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Trajectory generation for manipulators using linear quadratic
optimal tracking
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The reference trajectory is normally known in advance in manipulator control
which makes it possible to apply linear quadratic optimal tracking. This gives a
control system which rounds corners and generates optimal feedforward. The
method may be used for references consisting of straight-line segments as an
alternative to the two-step method of using splines to smooth the reference and
then applying feedforward. In addition, the method can be used for more
complex trajectories. The actual dynamics of the manipulator are taken into
account, and this results in smooth and accurate tracking. The method has been
applied in combination with the computed torque technique and excellent per-
formance was demonstrated in a simulation study. The method has also been
applied experimentally to an industrial spray-painting robot where a saw-tooth
reference was tracked. The corner was rounded extremely well, and the steady-
state tracking error was eliminated by the optimal feedforward.

1. Introduction

In several applications of robotic manipulators, the reference trajectory is speci-
fied in terms of straight-line segments. The corners of this trajectory are usually
rounded to avoid jerky motion of the manipulator. This is normally done by using a
spline approximation consisting of straight lines joined by polynomials (Paul (1981)
and Craig (1986)). The modified trajectory is then used to generate feed-forward to
the manipulator.

This method is difficult to apply when the straight-line segments are too short to
be splined together without exceeding the acceleration capabilities of the manipula-
tor, Further, the method becomes complicated when more general reference trajec-
tories are used.

We have therefore used linear quadratic optimal control theory instead of the
purely kinematic splining method. The reference trajectory is known, which makes it
possible to use optimal feedforward from future references (Athans and Falb (1966)).
This method rounds the corner and at the same time feedforward is generated. The
actual dynamics of the manipulator are taken into account, and this results in
smooth and accurate tracking.

This method is purely off-line, so there are no problems with on-line computa-
tional requirements. The linear quadratic optimal control scheme was applied to a
manipulator in combination with the computed torque technique (Bejczy (1974)) in
a simulation experiment. The results are presented in this paper together with
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experimental results from an implementation on the Trallfa TR400, a hydraulic
spray-painting robot. This robot had independent joint controllers as load pressure
sensors are required to apply the computed torque technique (Egeland (1987)).

2. Dynamic model

The equation of motion for a general n-link manipulator can be found from
Newton-Euler’s equations (Luh, Walker and Paul 1980), this is written

M(g)g =n(g, 9 + = (1)

where ¢ is the vector of joint coordinates, M(q) is the inertia matrix, n(g, §) is a
vector consisting friction, gravity, Coriolis and centrifugal terms, and 7 is the vector
of input generalized forces.

It is well-known that when current-controlled DC motors are used, the com-
puted torque technique (Athans and Falb 1966) may be applied, where

t = Migu — n(q, §) @

This give the equivalent model
¥ =x Q)
jz =Uu (4)

where x, = ¢, x, = ¢ and u is the transformed control vector.

A model of the same structure as (1) can be obtained when voltage-controlled
DC motors are used, and this makes it possible to apply the computed torque
technique for this type of actuator too.

When hydraulic actuators are used, one additional state must be added for each
joint to model the manipulator with actuators (Merritt (1967)). When the load pres-
sure is used as the additional state, the dynamical model consists of (1) and

PL=Cp.+ Dq + Bu, ()
T= DmpL (6)

where p, is the vector of load pressures, u, is the vector of value control signals and
C, D, D,, = diag {D,,;} and B = diag {K,;} are constant diagonal matrices.

The computed torque technique can be applied to a hydraulic manipulator using
load pressure feedback in an inner loop (Egeland (1987)). However, when the inertia
coupling is not too strong, it is hard to justify the cost of the additional load pres-
sure sensors. In this case, independent joint control may be the best solution. Joint i
is then described by

zZ, =2, @)
Z; =23 )
2y = —wizy — 2lw,z3 + Ko} v 9)

where z, = q;, z, = §;, 23 = §; and v = u,,; @, is the undamped resonant frequency, {
the relative damping and K = K,;/D,,;. The relative damping is usually in the inter-
val 02 < { <07 ‘
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3. Review of the linear quadratic tracking problem
A reference K1), t, <t < tg, is given to the linear system
¥ =Ax + Bu (10)
y=Dx (1)
Accurate tracking without excessive control energy can be achieved using a linear
quadratic performance index:

J = LeT(t,)Se(t)) + % j y (e"Qe + u"Pu) dt (12)

where e=r —y, S and Q are positive semidefinite matrices and P is a positive
definite matrix.
The optimal control is then (Athans and Falb (1966))

u=Gx—P 'B"h (13)
where
G=—P 'B'R (14
R is the positive definite solution of the Riccati equation
R= —RA - AR + RBP 'B"R — D'QD (15)
with the boundary condition
R{t,) =D'SD (16)
k is found from
h= —(A+ BG)"h + DTQr an
with the boundary condition
k() = —D"Sr(t,) (18)
The optimal trajectory is the solution of the linear differential equation
i=(A+ BGx — BP™'B"h (19)

System (17) is the adjoint of (19).

h is found by solving (17) backwards in time from t,. This can be done off-line
when r(t) is known in advance for t, <t <t,.

It is seen from (13) that the controller uses information about the future refer-
ence values.

4. Linear quadratic tracking and the computed torque technique

The computed torque technique is widely used in manipulator control. The
optimal control is easily found when the performance functional is

i

J = 1Aq"(t,)SAq(t)) + % f “(Aq"QAq + u"Pu) dt (20)
10

where S = diag {s;}, Q = diag {q;} and P = diag {p;;}, Aq = ¢ — ¢, and g, is the

joint coordinate reference vector.
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When acceleration feedforward is used, system (3, 4) becomes
g=u+4q, (21)
which can be written
Aj=u (22)

From (22) and (20) the optimal control is found from the n linear quadratic sub-
problems

Ag; = u; (23)
with performance functional
tr
J; = 3[Aq{t f)]zsii + %J‘ [(Ag)*qy + ulp,] dt (24)
10
which gives the result
u; = g Aq; + gi2 Ag;, i=1..,n (25)
where
gn = _Pﬁlrilz (26)
giz = —P:;l"izz 27)

ri, and %, are found from the Riccati equations

F = pid (i) — qu (28)
Fla= =711 + i Ti2T32 (29)
Fa2 = —2r1y + pii ‘() (30)
with boundary conditions
Pt = s, (31)
rialty) = ra(t) = 0 (32

The gains g;; and g;, may be computed off-line for the whole trajectory, or they can
be determined analytically by assuming ¢, — co. In this case

gis = _\,/(qii/pii)
iz = —\/ [2\/(‘1.';'/1’;':')]

However, acceleration feedforward will not give satisfactory results if the reference
trajectory has discontinuities in position, velocity or acceleration. Without acceler-
ation feedforward, the model is

qg=u (33)
and the optimal control is then

Uy = gy Xy; + iz Xo; — D hs (34)
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% gives feedforward from future references, and is computed off-line from the
adjoint system

W= —guhh + quri (35)
1= —hi — gt (36)
il(tf) = —s;1{ty) (37
) =0 (38)

5. A simulation experiment using the computed torque rechnique

When applying the computed torque technique the decoupling algorithm may
be developed in joint space as explained in § 2 or in task space by (Luh, Walker and
Paul (1980))

T = Mgl (9w — J(@)q) — m(g, §)

where J(gq = dp/0q is the manipulator Jacobian, and p is the task space coordinate
vector. The state vector of the equivalent model (3, 4) is then

x,=p and x,=p.

We turn our attention to the problem of tracking the continuous reference tra-
jectory r(t) in Fig. 1 with a constant valocity. This reference consists of linear and
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Figure 1. Reference trajectory used in simulation experiment (xy-plot).
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Figure 2. xy-plot of position in simulation experiment.
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Figure 3. Control variables generating the response in Fig. 2.

nonlinear segments. The splining method is not straightforward in this case because
of the nonlinear segment. When optimal control is used as explained above, any
reference can be tracked in an optimal manner within the limits set by the dynamics
and the workspace of the manipulator.

We used the following controller parameters in the simulation experiment:

5: =0, pi=1 di1 = 1-10*

which gave a closed loop bandwidth of 10 rad/s. The simulation program SIM in
the cybernetic program system CYPROS was used.

The parameters describing the reference were R = 0-5 and ds/dt = 1-0 (Fig. 1).

A velocity reference was not available. The control u; was therefore generated by
feedback from the states x;; and Xy; and feedforward from future values of the
position reference r{t) as given by (34).

The resulting system tracked the reference accurately except near the corners
which were rounded (Fig. 2). The control variables accelerated the system before the
change in reference at t = 1-0s (Fig. 3) due to the feedforward from future references.

6. Application to a hydraulic industrial robot

The Trallfa TR400 is a hydraulic spray-painting robot, with inertia coupling
mainly between joints 2 and 3. Load pressure sensors must be used to apply the
computed torque technique on this manipulator. However, servos 2 and 3 were
found to be very stiff when independent joint control was used, and it was hard to
improve the performance significantly by applying the computed torque technique.

We therefore used independent joint control, and investigated the effect of using
linear quadratic tracking theory in combination with these controllers. The robot
was controlled with a Motorola 68020/68881 microprocessor with a sampling fre-
quency of 100 Hz.

Only position measurements were available, which meant that we had to use a
state estimator to apply linear quadratic tracking rigorously. The reason for this is
that state feedback had to be used, as is evident from (13). However, the dynamics
associated with the hydraulics were so fast that a sampling frequency of 1000 Hz
was required to implement a state estimator. This was not possible as the i/o-card
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we used had a sampling frequency of 100 Hz. A simple P controller was therefore
used at each joint.
Linear quadratic tracking was implemented in two versions.
First, the fast actuator dynamics were neglected in the model (7)-9) giving a
single integration
z, = Kv (39

where v is the control variable. Linear quadratic tracking was then applied rigor-
ously.

In the second implementation, the complete model {7){9) was used for feed-
forward generation.

The performance index

J

N Jw(Qez + Pv?) dt (40)

was optimized for the system (39) with Q = K2 and P = 1. The control deviation is
e =r — z, and r is the position reference to joint i. From (13) the resulting control
law is given as:

v=—K,z, — Kh, 41)
where h, is found from
h, = KK h, + K2r (42)
with boundary condition
h(t)=0 (43)

In an experiment on the Trallfa TR400, a saw-tooth on joint 1 was used as a refer-
ence. The velocity was +0-5 rad/s. The bandwidth of servo 1 was 18:5 rad/s.
When only feedback was used,

v=Kr—z) (44)
a steady state deviation
e= (KK, '} (43)
was observed (Fig. 4). This is in-accordance with the classic servomechanism theory.
i
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Figure 4. Tracking a saw-tooth reference with joint 1 in TR400 experiment. Proportional
feedback was used.
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Figure 5. Tracking a saw-tooth reference with joint 1. Proportional feedback and velocity
feedforward was used.

The steady-state tracking error can be removed by velocity feedforward:
v=K,(r—z)+K ' (46)

However, this solution gave an oscillatory result at the corners (Fig. 5).

When linear quadratic tracking was used as given by (41)(43) the steady-state
tracking error was removed, and at the same time, the corner was rounded (Fig. 6).
A small steady-state deviation was observed when # > 0. This was probably due to
imperfections in the servovalve.

In the second implementation the feedback control was still

up=—K,z, 47

but the complete model was used in the computation of the & vector in the control
law. Linear quadratic tracking theory cannot be applied directly in this case as the
feedback control law is not a result of an optimization of a linear quadratic per-
formance index.

However, a sub-optimal & can be found from the adjoint of the system (7)+9)
with feedback control (47).

In simulations, this method was significantly better at the cornet points and for

111N I e - Cooma - R
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Figure 6. Tracking a saw-tooth reference with joint 1. Proportional feedback and linear
quadratic tracking based on a simplified model was used.
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Figure 7. Tracking of saw-tooth reference with joint 1 in TR400 experiment. Proportional
feedback and linear quadratic tracking was used.

general trajectories, while it gave the same results as the simpler method for steady-
state tracking of a ramp. However, in an experiment, the results were similar to
those obtained with the simplified model (Fig. 7).

7. Conclusion

It has been demonstrated that linear quadratic optimal tracking gives very satis-
factory results in manipulator control. When the reference trajectory consists of
straight-line segments, the method produces almost the same result as splining and
ideal feedforward. The method may also be used for complex reference trajectories
where splining methods are hard to apply.

In a simulation experiment, this method was used in combination with the com-
puted torque technique. The system tracked a reference with straight-line segments
connected to a circular arc. The transitions between the straight line and the circu-
lar arc were smooth and accurate.

The method has also been applied to the hydraulic Trallfa TR400 spray-painting
robot. A saw-tooth reference was tracked by joint 1. The steady-state error was
eliminated when the linear quadratic tracking system was used, and the corner was
rounded extremely well.
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