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A Schur method for designing LQ-optimal systems
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In this paper a new algorithm for solving the LQ-optimal pole placement problem is
presented. The method studiedisa variant of the classical eigenvector approach and
instead uses a set of Schur vectors, thereby gaining substantial numerical
advantages. An important task in this method is the LQ-optimal pole placement
problem for a second order (sub) system. The paper presents a detailed analytical
solution to this problem. This part is not only important for solving the general
n-dimensional problem but also provides an understanding of the behaviour of an
optimal system: The paper shows that in some cases it is an infinite number; in
others a finite number: and in still others, non state weighting matrices Q that give
the system a set of prescribed eigenvalues. Equations are presented that uniquely
determine these state weight matrices as a function of the new prescribed
cigenvalues. From this result we have been able to derive the maximum possible
imaginary part of the eigenvalues in an LQ-optimal system, irrespective of how the
state weight matrix is chosen.

1. Introduction

In this paper a new method for the determination of state weighting matrices, Q, is
presented such that the closed loop system gets a set of prescribed eigenvalues and the
feedback is a solution from the matrix Riccati equation. The problem of designing
feedback gains to optimally place the poles can be divided into two classes.

The first class is to design the LQ-regulator by which all poles of the closed loop
system are located in a specified region. This problem is discussed, among others, by
Anderson and Moore (1969), Kawasaki and Shimemura (1983, 1988), Heger and Frank
(1984), Shich et al. (1986), Shich et al. (1988).

Anderson and Moore (1969) placed the poles of the LQ-optimal closed loop system
to the left of a vertical line on the negative real axis in the complex plane. Shich et al.
(1986) placed the eigenvalues in a vertical strip on the negative real axis. Kawasaki and
Shimemura (1983, 1988) developed a recursive method for optimally placing the
eigenvalues of the closed loop system in an open hyperbola of the complex plane, while
Shieh et al. (1988) optimally placed the poles in an open sector of the complex plane.
The hyperbola by Kawasaki et al. is an approximation of the sector by Shieh et al.

The second class (to be studied in this paper) is to design the LQ-regulator by which
the closed loop system gets prescribed eigenvalues. This problem is discussed, among
others, by Graupe (1972), Solheim (1972), Bar-Ness (1978), Juang and Lee (1984), Amin
(1985), Medanic et al. (1988), Saif (1989), and Tharp (1989).

Received 1 December 1989.
{Division of Engineering Cybernetics, Norwegian Institute of Technology, N-7034,
Trondheim, Norway.




56 D. Di Ruscio and J. G. Balchen

Solheim (1972) presented a method based on an eigenvector approach. This method
performs well for a system with real distinct eigenvalues if the system is well behaved
and therefore can be diagonalized from a numerical point of view. If the system has
complex eigenvalues which have to be moved by Solheim’s method, this is of little
interest since the method neglects important solutions. If the system cannot be
diagonalized (a necessary condition is that the system has multiple eigenvalues) the old
algorithm cannot be used directly. The Jordan canonical form was proposed as a
solution to this problem. But this is only of theoretical interest because the Jordan
canonical form is very difficult to determine numerically, see for example Gulub (1983)
pp. 196-198. It also turns out that the algorithm solves an unnecessary problem,
namely the solution of full-order non-linear Riccati equations for modifying one real or
two complex eigenvalues in each step.

Graupe (1972) and Bar-Ness (1978) presented methods based on the sensitivity of
the state weight matrix with respect to the eigenvalues. J uang and Lee (1984) used the
modal control approach by Varga (1981) to determine a feedback gain matrix such that
the closed loop system gets specified eigenvalues. Then an inverse control
approach (Kalman 1964) is used to determine a possible corresponding state weight
matrix. The method is based on Theorem 1 and Corollary 1 of Juang and Lee (1984).
Amin and Hassan (1985) shows that neither the theorem nor the corollary can be
correct.

Amin (1985) considered the same problem as Solheim (1972) and developed a
method based on the results of Anderson and Moore (1969), and the mirror-image
property by Moliniari (1977). In this method it is only possible to change the real parts
of the eigenvalues while the imaginary parts are preserved. This could lead to a
requirement of the solution of a linear Lyapunov equation rather than a non-linear
Riccati equation. Medanic et al. (1988) used the negative definite solutions of the
Riccati equation to modify the state weight matrix and thereby position the real parts
of the cigenvalues while the imaginary parts are preserved. Tharp (1989) used the
method by Medanic ez al. (1988) on linear discrete systems. Saif (1989) used the result by
Solheim (1972), Medanic et al. (1988) and Amin (1985). In this method it is possible to
change the real and the imaginary parts of the eigenvalues, however, there are
unnecessary restrictions on the position of the new imaginary part of the eigenvalues.
Saif used the results by Solheim to move complex eigenvalues. The method is therefore
conservative, unnecessary restrictions are therefore put on the performance matrices.
Nothing new is added in the paper by Saif.

The method presented here is an extension of the work by Solheim (1972). The
method by Solheim (1972), and the other methods mentioned above, are not general
with respect to the position of the new eigenvalues. One reason is that unnecessary
restrictions are taken on the matrices in the performance criteria. The relation between
these matrices and the closed loop eigenvalues are of interest. In this paper we will
extend the relations given by Solheim, and present the general solution to this problem.
From this result we have been able to derive the maximum possible imaginary part of
the eigenvalues in an LQ-optimal system, irrespective of how the state weight matrix Q
is chosen. This result completes the optimal pole placement problem, because it gives us
the unique region where the poles can be located. In our method we are able to move
two eigenvalues, real or complex conjugate, to new real or complex conjugate locations
at each step, and only a Riccati equation of an order of not more than two has to be
solved. The method may also be used to shift poles in an already optimal system to
more desirable locations.
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The Schur method presented here has considerable numerical advantages
compared to the diagonalization approach, The algorithm is firstly, completely general
to the system structure and secondly, completely general to the structure of the
eigenvalue spectrum. The reduction to real Schur form is an intermediate step in
computing eigenvectors (using the double Francis QR algorithm) so the Schur
approach must, by definition, be faster. Furthermore, for a second order system the
algorithm is fundamental, that means that all solutions (state weight matrices) Q are
derived such that the closed loop spectrum gets specified eigenvalues.

The real Schur decomposition in control system design is used by Laub (1979) and
Varga (1981). Laub (1979) used the real Schur decomposition to solve the algebraic
Riccati equation, while Varga (1981) used the real Schur decomposition for solving the
modal control problem, for example, designing a feedback gain without constraints
such that the closed loop system gets prescribed eigenvalues.

The rest of the paper is organized as follows. Section 2 provides some definitions
and theorems from linear algebra prior to obtaining the method. Section 3 provides
some basics from control theory and the problem definitions are stated. Section 4
shows that the problem can be solved using a block triangulation approach. We show
that the n-dimensional problem can be solved by decoupling a sub-system. Section 5
solves the problem for a second order general (sub) system. This is part of the
n-dimensional problem. Equations are derived that determine all state weighting
matrices @ (if there are any) that give the LQ-optimal system some prescribed
eigenvalues. The results are presented in Algorithm 5.1. Section 6 states a general
algorithm, Algorithm 6.1, for the n-dimensional problem. Numerous examples are
given in Section 7 and some concluding remarks are made in Section 8.

2. Linear algebra review

Before presenting the result some definitions and theorems are prepared for
obtaining the method. Proofs are given in Golub (1983) Ch. 7.

Definition 1. UeR"*" is orthogonal if UT=U"".

Definition 2. UeC™*" is unitary if U"=U"".

Definition 3. FeR***?" is Hamiltonian if L *F'L=—F, where L is given below

L e

I denotes the n x n dimensional identity matrix. Note that L"=L" "= —L.

Theorem 1. Schur Decomposition (SD). Let AeR™*". Then there exists a unitary
similarity transformation U such that U¥AU=T is upper triangular with the
eigenvalues on the diagonal of T. Furthermore, U can be chosen such that the
eigenvalues 1; appear in any desired order along the diagonal.

Theorem 2. Real Schur Decomposition (RSD). Let AcR"*". Then there exists an
orthogonal similarity transformation U such that UT AU = T is quasi upper triangular.
The diagonal blocks in T consist of 1 x 1 blocks corresponding to real cigenvalues and
2 % 2 blocks corresponding to complex conjugate eigenvalues. Furthermore, U can be
chosen such that the 2x 2 and 1 x 1 diagonal blocks appear in any desired order.
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3. Basic definition
Consider a time invariant dynamic system
%x=Ax+Bu 2
and the quadratic objective functional

=3 r(:_cfgss +uTPu)dt 3)
0

where x is an n-dimensional state vector, u is an r-dimensional control input vector, A
and B are constant matrices of appropriate dimensions and Q and P are nxn
symmetrical and r x r positive definite symmetrical matrices respectively. The problem
is to design a controller matrix G of dimension r x n so that the closed loop system (4)
gets a set of prescribed eigenvalues and such that the performance criterion (3) is
minimized

$=(A+BG)x @
The optimal control that minimizes criterion (3) is given by
u=Gx G=—-P 'B™R (5)
where R is a solution to the algebraic Riccati equation
A"R+RA—-RHR+Q=0, H=BP BT (6)

The Hamiltonian matrix is derived from optimal control theory by augmenting the
co-states to the state space model (2). The Hamiltonian is

A _H 2nx2n
F=[_Q _A,,]en z 0]

F has 2n eigenvalues, (n stable and n unstable) located symmetrically about the
imaginary axis. The stable eigenvalues are identical to the eigenvalues of the closed
loop system matrix (4 + BG)=(A — HR). This can be seen from the following similarity
transformation

1 0]'[ A -—H|[I 0] [4-HR ~H 8
[R .'] [—Q —AT] R ]‘ 0 -(A—HR)T] (

This means that the closed loop eigenvalue spectrum can be derived from F without
solving the algebraic Riccati equation. We can now transform the eigenvalue problem
by similarity transformation. Using the following orthogonal similarity transformation

we get
. . [UuT™ o A —Hl[Uu o T —-H
F=‘”‘"U"=[o UT]LQ —Af][o U]=[—Q m'] o

where T, § and H are given by
T=UTAU (@=UTQU H=UTHU (10)

This means that the LQ-problem in(2) and (3) is transformed to a new state space by the
transformation x= Uz where U is an orthogonal matrix and z is the new state vector.
The new system matrix T which is similar to 4 with respect to the eigenvalues, the new
state weight matrix ¢ is given in (10). The control input matrix for this system is U”B.
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Choosing U as an orthogonal matrix that transforms A by similarity
transformation to an upper triangular Schur form 7, then the eigenvalue dependence
upon the state weighting matrix Q can be derived from Fin(9). This will be shown in the
next section.

4. Solution by block triangulization
The eigenvalue dependence as a function of Q in an LQ-optimal system can be
derived from the following Hamiltonian matrix (canonical system)

T -—-H
L% 7]

the system matrix 7, now in real Schur form (RSD) and H can be written

T. T, . |H, H
T= 11 lz]eRuxn H=[ 11 IZ]E'R;K“ 12
o % HT, Ha -

T,, is an n-2 x n-2 dimensional RSD matrix with 1 x 1 or 2 x 2 diagonal blocks. The
1 x 1 blocks correspond to real eigenvalues and the 2 x 2 blocks to complex conjugate
eigenvalues. The matrix T, is a 2x 2 dimensional RSD block of either two 1x1
diagonal blocks or a general real 2 x 2 block. We note thatif T,, consists of 1 x 1 blocks
then the system modus number n in T is decoupled. Then 4, can be moved directly by
Solheim’s algorithm (Solheim 1972). This is only a special case of our algorithm.

Block T, is decoupled from the other elements in 7. The eigenvalues of the general
2x2 block T,, can be moved while the other eigenvalues are unchanged by the
following state weight matrix Q. Proof is given below.

0 0
ﬁ‘[o sz] @3

where Q,, is a 2 x 2 symmetric matrix (not necessary non-negative). We will now derive
expressions for the eigenvalues of (11). The cigenvalues of F are given by the
characteristic polynomial of (11)

sI—T,, ~T H,, H,,
0 sI-T, HT H
det (sI — F)=det 2 12 2 (14)
0 0 sI+T7T, 0
0 02, T, sI+T3,

If we develop the determinant (14) from the first column and the third row we get the
expression

det (s — F)=det (s — T,) det (sI + T1,) det (sI — F5,) (15)
where F,, is a 4 x 4 Hamiltonian matrix corresponding to the decoupled sub-system

T,, given by
| . —Hazp
Fae= [—sz —T, (16




60 D. Di Ruscio and J. G. Balchen

Using the Schur formula (given in the Appendix) on the third part on the right-hand
side in equation (15) we get an alternative expression

det (sI— F)=det [(s] = T;  sT + TT,)(SI — Tya)I + TS, — QoI — Ty) " *H,,)] 17

Before we continue we will mention a special case. Assume the scalar case where
T22= 4w Q25=4,, and H,;=h,,. Then from (15) or (17) we get

82
Qnn = hnn

This was the main result in Solheim’s (1972) algorithm.

The problem is now reduced to determining the eigenvalue dependence upon the
weight matrix Q,, in the general 4 x 4 dimensional Hamiltonian matrix F,;.Inthe next
section we will derive analytic expressions for the state weight matrix Q,, such that the
decoupled sub-system in position T, gets prescribed cigenvalues. These results are
very important for studying the behaviour of an optimal system and do not seem to be
known, or mentioned in the literature. Another important conclusion from this result is
that when  has the form (13) and T and H have the form in (12) then we do not have to
solve a Riccati equation whose order is more than the dimension of the decoupled
system (16). We also recall that there exists an orthogonal U such that the diagonal
blocks in T appear in any desired order. This means that any diagonal block T;; in Tj,
whose eigenvalues are to be moved can be placed in position T,, with an orthogonal
similarity transformation (Stewart 1976).

s h,,#0 (18)

S. The second order problem

In this section we will derive analytic expressions for the problem of determining
state weight matrices Q such that a second order optimal system gets two new
prescribed eigenvalues.

The Hamilton matrix that determines the closed loop eigenvalues is given by

= o] (19)

where T, Q and H are given by

t h
g e I el B O I
The characteristic polynomial of the Hamiltonian matrix F is given by
L(s)=5*—p15* +p,=0 @n
The polynomial coefficients in terms of the state weight matrix elements are given by
P1=b1qyy +byq5,+d,q,,+4d, (22)
P2=00q11922 + 01911+ 2923, — aoq1, + k1qy5 + K, (23)

where the coefficients are only dependent on the matrices T and H. The coefficients are
given in the Appendix. The eigenvalues can either consist of real or complex conjugate
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pairs. If we prescribe the eigenvalues of the Hamiltonian, the polynomial coefficients
in (21) for these two cases would be

Case 1. Real eigenvalues 4, and 4,

pi=Ai+43 (24)
p=#143 (25)
Case 2. Complex conjugate eigenvalues 4, =a+jf and 1, =0 — i
py=2a*— %) (26)
p,=(+B) 27

We now have the problem of solving two equations with three unknowns. We choose
gy, as a free parameter and get the following equations from (22) and (23) that
determine g,, and g,,

911922+ 01411 +2G25+83=0 (28)
b.qy, +b2ga; +b3=0 (29)
where a, and b, are functions of g, and are given by
ay=—aoqi,+kigia+k2—p> (30)
by=dq12+d2—P1 (31)

We will first discuss the case when a, =det H #0. Given g, , as a free parameter we can
solve equations (28) and (29) for gy, and g,,. These equations could be written

aob1q31 +(aghs—a by +azhy)gy 1 +azby—asb; =0 (32
aobygh; +(aohs +a,b, —a3b1)42, +asbs—ash, =0 (33)
We are only interested in the real solutions. These equations have real solutions if and
only if (surprisingly we get only one inequality from equations (32) and (33))
J{(g12)=(aobs — asb, +azby)* —4aghy(a;bs —asb;)
=(aghs +a1by —azb)? —4aghy(a;by —ashy) (34)
=0
We recall that the coefficients a; and by are functions of g,, while the others are

constant given by t; and hy;. If we develop (34) in terms of q,, we determine the
fundamental inequality that constrains gq,,. The inequality is given below.

JHq12)=c1972+ 2012 +€3 20 (35)
where the coefficient ¢, is constant and only dependent on the matrix elements inH.c,
is easily determined by the equality below

¢, = —4(det H)* (36)

When det H> 0 then J,(q, ,) has a maximum value. This means that there must be a
finite solution interval of (35) if there is any at all. If det H <0 then J{q,,) have a
minimum value and there would be an infinite interval if there is any at all. But when
H—HT <0 then the solution R of the Riccati equation is not necessarily positive
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definite. The coefficients ¢, and ¢, are dependent on the coefficients of the new
prescribed polynomial p, and p,. Where the relation between the new prescribed
cigenvalues and p, and p, is given in Case 1 and Case 2 above. We can now write
coefficients ¢, and c; in terms of these coefficients

C2=61P1 19> (37
c3=hPt+ b1+ 3+ fap, (38)
The coefficients g; and f; are again only dependent on T and H. See the Appendix for

details.

If ag=det H =0, then the second order system of polynomial equations (28) and (29)
will degenerate to a second order system of linear equations. The solution is given by

[‘111] _ 1 [ b, _ﬂz] [—klfhz—kz +Pz] (39)
922 ab,—azb, | —b, al —dig1,—ds+p,
Equation (39) can be written

q11=014y5+0v, (40)

q22=W1q,,+w, @41

where the coefficients v; and w; are given in the Appendix. When a,b, —a,b, =0 then
there is no solution to equation (39). Physically this means that the linear system model
is uncontrollable (see comments in Section 6). We sec from equations (40) and (41) that
there will be an infinite number of solutions. However, if we require that Q=07>0
then we will get a finite number of solutions or none. In this case we will get an
inequality (¢119,, — 412 = 44}, + 54y, +c >0) for g, , with the same form as (35). It is
indeed clear that it could be necessary with a negative Q, for example when the new
eigenvalues are specified right to the eigenvalues of the original system in the complex
plane. Note that the eigenvalues can be specified all over the left complex plane,
including the imaginary axis.

We can now summarize the above results in a general algorithm for a second order
linear time invariant system. This algorithm is again part of the overall n-dimensional
system in Section 6.

Algorithm 5.1

Step 1. Given a second order system described by T and H. T can be a single
system matrix and H=BP 'B”, or T could be a decoupled 2x2 block from a
n-dimensional system and H the corresponding 2 x 2 diagonal block.

Step2. Compute coefficients a,, b;, ¢,, d;, g; and f; as functions of the elements of the
matrices T and H. The coefficients are given in the Appendix.

Step 3. Specify two eigenvalues. Compute the coefficients py and p,.

Step 4. 1f ag=det H =0, then compute solutions from equations (40) and (41) and
terminate, else jump to Step 5.

Step 5. Compute coefficients ¢, and ¢, that depend on the new prescribed
eigenvalues from

€2=¢1P1+9;
c3=fiD3+ o1 + f3+ fups
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Step 6. Check if the proposed g, satisfies the inequality

J{g1)=c1G32+C2g12+ €3 =0

If this inequality is not satisfied, determine a g, , that does. If it is not possible to satisfy
this inequality it means that it is not possible to determine LQ-optimal system with
these pole locations. Recall that the real parts of the eigenvalues can be located all along
the real axis, but that the imaginary value is physically limited. See equation (49) that
uniquely determines the maximum possible imaginary value, no matter how Q are
chosen.

Step 7. Compute coefficient b, as a function of q,,
by=digy2td2—ps

Step 8. Compute the diagonal elements in Q. For each choice of g, we get two
generally different sets of weighting matrices. The two sets are marked with super index
a and B. It is assumed that ao#0 and that the system is controllable, then b, #0 and
b, #0

= '—ﬂobs‘*‘(ﬂlbz'—azbl)—\/(-’r(‘hz))

11 2aqb, o
o= *aaba—(“lbz—'azbﬂ‘*'\/(-]r@lz»

22 2agh,

&= —aghs+(ab, —a;b,)+/(U412))

11 Sagh, | “
P —agby—(a;b;—a3b,) —/(U1(g12)

22 Zaobz

We see that the following relations hold
—b3—hy141 qﬂ _ —b;y—hy,41, ‘ﬂl_qql_hzz
22— T

— - 44
2 C nr T
The final result is given by
qi1 qlz] [‘1“1’1 ‘112]
= = 45
o [‘112 422 Q‘ q12 ‘lgz @)

The following comments can be made about this algorithm.

When a,=det H #0 then we sec from (44) that the relation between ¢, and g5, is
linear. The relations between g;;, i = 1,2 and g, , can be found from (42) and (43). These
relations are elliptic when the solution of the inequality in Step 6 is finite. Then sets «
and B are two parts of this ellipse. The relations are generally given by

My G2+ Moy 2+ M3l 2+ Mg+ M52+ me=0, i= 1,2 (46)

where mj;, j=1,6 is casily found from a,, by, ¢, d; and p,. When a,=det H=0, then the
relation between g, i=1,2 and g, , is linear. This is seen from equations (40) and (41).
When a, =det H <0, then a sign is changed and the elliptic relation above is changed to
a hyperbolic relation between g;;, i=1,2 and g;,. This is (of course) of theoretical
interest because H=HT>0 when P=P7T>0. See the comments in Section 6.
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This method gives the answer to the question about whether it is possible with a
given control weight matrix P to determine a state weight matrix Q so that the closed
loop system obtained a set of prescribed eigenvalues. This method does not just provide
a yes/no answer but gives us all such matrices. When H = H T <0, then we will either
have an infinite number of solutions or none, but in this case we cannot be sure that the
solution of the Riccati equation is positive.

This method can be used to determine all state weight matrices Q (if there are none)
that correspond to a set of prescribed eigenvalues. It is known that the behaviour of a
system under feedback not only is dependent on the eigenvalues but also on the
eigenvectors. As a result of this method we have the freedom to choose the
corresponding eigenvectors such that some performance criteria are optimized. One
such could be the quadratic performance criterion

minJ=tr(R), E((0)x"(0)=1 47
0

Another such criterion could be the Frobenius norm for the closed loop system matrix
n 1/2
Y @; =) @8)
1j=1

Where a,; indicates element ij in A+ BG. The relation between this norm and the
robustness in the sense of an additive uncertainty dA in the system matrix A is given in
Dickman (1987). It can be shown that the robustness is maximized when the Frobenius
norm for the closed-loop system is minimized. This means that we can allow larger
perturbations dA when the Frobenius norm is minimized. It can also be shown that the
minimization up to \/(£]_ (1)) is possible. This could happen if there are enough
degrees of freedom in the controller to make A+ BG symmetrical. The structured
singular value u (Doyle et al. 1982) could also be used. A criterion which will be
investigated is one which is directly connected to the eigenvalue sensitivity. Because of
this algorithm it is now up to the designer to choose a suitable performance criterion.

Here we will present the equation that uniquely determines the maximum possible
imaginary part of the eigenvalues in an LQ-system, irrespective of how Q are chosen.
The derivation is restricted to a second order system, because the general solution is a
topic of a further paper. The derivation is also restricted to the case where
ap=det H+#0, because there is generally no upper limit on the imaginary value
when a,=det H=0.

If we develop the inequality (35) in terms of b= B? and optimize with respect to B,
then after some algebra we get

™=

[} i

[(hy2a2,+hy 1921)—(h2,0,5 + hy0,,))?
2 = = ; 4!
Bax=brae o 0 @)

This means that the imaginary value f always is bounded by

0< 18l < \/(brosy) (50)
We see that the maximum imaginary value only is dependent on the matrices A4 and
H=BP~'B", and not on the real parts of the closed loop eigenvalues. Note that g,
goes to infinity when a, =det H goes to zero. This means that there is no upper limit on

f when a,=det H=0. But if we restrict the state weight matrix to Q >0 then there will
be a maximum value. In this case § will be dependent on the real value a. This result
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completes the pole placement problem, because it gives us the unique region where the
eigenvalues can be located.

6. The n-dimensional problem

In this section we present the results from Sections 4 and 5in a general algorithm for
the determination of state weight matrix Q such that an optimal system gets a set of
prescribed eigenvalues.

Algorithm 6.1

Step 1. Initialize =0, and R=R;, i=0. Compute H =BP 'BT.

Step 2. Compute the closed loop system matrix A;=A— HR. (Equivalent to
A+ BG) If system order 0<n<2, jump to Step 6.

Step 3. Compute Real Schur Decomposition U, T=U TAU.

Step 4. Specify one or two eigenvalues s; and s, to be shifted and the
corresponding diagonal block Tj;. Reorder the RSD decomposition with an orthogonal
U, such that the block T;is placed in position T, (lower right corner in 7). Update the
orthogonal transformation U=UUjp.

Step5. Compute A =UTHU. Only block H, in position in the lower right corner
is needed.

Step 6. Use Algorithm 5.1 to compute Q,, from the decoupled sub-system given
by T, and H,,.

Step7. Solve the algebraic Riccati equation (which s of a maximum order of two)
for Rzz

T3,R;2+ Ry, Ty, —RypH 2R3+ 05, =0
Step 8. Back-transform solutions from
0,=UQUT™  R,=URU"

o 0 0 0
fal o)
g [0 sz] 0 Ry,
Step 9. Update R and the state weight matrix
0=0+0; R=R+R

where

Step 10. 1f all eigenvalues are shifted, then compute feedback matrix
G=—P 'BTR,

or update 4=A4; and i=i+ 1 and go to Step 2. The following comments can be made
about this algorithm.

In Step 2 in the algorithm we suggest omitting Steps 3,4 and 5 when the order of the
system is two or less. As we have shown in Section 5, the problem can be solved directly
for a second order system.

In Step 3 the RSD decomposition must be computed. We know that the
computation of RSD is an intermediate step in computing the diagonal or block-
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diagonal decomposition. The reordering of block T}; to position T, is trivial (see Golub
(1983) pp. 240-242 and Stewart (1976) for details). From this we see that the RSD with
the reordering of block Tj; is faster than block diagonalizing T, for example. Another
important fact is that only to take the RSD decomposition will eliminate the problems
and hazards there are to diagonalizing a defective matrix with multiple or near-
multiple eigenvalues.

In Steps 6 and 7 we recommend working with a second order sub-system because
the eigenvalues of the block can be moved directly. During this step we get all possible
weight matrices Q, and therefore the corresponding eigenvectors can be optimized. See
Section 5 for details.

We see only one Riccati equation of a maximum order of two is to be solved. This is
an casy task and can be done analytically. In our algorithm we do it numerically, but it
would be interesting to check if computational work and numerical precision could be
saved. We recall that in the scalar case where T22=w @22=4uand H,, =h,,, then q,,
can be computed from (18) and only a scalar Riccati equation has to be solved.

When the control input weight matrix P=PT >0 then H=BP~'B7>0, When the
system is controllable then it can be shown that the diagonal clements in H are always
non-negative, and that the block H,, is non-negative. When the mode z, is
uncontrollable, then the nth row of UTB contains only zero elements, and the nth row
and nth column in H contains only zero elements.

7. Numerical examples

7.1. Example 1
Consider the system

—2 0 10 10 10
A"'[ 1 —1] B=[0 1] P=[0 5] H=[0 02] G

The system eigenvalues are

A(A)=—-2, A (A)=—1 (52)
The eigenvalues of the optimal closed loop system are specified as
$)(A+BG)=—8, s,(A+BG)=—5 (53)
We use Algorithm 5.1 directly and find that g,, must satisfy the inequality
J{g12)=—0032¢7,+0-32g,,+ 9664 >0 (59)
The inequality is satisfied if and only if
—50-18<q,,<60:18 (55)

We can now plot g, ,, q,, and the measure of the performance index J=tr(R) as a
function of g,, when the closed loop system has fixed eigenvalues. This is illustrated in
Fig. (1). We have also plotted the Frobenius norm (A+ BG);.

For this example we have an elliptical relation between g, i=1,2 and g,,. If
we use J=tr(R) as a measure of optimality we get one solution, where the value is
I min=1tr(R)=24-52.

6218 1603 6370 2629 6370 —2:629
Qﬁ=[16~03 10910] R=[2-629 13-150] G=[—0~526 —3-630] 6)
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Figure 1. Plot of g,,, 425, J=tr(R) and (A + BG)p as a function of q,,.

We also note that we have two diagonal solutions to the problem, namely

1342 0 6258 0
= B —
[ 0 352—88] ¢ [ 0 107-12] 67

The corresponding values of the performance criteria are tr(R9)=39-46 and
tr(RP)=2477.

7.2. Example 2
Consider the system

o I I O RS [ e B
The system eigenvalues are
A(A)=—2+i, A(A)=-—2—i (59)
The eigenvalues of the optimal closed loop system are specified as
s,(A+BG)= —8, s,(A+BG)=-5 (60)
We use Algorithm 5.1 directly and find that g,, must satisfy the inequality
J{g.2)=—131-1¢g}, —21264-4q,, — 234155520 (61)
The inequality is satisfied if and only if
—15035<g;,< — 1188 (62)

We can now plot ¢,,, g, and the measure of the performance index J=tr(R) as a
function of g, , when the closed loop system has fixed eigenvalues. This is illustrated in
Fig. 2. We have also plotted the Frobenius norm (4 + BG)y.
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Figure 2. Plot of q,4, g,,, J=tr{R) and (A+ BG), as a function of ¢, ,.

For this example we have an elliptical relation between Gi» i=1,2 and q,,. If
we use J=tr(R) as a measure of optimality we get one solution, where the value is
Jmin=tr(R)=4-81.

0= 4283 —1513 r| 4056 —1349 G —5413  1-188
| —1513 730 | =1349 0755 | -0002 —0183

(63)

There are no diagonal solutions for this example.

7.3. Example 3
Consider the system

LS T .

The system eigenvalues are

A

2,(A)=0, 2,(4)=0 (65)
The eigenvalues of the optimal closed loop system are specified as
51(A+BG)=—1, s,(A+BG)=—1 (66)

For this system det (H) =0. We would first solve this problem by working with a scalar
subsystem (Algorithm 6.1). From (17) we get g2, =1. The solution of the scalar Riccati
equation is r=1,

0 0 00 0 1
Q‘=G=[o 1] RFE:[O 1] G=l0 -1 A‘=[0 -l] “

A, is in real Schur form. To move the other eigenvalue we must reorder the Schur form.
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The reordered Schur decomposition of 4, gives

LY Ll

~-1 1 J2 2 s g 2 2

= = = = 68

[0 O]U {1 H=U"HU 1 i (68)
"B 2 2]

The same procedure as above gives g;,=2,r=2 and

Q2=UQUT=[1 l] Rz=w"i:'[ﬂ'=[l 1] G,=[-1 -1] (69)

11 11
The final results are given by
11 11
Q=Q1+Q2=[1 2] R=R, +Rz=[l 2] (70)
and finally

1
G=G,+G,=—P 'B'/R=[-1 -2] A+BG=[_? _ ] ()
We will now solve the same problem by using Algorithm 5.1 directly. We get
10 qu] [l] [pz—O : ‘112—0] [.Pz]
=|.l= = (72)
[0 1] [thz 2 p1—0-g;;,—0 P1
From this we get the general solution
1 ¢ "
= 73
o-[} 3| cer @

We sce that there are an infinite number of solutions, but R=RT >01is only guaranteed
when Q>0. This result was not found from the first procedure.

7.4. Example 4
Consider the system

—6 5 1 0
o ]l

The system eigenvalues are

A(d)y=—11, 2(A)=-1 (75)
The eigenvalues of the optimal closed loop system are specified as
si(A+BG)=—14, s)(A+BG)=—14 (76)
We use Algorithm 5.1 directly and find that g,, must satisfy the inequality
JH@y12)= —44q},+480g,,+14400>0 (77)

The inequality is satisfied only for g,,=60. For this value we get the only solution

135 60
Q=[60 135] 8
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8. Concluding remarks

1.

We have discussed a new method for solving the linear quadratic pole placement
problem in detail. The method is numerically stable and has considerable
advantages over the traditional diagonalization approach. Two eigenvalues can
be moved to new real or complex locations in each step, and only a Riccati
equation of an order of not more than two has to be solved. The final solution to
the Riccati equation for the n-dimensional problem is guaranteed to be
symmetrical if the two dimensional Riccati equation is solved symmetrically.
Note that a symmetrical solution is not guaranteed when using Laub’s (1979)
method.

The new method gives the answer to the question about whether it is possible to
determine a state weight matrix Q with a given control weight matrix P so that
the closed loop system obtains a set of prescribed eigenvalues. This method does
not only provide a yes/no answer but also gives us all such matrices (for a second
order system). It could be an infinite number, a constrained space or none.

For a second order (sub) system we have presented the general relations between
the state weight matrices Q and the closed loop eigenvalues. From this result we
have been able to derive the maximum possible imaginary part of the
eigenvalues in a LQ-optimal system, itrespective of how the state weight matrix
Q is chosen.

This method can be used to determine all state weight matrices Q (if there are
any) that correspond to a set of prescribed eigenvalues (for a second order
system). It is known that the behaviour of a system under feedback not only is
dependent on the eigenvalues but also on the eigenvectors. As a result of this
method we have the freedom to choose the corresponding eigenvectors such that
some performance criteria are optimized.

This method may be used in the same way to design optimal estimators with
prescribed eigenvalues. The method can also be used on discrete systems.

. The implementation of the algorithm is simple. We recommend the use of

sequence ORTHES and ORTRAN to reduce a general matrix by orthogonal
similarity transformations to upper Hessenberg form. These routines are all
available in EISPACK (Smith 1976). The reduction to real Schur form is done by
Stewart’s (1976) HQR3 software. The reordering of block T}; (corresponding to
the eigenvalues which are to be moved) to position T}, is done by the application
of the HQR3 routine EXCHNG.
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Appendix
The coefficients in equations (22) and (23) are given below
ag=hy hy,—hi,=detH (79)
ay=hy 115, —2hy 5t 5ty +Hhaot], (80)
ay=hy 51— 2hyatiatyy +hyath (81)
by=hy, (82)
by=h,, (83)
dy=2hy, (84)
dy=13,+ 135+ 2ty 5ty =tr(T?) (85)
ky=2(hy3t;3 —hasty )tz + A —hystay +hiatia)tz, (86)

ky=(t11t22—t1at2y)* =(det T)? 87




72 A Schur method for designing LQ optimal systems

The coefficients in the inequality (35) that constrains g, , is given below. Only ¢, and c,

are dependent on the location of the new eigenvalues
¢;=—4ag=—4(det H)
C2=g1P1 14,
c3=firt + fop + 3+ fap,

(88)
(89)
(90)

where the coefficients g; and f; are only dependent on the elements in matrices T and H.

a1= _Zﬂgdl
92=a0(4b,bsk, +2d (apd, —a,b, —a,b,))
N =a%

fa=—2ay(a,d,—a,b, —azb,)

Ja=(aod,—asb, —asb,)* +4b,b,(ack, —a,a,)

fa= —4ayb.b,
The coefficients in equations (40) and (41) are given by
—byk, +a,d,
arb,—azb,
v,= ba(p2—kz)—ay(p, —d,)
ab,—ayb,
_ bik,—a,d,
a a,b,—a,b,

1=

1

W = —by(p2—k;)+a,(p, —d,)
2 ab,—ab,

The Schur formula is given by

A D
= —CA™'D
det [ c B] det Adet[B—C ]

©on
(92)
©3)
%4
©5)
(96)

@7

(98)

(99

(100)

(101)




