parameters and the covariance matrix are estimated. During this
initialization phase, the independent variables of the local model are excited inde-
pendently to obtain good estimates of both the parameters and the covariance
matrix. These initial updates require evaluations of the rigorous model which are
not used in the simulation. In mnost cases, however, these redundant rigorous evalu-
ations are few compared to the total number of updates during the simulation.

3. Error estimation

The most essential concern with the application of local TP property models is
knowing when to update the model parameters. A procedure that is economic in its
use of the rigorous model should call for the rigorous routines only when the devi-
ation between the rigorous and the local model exceeds a specified tolerance. There-
fore, in order to employ an adaptive strategy, it is nccessary to have an approximate
estimate of the error. Whenever the process state variables fall outside the region of
validity, the model parameters will be updated.

3.1. Error structure

Since this approach is intended to be of general character, the rigorous model is
approximated by a Taylor series expansion around the last updated point x, and
the series is truncated after three terms.

Yx) & Y + [0y/0xTi(x — x) + 3x — x)[0*y/0x7Tux — x,) ®
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Here, y, is the exact rigorous value at x,. Let us assume that the local parameter
vector is fitted to the rigorous model such that:

6, = [9y/0x]: (10)

This is not exactly true, but 8, is after all the best approximation to. the first deriv-
ative of y available at x,. Since the local model is given J.(x) = ¢ + 6;x, the
deviation between the rigorous and the local model can be expressed as:

&(x) = y(x) — hulx)
~ yi— x) + Hox — x)[0%y/0x"Tdx — x) (1)

Hence, the estimated error is assumed to attain a quadratic structure and may be
written briefly as:

&%) = g(x) + 3 — x)'Qulx — x)) (12)

£x(%) = yx — Pu(xy) is known exactly from the last updating, but it is a small quan-
tity and might as well be neglected from the expression. @, is an estimate of the
Hessian matrix, but it includes higher derivatives as well. It is a measure of the
curvature of the rigorous model and thus the deviation from a linear model.

3.2. Updating scheme

The problem which confronts us is how to get an estimate of the curvature, or
more precisely, how to estimate the matrix Q,. A possible way is by numerical
approximation of the Hessian by perturbation of x around x, . This approach will,
however, require too many calls to the rigorous package and thus the whole idea of
applying local models becomes fruitless. Needless to say, a necessary condition for
applying local thermodynamic models is that the computational procedure is effi-
cient.

Rather, let us assume that expression (12) is provided with an approximate
matrix @, which can be applied for estimating the error in the neighbourhood of a
fixed point x, . If the predicted error exceeds the tolerance at x, ., a rigorous model
evaluation is made and the local parameters are updated. At the same time, the
exact error is made available by measuring the difference between the rigorous and
the local value at x, , ,. By fitting the same error structure (12) to the measured error
(ftx+ 1), but now with the corrected curvature matrix Hy, we have a possible scheme
for correcting Q. The predicted and the measured error at x,,, may thus be
written:

fer1 = 3Pi+1QkPrs1 (13)

Hevy = Jz‘PL 1HyP+ 1 (14)

The vector p, ., is the difference between two succeeding updatings; py .y = Xi+1
— x, . The difference between the measured and predicted errors is defined as:

Spr1 = Hi+1 — ka1 = 1Pis 1L — QilPisy (15)
The way equation (15) is written, §,,, may attain all real values. However, in order
to avoid failing to update the model when it should be updated, the absolute value
of the predicted error should be greater or preferably equal to the absolute mea-
sured error. This is the desired situation, but may not always be the case.
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Since one measurement (. ,) is available at each parameter revision, the cor-
rected matrix may be written as a rank-one update of the one used for prediction.

H,=Q, +w" (16)
Substituting equation (16) into (15), it reduces to

Oxe1 = i‘PL 1‘”’TP1+1 (17)

So long as v is not orthogonal to p,, ,, we have a well-defined # vector and thus any
rank-one update will satisfy (17). A possible choice of v is a vector parallel to p; ;.
By choosing v = p,,; and by defining the scalar s,,; = pr, Pc+1, €quation (17)
becomes

PE+1"' = 2044 1/Sk41 (18)

The vector u is not uniquely determined by a single equation, but # can at least be
chosen such that equation (18) is satisfied, and a possible choice is

=Py 12‘51;-»1/3&24-1 (19)

With this choice of u, the correction of @, to obtain H, can be made according to
the following equation

H, = Oy + Pis1Pr+1284 4 1/5t 41 (20)

We may easily convince ourselves that equation (20) satisfies (13) and (14) by pre-
and post-multiplication of p, , ;.

Finally, in order to have a complete updating scheme, the curvature of the rigor-
ous model is assumed to be constant over the interval p,,, such that the matrix
used for predicting the error around next working point, x, . ,, is set equal to H;.
Thus, the complete recursive updating scheme reads

Qi1 = Ou + Pus 1P+ 12054 1/50 44 (21)

In process simulations, the Q@ matrix will possibly be updated several times along
the state trajectory. At each updating, the new estimate of the Q matrix will only be
improved in the direction of the last movement, p, , . In directions perpendicular to
the last movement, however, the error function with @, will predict the same
error as with Q, .

As with the parameter covariance matrix, the initialization of the Q matrix is
made by perturbation of the independent variables. During this initialization phase,
the local parameters, the covariance matrix and the Q matrix are estimated.

4. Application of dynamic simulation

The methods described here for recursive parameter estimation and for predict-
ing the error of the local thermodynamic models are applied in studies of dynamic
simulation of a batch distillation column (cf. the Appendix). The batch distillation
model requires repetitive bubble point calculations, and it is a typical case where the
application of local K-value models may be advantageous. Only equilibrium ratios
are approximated by the use of local models, while enthalpies are supplied by rigor-
ous thermodynamic routines. The local K-value models are interfaced with the
process model through a completely transparent thermodynamic property routine.
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The differential-algebraic equations describing the column are solved by means
of a diagonal implicit Runge-Kutta integration method with step length control.
Although the model is sparse, a full matrix solver is used with the integrator. Many
functional evaluations may surely be saved by using a sparse solver, but this is of
little importance to the main issue addressed here, namely the number of rigorous
property evaluations compared to the total number of property evaluations.

Two different mixtures are distilled. The first is a nearly ideal hydrocarbon
mixture while the second is a strongly non-ideal system. For each of the two mix-
tures, two solutions are obtained; first, the conventional solution by using only
rigorously calculated K-values, and the second solution is obtained by the use of
local model K-value models. A local K-value model corresponding to the one in
equation (1) is selected for both mixtures.

The column trays, including the reboiler and the condenser, are viewed as
separate process units with distinct sets of local model data. Each process unit is
updated independently of each other, but all the K-value models within each unit
are chosen to be updated simultaneously.

Before starting the simulation with the local approximations, the parameters, the
covariance matrix and the @ matrix for all local models in each unit are initialized
by perturbation around the initial point. After the initialization phase, forgetting is
introduced in the update of the local model covariance matrices as described by
Fortescue et al. (1981).

Obviously, the number of evaluations of the distillation model and thus also the
number of TP property evaluations are dependent on the integration accuracy. The
number of local model updates, however, is found to be nearly independent of the
integration accuracy in the two examples studied here. Therefore, the proportion of
rigorous TP calls decreases with increasing integration accuracy.

Example 1: ideal mixture

In Example 1, the mixture consists of n-butane, n-pentane and n-hexane which is
distilled with constant distillate flow rate and constant external reflux ratio. The
local K-value model (1) is updated with reference to a rigorous model based on the
SRK equation of state. The simulation is performed according to the specifications
given in Table 1 in the Appendix

The maximum allowed relative deviation between rigorous properties and local
model approximations is set to 1%. In Fig. 2, the liquid mole fractions in the con-
denser obtained by the two solutions are shown. Likewise, Fig. 3 shows the corre-
sponding K-value solutions. In Fig. 4, the observed relative errors in the local model
approximations are shown.

As little as 0-8 and 0-4% of the total number of property evaluations were calls
to the rigorous package when the integration accuracy were 10~ * and 10~ %, respec-
tively. Although the number of rigorous evaluations becomes significantly less by
applying a local K-value model, the CPU reduction is not very substantial for this
example because the SRK model is in itself not very heavy.

Example 2: non-ideal mixture
In Example 2, the batch column is run with the strongly non-ideal mixture of

acetone, acetonitrile and water. A TP property package based on the NRTL equa-
tion of state is used for obtaining the rigorous K-values, while model (1) is still
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Figure 2. Liquid mole fraction transients in the consenser of Example 1; solutions obtained
with local models (lines) and with rigorous models (dots).

employed as local model. During the first part of the simulation, the column is run
with total external reflux until it reached stationary conditions. The column is oper-
ated at steady state condition for some time before the distillate flow rate is set to a
constant value which induces a transition state in the system.

Also here, the maximum allowed relative deviation between the rigorous and the
local models is 1%. Diagrams indicating the accuracy of the local solutions are
given in Fig. 5 and 6 where both the rigorous and the local solutions are plotted.
Due to non-ideality and longer periods of transients, the proportion of updates of
the local model parameters increased as expected compared to Example 1. The
proportion of rigorous updates amounted to 10 and 4-2% of the total number of
rigorous TP evaluation when the integration tolerance were 102 and 104, respec-
tively. Figure 7 shows the measured relative error at the updated points.

Compared to the local model, the rigorous K-values based on the NRTL equa-
tion are computationally much more expensive. The CPU time spent on one call to
the thermodynamic package based on local models, with and without an update,
and the time spent on a call to the rigorous NRTL K-value routine are measured. A
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Figure 3. The local (lines) and the rigorous (dots) K-values as function of time.

ratio of about 7:1 between local K-value approximations with and without an
update is observed. While the ratio between a call to the rigorous NRTL K-value
routine, and a local model call without any update is measured to about 4 : 1. This
should indicate that simulations using less than 50% updates of the local models
will have a reduction in the time spent on the calculation of thermodynamic proper-
ties. Less than 10% updates of the local model gives more than 43% savings in the
CPU time.

5. Discussion

It is obvious from the assumptions and the specifications of the column model
that it is not intended to simulate a completely realistic operation of a batch distilla-
tion. The physical property routines, however, are realistic enough. Rather, the
intention of this work has been to develop a transparent program that can be
inserted between any rigorous TP property package and an application program, as
for example a model for dynamic simulation of a batch distillation column. This is
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Figure 4. The maximum relative error measured at each update of Example 1; the property
tolerence limit is indicated by the dashed line.

accomplished, and the developed procedure for predicting the deviation between the
local and the rigorous models has proven to be both effective and accurate. The
accuracy of the error prediction is illustrated in Fig. 4 and 7, which show that the
measured error is mostly within the tolerance limit and at the same time not far
Lelow.

The application of local TP property models in distributed parameter systems is,
naturally, not restricted to our example with a distillation column. In the general
case, where partial differential equations are to be solved, local models are assigned
to each component for each discrete point in space. As each model may have its
own error control, the data sets are updated independently. If it is desirable to move
the discretization points in space to track a moving front of the solution, for
example, this will not cause any difficulties for the application of local property
models as described here. This is because the applied error structure is based on the
true independent variables.
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Figure 5. Liquid mole fraction transients in the condenser of Example 2: solutions obtained
with local models (lines) and with rigorous models (dots).

5.1. Efficiency

The efficiency of the proposed method for predicting the deviation between the
local and the rigorous TP property models is close to optimal. This is because
the method does not pose any additional property evaluations except for a few in
the initialization phase. Compared to the total number of updates needed during the
simulation, the initialization requires minor work.

The overall reduction in CPU time, when the method is implemented in a
dynamic process simulation model, must be seen in context with the efficiency and
the accuracy of the error prediction. Obviously, the number of rigorous property
evaluations required will also depend on the problem characteristics, such as the
duration of transients, the non-ideality of the system and the local model structure.
For the two systems studied here, which are not considered untypical, less than 10%
rigorous property evaluations are needed in order to attain the required accuracy of
1% relative. This will give substantial reductions of the overall computational costs
in dynamic process simulations and can undoubtedly have a great impact in study-
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Figure 6. Local (lines) and rigorous (dots) K-values as function of time.

ing transient behaviour of large scale process systems and in attempting real time
simulations.

Another observation, made from the simulations, is that integrating the model
with local property models required fewer right-hand side evaluations than if the
rigorous property models were called directly. This has also contributed to increas-
ing the overall efficiency. However, the number of integration steps taken by the two
approaches are the same. In fact, the model equations with the use of local property
models will become more sparse than if only rigorous models were applied since the
weak couplings are neglected in the former. In reality, two different models are
solved which have approximately the same solution. Since an implicit integration
method is used, a possible explanation of the difference in the number of right-hand
side evaluations could be that the sparser model converges the non-linear algebraic
equations faster than the other.

5.2. Stored information

The principal disadvantage of applying local thermodynamic property models,
instead of using merely the rigorous models, is that the former requires much addi-
tional information to be stored. Therefore, the reductions in CPU time are to some
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Figure 7. Maximum relative error measured in local K-values of Example 2.

extent compensated by an increase in the storage requirements. On the other hand,
the cost of memory is no longer critical. For example, each component on each tray
in our distillation column requires a distinct set of data which includes the param-
eter vector, the covariance matrix and the curvature matrix. In addition, each com-
ponent may also have different kinds of local property models as for example
K-values, activity coefficients, etc. Fortunately, the dimensions of the vectors and
matrices are small, typically four, and only half the information of the matrices
needs to be stored as they are symmetric.

6. Conclusions

The proposed method for predicting the deviation between the local and the
rigorous thermodynamic models has proven to be both accurate and efficient. The
proportion of rigorous property evaluations, which depends on the duration of tran-
sients, the non-ideality of the mixture and the local model structure, is reduced
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almost to a minimum by the proposed method. Substantial savings in CPU time are
obtained by simulating the dynamic behaviour of a batch distillation column with
the use of local K-value approximations.

Nomenclature :

P, P,.,
Qi: Ql:+l

Sp+1
u

v

X, Xy
yx)
Ve
Pulx)
z

The corrected curvature matrix at x, .

Kalman gain vector defined in equation (6).

Calculated difference between two succeeding updatings; p,,, =
Xp41 — Xg-

Parameter covariance matrices at x; and x, , ,, respectively.
Matrix used for predicting the error around x, and x,, ,.

Sk+1 = Pis1Pr+1

vector defined in equation (16).

Vector defined in equation (16).

Independent variables of the local model, continuous and discrete.
Rigorous property model.

Rigorous property evaluated at x,; i.e. y, = y(x,).

Local property model; j(x) = 6] x.

Independent variables of the rigorous model.

Greek letters:

Ors1 Difference between the measured and predicted error, defined in
equation (15).
£y Predicted error at the border of the region; ¢, 4, = &(x;. ;).
£{x) Function for predicting the error around x,, defined in equation (12).
y - Forgetting factor for updating the covariance matrix.
Hrsq Measured error between the rigorous and the local model
0, Parameter vector updated at x, .
z, Amount of information in the foregetting procedure.
Appendix
Batch distillation model
Assumptions

Constant molar holdup on trays

Constant molar holdup in condenser

Negligible rate of change of internal energies in the column
Negligible vapour holdup

Negligible fluid dynamic loop

Theoretical trays

Chemical equilibrium on each tray

Adiabatic operation

Stationary and linear pressure profile along the column
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Maodel equations
Condenser: (tray 1)

n.x, ;1 =V,K; 2% 2 — DR+ 1)x; 4
V;Hy = DR + Db + Q.
V, = DR + 1)
jthtray: (1 <j<r)
% = Li 1% jo1 + VierKi jeaXi jor — (L + VK x5
VierHyor + Ly By = V;H; + Lih;

¥ J

LJ = [G.'. 1 D
Reboiler: (tray r)
X, = Ly 1Xip-1 — Voxi Ky p + %, D
0, =V,H —L,_\h_,
iy = =D
Nomenclature
n;  number of moles on trayj n, number of moles in the condenser
L; liquid molar flowrate V;, vapour molar flowrate
h;  liquid molar enthalpy H; vapour molar enthalpy
K; ; equilibrium ratio x; ; liquid mole fraction
Q. condenser duty Q, reboiler duty
D  distillate flowrate R  external reflux ratio
i ith component j  jthtray
r total number of trays
Example 1 Example 2
n n-butane acetone
Mixture (2) n-pentane acetonitrile
3 n-hexane water
Initial vapor and (1) 0-40 03
liquid molefrac. 2 0-35 03
(x; = y) 3) 0-25 04
Condenser and 4-5 bar 1-0 bar
reboiler pressure 5-0 bar 1-9 bar
Molar liquid holdup
condenser: 20-0 mol 10-0 mol
trays: 1-0 mol 10 mol
reboiler: (initial) 110-0 mol 110-0 mol
Distillate
time interval: 0-10 hour 0-11/11-20 hour
reflux ratio: 1-4 oo/3
distillate flow rate: 10-0 mol/h 0/7-5 mol/h
Number of trays 5 10

Table 1. Problem specifications.
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