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This paper deals with real time control of age-structured populations described
by Leslie models with positive inputs. The classical industrial and pole-
assignment regulators are adapted to this class of positive systems and their per-
formance is evaluated through simulation. The influence of noise on cost and
robustness of the controlled system and the role of the information s ~ucture are
discussed in some detail.

1. Introduction

The problem of real time control of age-structured populations (Luenberger
(1969)) is considered in this paper. The population is described by a classical Leslie
model (Leslie 1945) a positive discrete time linear system of the form
x(t + 1) = Ax(t) + bu(t). Each component x(t) of the n-dimensional state vector x(t)
represents the number of individuals of age i present in the system in year t, while
the non-negative control variable u(r) is a measure of the stocking rate. The non-
zero eclements of the matrix A are the survival and fertility coefficients of each age
class, while each component b, of the vector b represents the number of i-year old
individuals entering into the system for one unit of control.

The stability properties of these systems were investigated many years ago
(Leslie (1945), Sykes (1969)), while reachability and stabilization via linear feedback
were studied by two of the authors (Muratori and Rinaldi (1987, 1988)). Under the
assumption that the population vanishes when it is not sustained by stocking, the
analysis shows that any equilibrium state x* can be reached in finite time from any
initial condition and that the input sequence u(0), u(1), ... which performs the oper-
ation can be locally computed by a pole assignment regulator. In this paper we
extend the analysis and determine the performance of this and other control laws in
real situations, namely for noisy population dynamics and large deviations from the
equilibrium. Moreover, we assume that the population is observed only through a
single-value indicator y(t) (e.g. total population, number of newly-born individuals,
number of deaths, ...). Thus, given the information y(¢), the problem is to specify a
positive control u(f) in such a way that the desired population levels are maintained
in spite of the numerous causes of uncertainty (observation errors and fluctuations
of survival and fertility coefficients due to variations of environmental conditions).
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Of course, different control policies can be used for this purpose, among which
we consider the open loop control scheme, the PID regulator adapted to the case
u(t) = 0, and the pole assignment regulator which computes the stocking rate on the
basis of a real time estimate of the number of individuals of each age class. The
performance of each stocking policy is evaluated (through extensive simulation) for
different types of populations, for the most common observation schemes, and for
various intensities of measurement and process noise. The performances of the regu-
lators are then compared by means of classical cost and robustness indicators and
some general conclusions are drawn from these comparisons.

2. Background on deterministic population control

A Leslie system with positive inputs is a single-input n-dimensional discrete-time
dynamic system

x(t + 1) = Ax(t) + bu(t) 1)
with
sofi Sofz .- Sofa=1 Sofn b,
54 0 ... 0 0 b,
A = 0 Sz e 0 0 b — b3 (2)
0 0 .. s, O b,

and f; 20,0 < 5;< 1, b; > 0, x(0) > 0 Vi and u(t) > 0 VL. System (1-2) is a positive
dynamic system since x(t) > 0 V(, ?).

Systems of this kind, with b; = 0 Vi, have been extensively used in recent decades
to describe the explosion or extinction of isolated populations in plant and animal
ecology, cell biology, and demography. The linear approach to population analysis
is credited to Leslic and the matrix A is often called a Leslie matrix. The ith com-
ponent of the state vector represents the number of individuals of age i in year t
before the reproduction season; the positive parameter s; is the survival rate of the
ith age group during one year, while the non-negative fertility coefficient f; is the
number of offspring per year per member of age group i. The control variable u(t) is
a measure of the stocking rate and b; is the number of individuals of age i stocked
into the system per unit of control.

In order to avoid the analysis of trivial cases, we assume that at least some of the
individuals which are stocked into the system have the chance to reproduce before
dying, i.e.

bify >0 for some (j k) with j<k 3
The coefficients of the characteristic polynomial
Af)=2"+a " '+ +a,
are given by
a;=—Sg.8 ... 8_1/<0 i=1,...,n

and at least one of them is negative (see Eqn. (3)). This implies the existence and
uniqueness of a positive eigenvalue A which is the unique dominant eigenvalue
(Frobenius eigenvalue), if and only if (Sykes (1969)), the largest common divisor of
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the subscript js for which f; > 0 is equal to one, a condition which is always satisfied
in applications of practical interest.

The stability of system (1, 2) is strictly related to the existence of positive equi-
libria (u*, x*) and their reachability. In fact, the following properties hold (Muratori
and Rinaldi (1987)).

Property 1. System (1, 2) is asymptotically stable if and only if its non-trivial equi-
libria (u*, x*) are strictly positive.

Property 2. 1In system (1, 2) with u(t) > 0 the set X,(x(0)) of states reachable from
an initial state x(0) in ¢t > n steps is given by

X(x(0)) = {x|x = A'(0) + C*[b, 4b, ..., A" 1b]}

where C*[b, Ab, ..., A" 'b] is the positive cone containing all the non-negative
linear combinations of the n reachability vectors b, 4b, ..., A" 'b.

Property 3. 1If system (1, 2) is asymptotically stable its non-trivial equilibria x*
belong to C*[b, 4b, ..., A"~ 'b].

Properties 2 and 3 and the fact that A'x(0) tends towards zero in a stable system
imply x* € X (x(0)) for a sufficiently large t. This means that any equilibrium x* can
be reached in finite time from any initial state x(0). Unfortunately, the proof of this
result (Muratori and Rinaldi (1987)) is not constructive, so that the problem of
determining the control sequence u(0), u(l), ..., u(t — 1) which guarantees that
x(t) = x* is not yet solved. Nevertheless, the problem has a local solution if the
reachability vectors b, Ab, ..., A" 'b are linearly independent. In fact, in this case
one can consider a linear control law of the form

u(t) = w* + k'(x(t) — x*) 4)
and determine the vector k (pole assignment problem) in such a way that the matrix
(A + bk") of the closed loop system

x(t + 1) = (4 + bk")(x(t) + bu* — bkTx*

has all its eigenvalues equal to zero. Thus, if x(0) is sufficiently close to x*, the value
u(0) suggested by (4) is positive and hence feasible (as well as all subsequent control
values u(1), u(2), ...), and the state of the closed loop system reaches x* in, at most, n
steps.

3. Design of heuristic positive regulators
We now assume that the population is observed through a single-value indicator
y(t) which is positively and linearly related to the state vector x(t), i..
yt)=c"x(t) c; =0, i=1,...,n (%)
For example, y(t) might be
(i) total number of individuals at the beginning of the year (¢; = 1,i=1,..., n).
(i) total number of newly-born individuals at the end of the reproduction
season (¢; =f;,i=1,..., n).
(iii) total number of newly-born individuals at the end of the year (c; = 5. f;,
i=1...,n). ’
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(iv) total number of individuals dying during the year (c; = f{l — so) + (1 — s,),
i=1,...,n).

Therefore, in the absence of noise the system is described by the linear equations
(1, 5) in which (4, b, c") are non-negative, as well as the current and reference
control, state and output values (u(2), x(?), ¥(t)) and (u*, x*, y*). Feasible regulators
for this class of systems, called positive regulators, must be such that the control
value u(z) is non-negative, no matter what the past and present values of input and
output are. In the following we consider three different positive regulators.

Open-loop control (OL)
This control scheme, defined by
u(t) = u*,
is considered because it is often used in practice (for example, by fishing agencies

releasing juveniles in streams).

Industrial regulator (PID)
The classical PID linear regulator

U(t) = u* + op(pt) — y*) + oy wlt) + ap z(t) (6a)
w(t + 1) = Bw(t) + ¥t + 1) — y* (6b)
2t + 1) = ¥t + 1) — y(t) (6¢)

identified by the four parameters (ap, o;, a,, ff) can be transformed into a positive
PID regulator by simply adding the non-linear rule

u(t) = max {0; a(t)}. W)

In the following the PID regulator (6, 7) is designed by minimizing the modulus of
the dominant eigenvalue of the linear closed loop system (1, 5, 6) with u = . This
can simply be done by coupling a general routine for the computation of the (n+2)

eigenvalues 4, ..., 4, , of the state-transition matrix
(A + apbc") arb opb
App=| A+ opbc") (B4 o,c"0) apc™d
(A + apbc™ — 1) o, c’h apcth

of the closed-loop system (1, 5, 6) with a gradient method solving the four-
dimensional problem

, Amax' = min max {l )“i(al’ s Urs aDs ﬁ) |}' (8)

(ap, ar,ap,B) i

Pole assignment regulator (PA)
The classical pole-assignment regulator, constituted by a state reconstructor

M+ 1+ 1) =%+ 1)+ 19 + 1)0) — y(& + 1) (9a)
Xt + 1]1) = AX(t| 1) + bu(r) (9b)
e+ 1) = T3t + 1]19) (9¢c)



Positive regulators for population control 129

and a linear algebraic controller
u(t) = u* + KT(x(t1t) — x*) (10)

can be transformed into a positive regulator by substituting the linear control law
(10) with the non-linear control law

u(t) = max {0; u* + kT(X(t| 1) — x*)} (11a)
where
$(t11) = max {0; %{t18)} i=1,...,n (11b)

Since the triplet (4, b, c") is, in general, completely reachable and completely observ-
able in the classical sense (Muratori and Rinaldi (1987)) and A is non-singular, the
eigenvalues of the matrices (4 + bk") and (4 + IcTA) can be assigned at will
(Luenberger (1969)) by properly selecting the parameters k, ... , k, of the controller
and the parameters [, ..., I, of the state reconstructor. In particular, if these eigen-
values are forced to be equal to zero the regulated system (1, 5, 9, 11} in the absence
of noise converges to x* in at most 2n steps provided x(0) and X(0) are sufficiently
close to x*.

4. Sources of uncertainty, robustness and cost of control

Animal and plant populations are in general influenced by a large number of
environmental factors such as food abundance, meteorological conditions and pred-
ator’s density. These factors are quite independent from each other and vary ran-
domly in time. The sources of uncertainty can be modelled by introducing suitable
multiplicative noise terms in Eqns. (1, 2) which represent the reproduction and
growth processes and in Eqn. (5). The assumptions on the noise (white and log-
normal) made in this paper are fairly standard and in agreement with biological
evidence.

Survival

The survival at birth (s, in Eqn. (2)) is very frequently the most important source
of uncertainty in the system. There are obvious reasons for this and statistical evi-
dence in field data. This is why s, has been considered the only fluctuating param-
eter in the Leslie matrix in some studies (Ginzburg et al. 1984, O’Neil et al. 1981) on
age structured uncontrolled populations (b = 0 in Eqn. (1)). In general the survival
coefficient s, is a lumped description of a number of factors which characterize a
sequence of short periods immediately after birth. If these periods are p and each
one of them is characterized by a length r; and a varying mortality rate m; we can
write

sh = exp [— i mﬁr,-:| (12)

Since the mortality rates m! are, to a large extent, independent random variables
with mean m; and standard deviation s;, the variable

M

mo = 2, mr; (13)

i=1
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has a mean value mo = Y m;r; and variance s§ = ) s?r?. Moreover, if p is large and
s;/m; is roughly the same for all mortality factors the random variable (13) is nor-
mally distributed, i.e.

m = N(myg, 5o)

and s, is proportional to m,. Thus, it follows from Eqn. (12) that the survival coeffi-
cient can be expressed as

So = €050 (14)

where s, = exp [—mg] and ¢}, is distributed log-normally with standard deviation
proportional to [ — In s, ].

For the same reasons above we can assume that the survival coefficients sj,
i=1,...,n—1 are also the product of a log-normal variable times a standard
value s;, but we can also assume that the log-normal variable is the same for all age
classes because all adults are in general subject to the same environmental stresses
at the same time. Of course, the standard deviation of the log-normal noise must be
consistent with the nominal values s; of the survival coefficients.

Fertility
The fertility coefficients vary in time with respect to their nominal values f;,
i=1,...,n1ie.

fi=¢eshi

where ¢/ is assumed to be a white stationary process with log-normal distribution.
The noise does not depend upon i because the relative variations of fertility mainly
depend upon meteorological conditions and food abundance in very particular
periods of the year and are therefore independent of the age of the individuals.

Measurements

The measure of the indicator y(t) of the population is of course affected by noise.
Since y(t) is a positive variable we assume that

o) = €, cTx(1)

where ¢ is a white stationary process with log-normal distribution. Notice that in
some cases the vector ¢” is also affected by noise because its elements ¢; depend
upon f; and/or s;.

In order to compare the performances of the different regulators we need mean-
ingful indicators of robustness, and cost of control which must be evaluated through
simulations of the regulated system in noisy conditions. This is because explicit
formulas for the computation of such indicators are not known when the elements of
the matrices (4, b, ¢”) of the system are perturbed by white noise.

Robustness

Since the aim of the regulation is to keep the population as close as possible to
x*, the robustness of the controlled system with respect to noise can be judged by
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means of the following noise to signal ratio

7y = E[l S Ix0) — x |/xr}
ni=3

where E[ * ] denotes expected value. Notice that this indicator is equally sensitive
to positive and negative errors of all age classes.

Cost of control

In many applications the control action is associated with a cost which is
roughly proportional to the stocking rate u(z). For this reason the cost of the control
is measured by the normalized mean value of the control variable

J, = E[u(t)/u*].

5, Simulation and performance evaluation

The dynamic behaviour of the controlled system has been simulated for eight
populations with maximum age n = 10 in order to evaluate and compare the effi-
ciency of the three regulators described in § 3. The survival and fertility coefficients
of each population are reported in Table 1 where rows (1, 2), (3, 4), (5, 6), and (7, 8)
refer to the same animals (a fish, a bird, a deer, and a squirrel). The populations are
all stable (1 < 1) because they correspond either to a hypothetical exploitation (odd
rows) which lowers the survival coefficients with respect to natural conditions or to
a hypothetical environmental degradation (even rows) which lowers the fertility
coefficients.

Each system has been simulated for at least 50 generations (500 steps) and for
eight levels of noise intensity in order to obtain reliable estimates of J, and J,.

So Sy Sz S3 S4 Ss S¢ S7 Sg Sq .
h 5 f3 fa Js fe fa fs fo J1o A
0.006 45 27 26 26 25 25 25 25 25
— 5 11 18 24 31 34 41 45 46 0-65
0-006 70 55 53 52 51 51 50 50 50
= 05 1-1 1-8 2-4 31 34 41 4-5 4-6 0-64
50 80 36 37 38 39 39 38 38 37
— 0-40 0-45 0-50 0-50 0:50 0-50 0:50 0-50 0:50  0-65
50 80 90 93 96 98 97 96 95 94
- 0020 0023 0025 0025 0025 0025 0025 0025 0025 068
70 92 48 49 48 42 28 25 22 20
— —_ 0-10 0-40 0-50 0-50 0-50 0-50 0-45 040  0-66
70 92 96 98 97 84 55 50 45 40
- — 0-01 0:04 0-05 0-05 0-05 0-05 0-04 0:04 069
40 24 30 33 34 33 30 28 24 27
06 12 19 1-9 19 1-9 1-9 19 18 1-6 0-66
40 55 68 75 79 77 70 65 56 40
0-06 012 0-19 019 0-19 0:19 019 019 0-18 016 067
= Fertility coefficients f;, i = 1, ... , m, are in thousands.

Table 1. Survival and fertility coefficients (and Frobenius eigenvalue A) of 8 populations
used for simulation. Survival coefficients are expressed as percentages.
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Moreover, the simulations have been performed for the four measurement schemes
indicated by (1), (i), (iii), and (iv) in § 3. On the contrary, only one type of control has
been considered, namely that corresponding to stocking with individuals of the first
fertile age class. This means that the components b; of the vector b are all zero but
one (the first for populations n. 7, 8, the second for populations n. 1, 2, 3, 4 and the
third for populations . 5, 6 (see Table 1)). For each regulator the four different noise
sources (survival at birth (sy), adult survival (s, i=1,...,n—1), fertility (f,
i=1,..., n), and measurement (y) have been considered as acting separately or at
the same time, for a total of 4096 simulations. The results of the analysis are report-
ed in the following tables.

o 8% y Sa s iy So S fi Y

OL 13 | 13 6 | 100 14 | - - - 2 — - -

PID | 54 | — | 87 - 13 2| 41 | 34 9 - 37 -

PA 4 15 3 — 7 1 13 35 1 - 2 —
(@): J, ®): J, (): J, and J,

Table 2. Rows refer to open loop (OL) control, PID regulator and pole assignment (PA)
regulator. Columns refer to independent sources of uncertainty (see § 4). Entry (i, j) is
the percentage of cases in which regulator i is at least one per cent better than the
others when only noise j is present. In Table 2(a) and 2(b) the comparison is made with
respect to robustness (J,) and cost of control (J,), while Table 2(c) represents a global
comparison.

Table 2(a) shows the percentage of cases in which each regulator is more robust
than the two others for each single noise source. For example, the first entry equal
to 13 means that, if the survival at birth (s,) is the only source of uncertainty, in
13% of the cases the open loop (OL) control scheme has a noise to signal ratio J,
lower than those obtained with the PID regulator and the pole assignment (PA)
regulator. The sum of the figures in each column is often lower than 100 because
only the cases in which the values of the indicators differ at least of one per cent
have been considered as meaningful in the statistics. In a similar way Table 2(b)
makes reference to the cost of control J, while Table 2(c) reports the percentage of
cases in which each regulator dominates the two others (i.e. is better than the two
others from both points of view (robustness and cost of control)).

Table 2(a) shows that the PID regulator is the most robust one when the sources
of uncertainty are the survival at birth (s,) or the fertilities (f}). On the contrary, if
the noisy parameters are the survival coefficients of the adults (s;) the PID regulator
is less robust. Finally, if the system is deterministic but there are measurement errors
(fourth column) the open loop strategy is obviously the best. In any case, Table 2(a)
points out that the open loop control scheme is not as bad as one could imagine
and that the PA regulator does not perform as well as the PID regulator. As far as
the cost of control is concerned (see Table 2(b)), the PID and the PA regulators are
in general better than the open loop control and still the PID has a detectable
advantage when the noisy parameters are s, and f;. Table 2(c) also indicates that
these are the only cases in which one regulator (the PID) dominates the others.

Table 3 compares the three regulators and the four different measurement
schemes (i), (ii), (iii) and (iv) in the case where all the noise sources are active at the
same time. Table 3(a) shows that the PID is definitely more robust than the two
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i  G) G @) () ) (@)  Gv) (i) @) (@@ Gv)

OL 14 | 16 13 53 2| - 5 - s — — —

PID | 58 | 75 86 20 9 | 23 16 20 3 19 13 14

PA | — | 3| =1 s 6| 3| 16 | 25 e | = ] =
(@: J, ®): J, (¢): J, and J,

Table 3. Rows refer to open loop (OL) control, PID regulator and pole assignment (PA)
regulator. Columns refer to the four measurement schemes described in § 3. Entry (i, j)
is the percentage of cases in which regulator i is at least one per cent better than the
others when the jth measurement scheme is used. In Tables 3(a) and 3(b) the compari-
son is made with respect to robustness (J;) and cost of control (J,), while Table 3(c)
represents a global comparison.

other regulators with the exception of case (iv) in which the output observations are
the number of individuals dying during the year (in such a case the open loop
control turns out to be the most robust scheme). Table 3(b) shows that the PA
regulator gives rise to a lower control cost than the PID when the total number of
individuals is known (case (i)) while the opposite is true when the output y is the
total number of newly-born individuals at the end of the reproduction season.

Table 3(c) indicates that the PID regulator is the only one which has the chance
to dominate the others, but this chance is particularly low when the population
indicator y is the total number of individuals.

6. Concluding remarks

In this paper we have compared the performance of three different control
schemes (open loop control, PID regulator and pole assignment regulator) which
can be used to determine each year the number of individuals to be stocked in a
stable age-structured system. The analysis has been carried out by making realistic
assumptions on the variability of the parameters which characterize the population.
This corresponds to determine the average value of the control variable and the
noise to signal ratio of the state of a discrete-time nonlinear system (constituted by a
linear system (A4, b, ¢T) and a nonlinear regulator) in which some parameters of the
matrices (4, b, ¢”) are discrete white noise. Since no theoretical results are known for
such a problem, the analysis has been carried out through extensive simulation.

The results obtained in the paper are the first known on this subject and certainly
need to be further detailed. In particular, it would be interesting to determine the
control cost. Moreover, the open loop control scheme is not as bad as one might
imagine.

The results obtained in the paper are the first known on this subject and certain-
ly need to be further detailed. In particular, it would be interesting to determine the
performance of the regulated system when the PID and the pole assignment regula-
tors are not designed with the simple (but “extreme”) min-max criterion used in this
paper (see § 3). A further area would be exploring the possibility of using more
complex control strategies.
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