MODELING, IDENTIFICATION AND CONTROL, 1989, voL. 10, No. 4, 203-211
d0i:10.4173/mic.1989.4.2

Simultaneous computation within a sequential process simulation tool

G. ENDREST@L1, T. SIRAT, M. @STENSTADY,
T. MALIK}, M. MEEG{ and J. THRANE}

Keywords: Dynamic process simulation, sequential modular simulator, simultaneous
network solution.

The paper describes an equation solver superstructure developed for a sequential
modular dynamic process simulation system as part of a Eureka project with
Norwegian and British participation. The purpose of the development was
combining some of the advantages of equation based and purely sequential systems,
enabling implicit treatment of key variables independent of module boundaries, and
use of numerical integration techniques suitable for each individual type of variable.
For training simulator applications the main advantages are gains in speed due to
increased stability limits on time steps and improved consistency of simulation
results. The system is split into an off-line analysis phase and an on-line equation
solver. The off-line processing conmsists of automatic determination of the
topological structure of the system connectivity from standard process description
files and derivation of an optimized sparse matrix solution procedure for the
resulting set of equations. The on-line routine collects equation coefficients from
involved modules, solves the combined sets of structured equations, and stores the
results appropriately. This method minimizes the processing cost during the actual
simulation. The solver has been applied in the Veslefrikk training simulator project.

1. Introduction

Process simulators are historically divided into the main categories, sequential
modular (subroutine based), and simultaneous (equation based) (Hillestad and
Hertzberg 1986). Sequential computation is traditionally used in most commercial
products. It has the advantage that stems from the inherent flexibility of data
processing within subroutines and the associated freedom in selection of integration
methods suitable for different types of variables. In addition no specific process
dependent program compilation is usually necessary, since the system can easily be
made fully data driven. Process specification and modification may also be done using
advanced, user friendly, tools. The main drawbacks of such methods are associated
with the explicit couplings between modules. Process simulations almost always
contain both fast and slow components, and a realistic computation based on explicit
numerical methods require time steps much shorter than those needed for reasons of
accuracy. In a dynamical, real time, simulation this may be disastrous, since the
necessary shortening of the time step may lead to unacceptably long computation time
per simulated time unit. The alternative of modifying the equations for stiff components
is equally unpalatable, since it changes the dynamic response times for the simulation.

Received 1 August 1989.

+ Institutt for energiteknikk, P.O. Box 40, N-2007 Kjeller, Norway.

1 Norcontrol Simulation A/S, P.O. Box 1024, N-1391 Horten, Norway.

This paper was presented at SIMS 89 (Scandinavian Simulation Society), 31st Annual
Meeting, Bergen, Norway, May 31-June 2, 1989,



204 G. Endrestrol et al.

Equation based systems are strong regarding selection of numerical integration
methods, since these may usually be chosen independently of the models used for the
simulations. They also normally lead to more consistent solutions, e.g. because exact
mass conservation may be achieved. On the other hand, for large simulations it may be
wasteful treating all variables by such methods. Very often also the same numerical
approximations will be made for all types of variables. This frequently leads to
unnecessarily large equation systems that may require significant computational
resources for real time solution. The way system connections are treated within these
systems also often necessitates separate compilation of large amounts of code for each
simulator. Many engineers actually involved in writing solution algorithms for process
modules also find the format used for process specification within equation based
systems less intuitive than the corresponding format for subroutine based systems.

Some attempts have been made to improve the performance of sequential
simulators by modifying the input data to models (Brosilow et al. 1985, Hillestad and
Hertzberg 1986). Many of these methods are based on extrapolation of or interpolation
between known variable values. They require a specialized design of the system
executive for the simulator. The programs described in the present paper were designed
to enhance a sequential process simulation system by including the possibility of
implicit couplings across model boundaries. In this way all variables controlled by the
model itself may be integrated internally, while only stiff external couplings are treated
by the superstructure. The solver was aimed principally towards the needs of a real time
dynamic process simulation, particularly for training purposes, where output is needed
frequently in order to update operator station data. For such purposes often relatively
crude unit process models are implemented. This means that the time step will be
chosen so short that stability rather than accuracy restricts the calculations. In that
case the pressure driven system flows are normally critical to stability. The presently
described software takes care of exactly such types of intermodel variables. For this
reason the product has been termed a Network Solver. The program system was
conceived, designed and implemented at Institutt for energiteknikk as part of a more
extensive upgrading of an existing simulator.

2. Network solver environment

The solver software was required to work within the structure of a previously
developed sequential process simulation package OTISS (Operator Training
Industrial Systems Simulator) made by Special Analysis and Simulation Technology
Limited, London, UK. The presently relevant principal characteristics of this simulator
are as follows.

It is a C-language based system for dynamic simulation with present applications
primarily within the petroleum industry. It has been used both for audit simulations
and for training simulator applications.

In addition to dynamic simulation of the actual process also the control and logic
systems are included, and facilities both for instructor and operator stations are
available.

A thermodynamical and physical properties package is available or a tailor made
one may alternatively be installed.



Simultaneous computation within a sequential process simulation tool 205

The basic building blocks of a simulation are algorithms with specified sets of
parameters and variables. The model of a physical unit may be made up of one or
several algorithms. Couplings between different units are specified directly by the
argument names used.

The structure of the complete system being simulated is defined by specifying a
tagged sequence of algorithms with corresponding argument lists containing
variable names. The input stream may contain commands giving rise to program
loops useful, e.g. for iteration or integrating subsystems with different time steps. A
list of parameters for each instance of an algorithm also has to be prepared.

From these sets of input data the system makes a database for variables and
parameters. It contains both names and actual current values. This common
database is accessed by the algorithms during a simulation.

It was of primary importance that the solver should work without any essential
modifications to this structure. It was also desirable to maintain the inherent flexibility
of the simulation specification and to include the possibility for implicit iteration on
subsystems. To avoid explicit perturbations of model variables in order to produce
response data, presently available unit models would however have to be modified and
new ones possibly written for units having no previous counterpart.

3. Functional specification and design goals

In dynamical simulations of process plants several types of connections between
different system units must be taken into account. In addition to mechanical, electrical,
and logical {signal) couplings, one of the most important arises simply from the
transportation of fluids between units. These must usually be modeled as pressure
driven flows. A realistic simulation of such flows will very often result in extremely stiff
numerical problems both because of small volumes in the vessels themselves as well as
in the piping used for transportation, and because the fluid medium may be effectively
incompressible. In many instances also relatively large tightly connected networks of
such units will be simulated. It is usually not acceptable to produce custom made
complex models for each simulation, and building these networks from standard model
libraries gives rise to strong connections between variables in many separate
algorithms. As a sequential simulator OTISS has few easily accessible tools for
handling such systems and especially for making efficient solutions to large connected
networks. The network solver addresses the type of problems posed by this kind of
couplings.

Consequently the intentions of the project were as follows.

To build 2 superstructure to the collection of separate unit models enabling truly
coordinated simultaneous solution to pressures and flowrates within a whole
network. The network may contain transport units like pipes, valves, pumps,
compressors, etc., and capacitive units like separators and scrubbers.

The system should be able to locate isolated sub-networks within the total process,
and be capable of solving the equations for each such group separately. This may be
of importance both for the effectiveness of the solver itself, and at the same time
enables iteration on non-linearities in single sub-networks if necessary. Usually,
however, no iteration will be needed within a timestep.



206 G. Endrestrol et al.

The structure of the resulting systems of equations is normally quite sparse. The
solver should use effective methods to solve such systems to save both CPU time
and memory needed during the solution.

The solver should be able to function within the framework of the existing simulator
with only small or no modifications at ail to the core of the system. Previous
applications should be unaffected by the enhancement. Unit models making use of
the solver should be simple to interface to the system.

The solver should be fully automatic needing no explicit information by the user
concerning the details of the current network or the method of solution. All
necessary information should be extracted from standard OTISS input files and
general unit model description files.

To achieve these goals the solver was divided into two distinct phases; an off-line
network topology analyser and solution method generator, and a real time solver
implemented as a normal OTISS algorithm. In this way all time consuming analysis
and optimization processing is done off-line, and the only on-line activity is the actual
application of the solver to the pre-analysed networks in question.

4. Logical network structure and solution method

The topology of a network of pressure driven flows is normally that some type of
generalized piping connects vessels containing processing equipment. Some nodes may
also be of a type that simply joins pipes without performing any activity besides mixing
input streams and distributing them to output streams. Several pipes may connect to
one vessel, and the vessels may have internal structures giving rise to several different
pressures and possibly effectively some internal flows.

The network solver has been designed to be able to integrate this kind of network.
All types of pipe models are assumed to produce flow rates as functions of end
pressures, and the basic external couplings for vessel pressures are supposed to be flows
through connected pipes. Pipe units may use incompressible (one flow per pipe) or
compressible (two flows per pipe) models, and to take care of vessels with a more
complex internal structure some pressures may also depend directly on other network
pressures. One unit model may contain several pressures and/or several pipes.
Completely internal flows treated by the network solver are also possible. Process
boundaries are taken care of by special types of pressure and flow units.

The network equations employed are in principle determined by each unit model.
All coefficients in equations between (potentially) connected variables are model
generated. The solver collects and combines these data into the set of equations for the
whole network. For training simulator purposes, however, the natural choice is a once-
iterated implicit Euler formalism. There are several reasons for this. A few of the more
important are:

Training simulators normally use such short time steps that the required accuracy is

obtained by a simple Euler method. The crucial concern in this connection is

stability rather than accuracy. It is of vital importance that the simulator does not
break down or use excessive time to obtain the end result for any time step. In this
respect robustness is equally or more important than accuracy.

In a medium size or large simulator discontinuities in derivatives or even function
values will occur constantly. This is a result both of the physical processes taking
place and the numerical algorithms implemented for solving the process equations.



Simultaneous computation within a sequential process simulation tool 207

It is therefore inappropriate to use higher order backward methods for these
systems, and Runge-Kutta type of methods (Gear 1971) require intermediate
function values that are not easily obtained in this kind of environment. Frequent
restarts are also usually unacceptable due to limitations in computing power.

Iteration of the Euler method to obtain the true implicit solution does not normally
improve the numerical accuracy, and it is possible to formulate the equations in
such a way that stability is achieved by using only one iteration per time step.

Modeling of pipe flows is very important for the proper functioning of the network
solver. For small flowrates it exhibits a highly non-linear flowrate versus pressure drop
characteristic. A normal type of Newton iteration may not even be stable for all
situations, and it often converges extremely slowly. To get stable and correct results
using a once-iterated implicit Euler method therefore requires a different linearization
method. The combination of suitable equation formulations and efficient solution
methods is the key to the success of any implicit solver in the real time simulator
business. For the system to be actually taken into use, both by modelers and by system
builders, a simple and time saving user interface is also of primary importance.

We have found that a secant method through zero flow gives numerically
satisfactory results. Usually it will also be assumed that compressible fluid models are
used for all vessels. Even for liquids the normal compressibility, perhaps combined with
actual pipe or tank volume versus pressure characteristics, is fully sufficient for creating
a numerically well-behaved system of equations. The possibility for very small
compressibilities (potentially used only for numerical reasons) has been incorporated in
the formulation of the equations used by the solver. The end result is then normally an
unconditionally stable and diagonally dominant system of linear equations to be
solved at each time step. No special attention has to be paid to closed valves or similar
occurrences. If compressibility is neglected, isolated sub-networks may otherwise result
in a singular coefficient matrix. The present method implies that a regular Gaussian
elimination method may always be applied for solving the equations.

The solver itself has been based on direct solution of the system of pressure
equations using a sparse matrix Gaussian elimination method (Duff et al. 1986). For
most systems an iterative solution method (Hageman and Young 1981) will not be
supertor for real time applications because the coefficient matrix usually may change
dramatically from one time step to the next. The problem size is normally also quite
manageable for direct solvers. The solver needs to collect equation coefficients from the
OTISS database, set up and solve the appropriate network equations, and store the
required results. To incorporate the necessary degree of flexibility into this kind of
system, a table driven solver seems like a suitable choice for developmental basis. This is
true all the more because tables may be stored much more compactly than equation
coefficients, and because most of the relevant processes lead to highly sparse systems
where considerable fill in occurs only in the very last stages of the elimination process.

Presently the solver pre-eliminates all network flows and sets up equations for
pressures only. This often cuts the size of the global problem more than in half, and the
elimination can be done in such a way that maximum numerical accuracy is maintained
throughout. It also leads to systems that can be analysed by standard methods for
sparse matrices. The local Marcowitz criterion has been chosen as the primary
elimination order selection method, supplemented with a set of different tie-breaking
strategies. Their primary purposes are to maximize the efficiency of the table driven



208 G. Endrestrol et al.

solver and to ensure stability of the resulting schemes against arbitrary reordering of
the input data not producing any topological changes to the actual network.

Re-use of the same coefficient matrix for all sub-networks and re-use of coefficient
positions during the solution of each sub-network guarantee minimum memory
requirements for the solver. To obtain sufficient accuracy of the result, the whole
solution is performed in double precision arithmetic. This ensures that no small flows
are lost during the process due to round off errors. The present solver will not give
incorrect results even for very high conductancy pipes. Loss of accuracy might
otherwise be a problem for implicit solvers not using numerically based pivoting
strategies. This type of pivoting has been decided against both for reasons of memory
capacity management and real time computational requirements. .

5. Off-line data processing

The off-line processing performs the main tasks for the network solver system. All
network analysis and solution optimization is done at this stage. This is done to
minimize the real time processing costs and because the calculations do not take any
excessively long time as judged by a user of the system. This processing is split into two
parts: (1) Collection of the required data from OTISS input files and determination of
the network structure, (2) Determination of the actual solution strategy and production
of input data for the on-line solver routine.

To be able to determine the structure of the network and obtain the necessary
variable name and coupling information in each case, the first program, the network
topology analyser, requires the following generic unit model information:

The generic model name including necessary data like the total number of
algorithms involved.

For each pressure or flow component within the model the actual component type.
Several types have been defined for potential use. They differ in their formally
‘external’ couplings. Some models may have a flexible structure where the actual
configuration is determined partly by parameters for each actual instance.

Location information to where names of all required variables and values for all
needed parameters may be found.

This data is common to all actual usage of the models. It is stored in a model
description file which must be updated every time a generic model is included or
modified, but is otherwise independent of the actual simulator implementation.

Concrete applications are made from reading standard OTISS driver files
containing all the needed specifications. Implicit in this data is also the structure of the
whole network.

From this data the program makes certain that a consistent and complete network
has been specified and writes the necessary information about all instances of all
pressure and pipe units and their couplings to a network topology file read by the
second off-line program, the network analyser. The program will produce messages if
any errors are detected during the processing. In this way the user will also be more
certain that a correct structure has been set up for the simulation.

The network topology file may pass directly to the network analyser, but the user
has some possibilities for modifying the file. In the original form all couplings between
pressures and flows are taken to be implicit. Occasionally the user may want to modify
this property. It is possible to specify that any flow coupled to any vessel pressure shall



Simultaneous computation within a sequential process simulation tool 209

be integrated by explicit numerical methods. This means that either the value of the
flowrate itself or the pressure at the opposite end shall be taken from the previous
iteration (time step). This may be a means of simplifying a complicated network by
introducing decouplings at ‘safe’ positions or a way of generating sub-networks from
desired components, e.g. for special non-linear iterations. Normally, however, no such
explicitness specifications will be used.

The network analyser requires only the network topology file as a basis for its
computations. From this it performs the following main tasks:

It determines the structure of the global system of equations for all network
pressure variables.

It splits the network into a sequence of independent sub-networks. Subnetwork
dependencies are taken into account.

For each sub-network it tries to find the optimum solution method and makes
tabular data that determines the detailed solution procedure. It also keeps track of
the state of the coeflicient matrix to ensure maximum efficiency in the utilization of
memory capacity.

It prints all necessary tabular processing information to files read by the real time
solver and makes user oriented files specifying the contents of all sub-networks
found.

The person(s) making the actual application may not know anything about the
details of the network solver to be able to include the solver in their calculations and
prepareits usage during the simulations. Only the names of the off-line programs and of
the real time algorithm is needed.

6. Real time solver

The solver routine has been implemented using same simulator interface as any
other algorithm in the OTISS system. This guarantees that no simulator modification
is needed for its inclusion. It also allocates dynamically all memory needed for storage
of the coefficient matrix and the tables of instructions determining the solution
procedure for each sub-network. At the initial call to the solver the input files are read
and the necessary preparations for the solution process are made. The only special facet
about the solver relative to other models is that it must access database variables that
are not its own. It has to be able to reach all network pressure and flow variables as well
as variables containing coefficients in the appropriate equations. These belong to other
models and are not stated on ifs argument list. This is achieved by calling standard
simulator routines returning pointers to specified variables.

Since the network solver looks like an OTISS algorithm, it must be included in the
input files to the simulator. This may be done in two ways. The simplest method is to
call the solver once after all relevant model routines with parameters specifying that all
sub-networks shall be solved during this single call. For the more sophisticated user
calls to single sub-networks may be inserted at appropriate points in the list of
algorithms. By using an intelligent ordering of models this may lead to more accurate
results since updated values will become available to model routines at an earlier point
in time. It also makes it possible to introduce iteration processes containing the solver
by including the appropriate set of models into the loops or to make different parts of
the simulation run with different time steps.



210 G. Endrestrol et al.

The solver reads all essential network information from special, automatically
generated, files. This has made it possible to make its simulator parameter and variable
lists extremely simple. It contains only two parameters, one specifying the network
version (if several have been made with different explicitness declarations) and the other
the actual subsystem. In addition it has one single (output) status variable.

7. Conclusions

The OTISS process simulation system has benefited from the inclusion of the
network solver at several different levels. Some of the product enhancements are:

It has simplified the tasks of the person developing unit models of some important
types by presenting a tool that automatically connects key interface variables
implicitly to complementary variables in other models. Normally the effort needed
to make use of the solver in a model is negligible compared to the benefits reaped by
using it. Also very little knowledge about the numerical methods involved are
necessary to be able to use the solver.

It has improved the productivity during the generation of a simulation setup by
making it possible to pay less attention to numerical stability problems that may
occur during a simulation run. No specialized technical knowhow is required to
produce the simulation specification information.

It has made it possible to reduce the computation time per simulated time unit by
enabling safe usage of longer time steps without danger of numerical instabilities
and by employing an efficient solution procedure for the resulting set of equations.

It has improved the quality of the simulation results by ensuring availability of a
more consistent set of values for pressures and flowrates at any point in the
simulation. This makes it easier to obtain exact mass balance for the process.

The network solver was employed for the first time in the Veslefrikk training
simulator project. This is a relatively small scale petroleum production platform
process simulator made for Den norske stats oljeselskap a.s. (Statoil) by Norcontrol
Simulation A/S. In this case the solver was applied in the most straightforward manner
without utilizing any of its more specialized capabilities. No particular problems were
encountered during this trial application, and the resulting simulator has successfully
passed functional tests beyond its specified operational limits.

ACKNOWLEDGMENTS

Funding was given through the Eureka programme, which is aimed at supporting
European state of the art development projects with a bi- or multi-national character.
In the present case the cooperating companies were Norcontrol Simulation A/S,
Norway and Special Analysis and Simulation Technology Limited, UK.

REFERENCES

Brosicow, C. B, Liu, Y.-C., Cook, J. and KLATT, J. (1985). Modular integration methods for
simulation of large scale dynamic systems. International Seminar on Modern Methods in
Dynamical Simulation of Industrial Processes, The Norwegian Institute of Technology,
Trondheim, May 20-22, 1985,



Simultaneous computation within a sequential process simulation tool 211

DurF, 1. S., ERIsMAN, A. M. and REID, J. K. (1986). Direct Methods for Sparse Matrices (Oxford
University Press).

GeaR, C. W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey).

HAGBEMAN, L. A. and YOUNG, D. M. (1981). Applied Iterative Methods (Academic Press, Inc., New
York).

HILLESTAD, M. and HERTZBERG, A. (1986). Dynamic simulation of chemical engineering systems
by the sequential modular approach. Modeling, Identification and Control, 7, 107-127.



