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Optimal continuous-path control for manipulators
with redundant degrees of freedom
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A control system for macro—micro manipulators is presented. A position trans-
formation from the end-effector reference to joint coordinates is found using
kinematic optimization. Decoupling and optimal control is used to coordinate
the motion of the macro and micro part. The redundant manipulator will then
have the speed of the micro manipulator and the large workspace of the macro
manipulator. When optimal control is used, the redundant manipulator may be
even faster than the micro manipulator provided that a suitable performance
index is used. The performance of the manipulator is optimized over the whole
reference, and this will give better results than the purely kinematic instantan-
eous optimization which is the dominating technique in research literature.

1. Introduction

Manipulators with redundant degrees of freedom offer several advantages such
as singularity and obstacle avoidance and improved dynamic characteristics.
However, improved performance is only obtained if a good control strategy is used.

Most techniques for redundancy resolution are based on optimization. Velocity
transformation methods where generalized inverses of the manipulator Jacobian are
used, have been employed for the instantaneous minimization of joint velocities
(Whitney 1972), kinetic energy, and torques (Hollerbach and Suh 1987). As joint
positions are not controlled when these techniques are used, the manipulator may
approach singular positions or lose degrees of freedom when joints reach their limit.
Gradient projection methods have been used to maximize manipulability
(Yoshikawa 1985) and available joint range (Liegois 1977). This results in a hill-
climbing search method which is partially mechanically implemented.

A problem with the velocity transformation methods is that they are generally
not cyclic. Baker and Wampler (1988) proved that if a velocity transformation is
cyclic, the transformation has an equivalent inverse kinematic function which is a
position transformation.

Egeland (1987a) and Ahmad and Luo (1988) used position transformations for
redundancy resolution by optimizing an objective functional which made the
manipulator avoid singular positions and the loss of degrees of freedom. Manipula-
bility or available joint range may be instantaneously optimized in this way without
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having to use the relatively slowly converging hill-climbing method. Chang (1987)
discussed position transformations for a general objective functional.

Although kinematic optimization is widely used to control redundant manipula-
tors, little attention has been given to optimal control of this type of manipulator.
Kinematic redundancy resolution is the main problem in singularity avoidance and
to some extent in obstacle avoidance. However, the use of redundant degrees of
freedom to improve the dynamic characteristics of the manipulator (Egeland 1987a;
Khatib 1988; Salisbury and Abramowitz 1985) is primarily a control problem.

A macro—micro manipulator is a redundant manipulator with the large work-
space of the macro manipulator which is the positioning part, and in addition the
accuracy and speed of the micro manipulator mounted on the larger macro part.
The dynamic characteristics of the total manipulator may in fact be better than
those of the micro manipulator (Khatib 1988) provided that an adequate control
strategy is used.

Hsu, Hauser and Sastry (1988) and Khatib (1988) used a generalized inverse of
the Jacobian to decouple the end-effector motion, while gradient projection was
used to control the nullspace motion.

In our work, we used a position transformation for redundancy resolution. The
manipulator was then controlled using optimal control theory. In the simplest
implementation, the end-effector and nullspace motion was decoupled, while in the
more advanced implementation the actuator torques were weighted against control
deviations in the performance index. This resulted in a fine coordination of the
macro and micro motions, which was demonstrated in simulation experiments.

2. Statement of the problem
An n-link manipulator is described by the model

M(g)g=nlq, q) +t 1)

where ¢ is the vector of the joint coordinates, M(q) is the positive definite inertia
matrix, n{g, §) is a vector consisting of Coriolis, centrifugal gravity and friction
terms, and 7 is the vector of input generalized forces.

The end-effector coordinates p are given by

p=hgq 2

where the first three components of p are the Cartesian positions of hand, and the
last three are the appropriate Euler angles. The end-effector velocity is given by

p=Jan ()

where J(g) is the manipulator Jacobian. The system may be decoupled in end-
effector coordinates (Freund 1982; Luh, Walker and Paul 1980) using

T = M(g)J " '()[u — J(g)4] — n(q. §) 4)
which results in the equivalent model
p=u ®)]

The problem is to track the end-effector reference py(t) using one of the models (1)
or (5).
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3. Redundant degrees of freedom—Kkinematic optimization

Redundancy resolution by kinematic optimization may be used to obtain a posi-
tion or velocity reference in joint space which avoids singularities, joint limits and
obstacles.

This can be done by solving the optimization problem

max L(g,) (6)

q0

when

Po = h(go)

Here, L is the performance functional, p, is the end-effector reference, g, is the joint
reference and

dim (p) =m< dim (¢g) =n
For singularity avoidance, the performance functional should be the manipulability
(Yoshikawa, 1985)

Ly = \/det [J(g)J"(g)] (7)
The available joint range may be optimized using (Liegois 1977)
LJ’R = (q - qc)TQJR(q - qc) (8)

where g, is the centre of the range of travel for ¢ and Q; is a weighting matrix.
Obstacle avoidance is achieved using

Lobst = Lobst(q’ qobst) (9)

A combination of L,,, L, and L,,, may be used in (6), alternatively constrained
optimization may be used to avoid singularities, joint limits or obstacles. The opti-
mization problem (6) may be solved using e.g. the gradient projection method.

Other performance functionals which have been used are joint velocity (Whitney
1972).

L=4q"¢ (109)
kinetic energy
= 34" Mg} (11)
and torque (Hollerbach and Suh 1987)
L=1Tt (12)
The last objective functionals (10)12) are associated with the dynamic behaviour of
the manipulator. However, this is a control problem which cannot be adequately
solved by kinematic methods (Lunde, Egeland and Balchen, 1986) but rather by
decoupling or optimal control. The main weakness of kinematic optimization in this

case is that instantaneous optimization is used, whereas in optimal control, the time
integral of an objective functional is optimized.

4. Cartesian decoupling in macro—micro manipulator control

Our control concept for a small, fast manipulator (micro manipulator) on a large
positioning part (macro manipulator) was inspired by the motion of the highly
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redundant human arm. The fingers and wrist move with small, fast motions, while
the elbow, shoulder and body provides a slow, gross motion. This distribution of
fast and slow motion can be achieved for macro-micro manipulators by cartesian
decoupling.

The macro manipulator, which is connected to the ground, has n,, degrees of
freedom and the joint coordinates are denoted by g,,. The micro-manipulator,
which is mounted on the end of the macro part, has n, degrees of freedom and the
Joint coordinates are denoted g¢,. The resulting macro—micro manipulator has n =
ny + n, degrees of freedom and the generalized joint coordinates are ¢ = [q77, 471"
If m represents the number of end-effector degrees of freedom, n, and n, are
assumed to obey

ny=>1 and n,=m

In the decoupling of non-redundant manipulators, the number of end-effector co-
ordinates equals the number of joint coordinates. This can be achieved for macro—
micro manipulators by simply augmenting the end-effector coordinate vector p with
the end-point coordinate vector p,, of the macro manipulator (Egeland 1987a). The
dimension of p,, is

dim (py) = dim (ga) = np

It is here assumed that the macro part is non-redundant with respect to its end-
point. The extension to redundant macro manipulators can be done by including
the coordinates of additional intermediate points in p,, so that the components of
P constitute a set of generalized coordinate for the macro part.

The augmented end-effector coordinate vector is written

ri="] 13
P

dim(p,)=n

where

as it is assumed that m = n,,.

The end-effector reference p, is given, while a reference p,;, to the macro manip-
ulator may be found by a kinematic optimization as in (6). The augmented end-
effector reference is then

Pao = [Prorsl™
We define the augmented Jacobian by
Jug) =—= 14

The augmented Jacobian is square and non-singular almost everywhere.
Decoupling may now be applied in the augmented end-effector coordinates
(Egeland 1987a) analogously with the resolved acceleration control scheme using

T = M(g)J 1 (@4 — JA9)3] — nlg, G) (15)
which gives n decoupled double integrators:

Pa=uy (16)
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or alternatively
Py =y (17
P=u (18)

where u, = [uy,, u"]".

The end-effector motion, described by p, is then decoupled from the internal or
nullspace motion described by p,,. This makes it possible to specify a high band-
width for the end-effector motion, and a lower bandwidth for the internal motion of
the macro manipulator. The end-effector will then have the bandwidth and speed of
the fast micro manipulator, while the low bandwidth and possibly large control
deviation of the macro manipulator are compensated for by the fast micro part. At
the same time a large workspace is obtained by controlling p,,.

5. Optimal control of macro—micro manipulators

5.1. Introduction

The use of decoupling to control a macro—micro manipulator gives good results,
but it is our conjecture that the manipulator will not have better dynamic character-
istics than the micro manipulator with this control scheme. The reason for this is
that the motion of the macro and micro part are decoupled, so it is not possible to
obtain dynamic characteristics that are better than those of the micro part by co-
ordinating macro and micro motion. However, this can be done using optimal
control theory provided that a suitable performance index is used. We have found
that inclusion of the input generalized forces t instead of the acceleration # in the
performance index may give the desired coordination of macro and micro motion.

5.2. Review of the linear quadratic tracking problem
A reference yo(t), to <t < t,, is given to the linear system

x(t) = A(t)x(t) + B(t)u(t) (19)
() = D()x(z) (20)

Accurate tracking without excessive control energy can be achieved using a linear
quadratic performance index:

1 t
J(a) = $Ay™(t;)SAY(t,) + > f I[AyT(t)Q(t)Ay(t) + u'(O)P(Ou(t)] dt (21)

where Ay = y — y, is the control deviation, S and Q positive semi-definite matrices
and P is a positive definite matrix.
The optimal control is then (Athans and Falb, 1966)

u(t) = G(t)x(t) — P~ '(t)BT(t)A(2) (22)
where

G(t) = — P~ (O)B"(t)R() (23)
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R is the positive definite solution of the Riccati equation
R(t) = —R()A(t) — AT(H)R(t) + R(OBX)P~1(H)BT(t)T(t)
— DT()Q(e)D(t) (24)

with boundary condition

R(t;) = D"(¢)SD(ty) (25)
f is found from
K(t) = —[A(t) + BOG®] () + DT (OQ(t)yo(®) (26)
with boundary condition
ht) = —D"(t)S,(t,) 27
The optimal trajectory is the solution of the linear differential equation
x(t) = [A@) + B(t)G()]x(t) — B(t)P~'())BT(t)k(®) (28)

System (26) is the adjoint of (28). & is found by solving (26) backward in time from
t,. This can be done off-line when y(t), t, < ¢ < t, is known in advance.

It is seen from (22) that the controller uses information from future values of the
reference.

5.3. Macro—micro manipulators

A controller is easily found for the n decoupled double integrators (17) and (18)
with the performance index

Jiluy) = $Ap(e ISAp(ty) + %Ap};l(t ISPt )

1 (v
+ > (APTQAP + Ap); Qp APy + U Pu + uzy Pyguy,) dt (29)
to
where § =diag {S;}, Sy = diag {S?f}, Q = diag {Qii}a 0, = diag {Q‘.‘.’}, P=
diag {P;} and P, =diag {PY} are constant matrices. Ap =p — py, Apy =Py
— Pumo and p, and p,,, are the references.
If acceleration feedforward is used, (17) and (18) becomes

APy = Uy (30)
Ap=u (31)
and the optimal control is
Uy = Gp1Apy + Goapa Aby (32)
u=GAp+ G, Ap (33)

where G, G5, G; and G, are diagonal matrices.
Without acceleration feedforward, the optimal control is (Egeland and Lunde,
1988)
y = Gy P + Grra P — P Pinga (34)
u=G,p+G,p— P 'h, (35)
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where h,,, and h, gives feedforward from future references, and are found from (26)
and (27).

As the model is decoupled and the weighting matrices are diagonal, the gain
matrices will be diagonal. This means that the closed loop system becomes
decoupled.

A more advanced controller which gives the desired coordination of motion can
be obtained by using the performance index

1 (v
Jot) = 2 f (AP"QAP + Apyy Oy Apyy + T"P1) dt (36)
to

where 1 is used instead of # and u,,. Q, Q,, and P are constant diagonal matrices,
but the weights are different from (29).

The optimal control problem with performance index (36) and model (1) must be
solved numerically. However, the problem may be approximated with a linear quad-
ratic problem which is easier to solve when the approximation

© = MIqo())J 1 [40(t)]u, (37)

is used where ¢, is the joint reference corresponding to the augmented end-effector
reference p,o = [PaoPo]’- This will be a good approximation provided that the
reference is accurately tracked. The non-linear compensation terms have little sig-
nificance on system stability (Egeland 1986; Spong and Vidyasagar, 1987) and are
therefore omitted.

The performance index (36) may now be written

t

1 (¥ -
Jouy) = 3 j (APTQAP" + Apj @y APy + uy Pyuy) dt (38)
to

where
P 4(t) = J 1 "[q0()IM " [qo()IPMLqo()]J 1 '[40(t)] (39)

The model (17) and (18) with the performance index (38) is an LQ problem with
optimal control

u (1) = Gy (OP4(1) + G OP A1) — P (1) hys(t) (40)

where &, is found from (26) and (27). The feedback matrices G,, and G,, are not
diagonal and the element of k,, are coupled. This gives the desired coordination of
motion,

The control (40) may be looked upon as a sub-optimal solution for the per-
formance index (36) and the model (1). Alternatively, the use of (36) and (37) may be
regarded as a systematic way of finding the weighting matrix P(r) in the LQ-
problem (17), (18) and (38).

The method requires future references to be known. This is normally the case for
industrial robots. However, when sensory feedback from e.g. vision is used, the
method has to be modified.

6. Application to an eight-link industrial robot

Decoupling in macro—micro manipulator control has been applied to the Trallfa
TRACS spray-painting robot (Fig. 1) in experiments and the results are given in



84 0. Egeland et al.

Figure 1. The Trallfa TRACS spray-painting robot.

(Egeland 1987b). It was clearly demonstrated that the total manipulator had as
good dynamic characteristics as the fast outer manipulator.

The combination of off-line and real-time optimal control as proposed above
was applied to the same manipulator in a simulation study, and the results are
presented here.

The TRACS manipulator consists of a six-link non-redundant manipulator
mounted on a positioning part which consists of a waggon, and a rotational joint on
the waggon. As the joints in the macro manipulator move large inertias, they are
not as fast as the outer micro manipulator due to actuator saturation and band-
width limitations.

The translational displacement of the waggon is denoted by ¢,, the joint angle in
the positioning part by ¢,, and the angles of the outer non-redundant manipulator
by g5 to g5 . The end-effector coordinate vector is

P= [x’ » 3 l,b, o, lll]T (41)

where x, y and z are the end effector coordinates, and ¢, 8 and y are the respective
roll, pitch and yaw angles of the end effector.

An end-effector reference p, was given. The generalized coordinates of the posi-
tioning part were selected as

Py = [z1, Zz]T 42)

where z, is the z coordinate of the base of the outer manipulator and z, = g, is the
position of the waggon (Fig. 2).
" The micro manipulator has no singularities within its workspace, so kinetic opti-
mization was only used to avoid limits in the simulations.
Instead of optimizing the available joint space for the micro manipulator
numerically, an analytic approximation was used. The kinematic redundancy was

Figure 2. Definition of coordinates.
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Figure 3. End-effector (z,), end-effector response (z), macro part endpoint (z,) and waggon
(z,) when decoupling was used in simulation.

resolved by simply using
I, cos 8, + 15 cos 05 =15
gs =0

where I, and I, are the lengths of link 4 and 5 (Fig. 2).
With these two additional equations, a reference

Pmo = (210 Z30]"

to the macro part could be found.
In the first simulation the performance index was

Ji(uy) = f (AP"OAPp + Apy Qi APy + u"Pu + uyy Py uyy) dt
0

where Q = 1-6 x 10°I,, Q) = diag {400,50},P=1I,and P\, = I,.

The optimal control was given by (34) and (35). The wrist angles were controlled
with proportional feedback.

To achieve fast and accurate tracking of the end-effector reference p,, the weigh-
ting factors in Q were high, while the weighting factors in Q,, associated with the
nullspace motion were moderate. As a result of this, the micro manipulator tracked
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Figure 4. Tracking of saw-tooth in x. Decoupling was used.

the reference accurately and with a high bandwidth, while the macro part did the
slow, gross positioning so that a large workspace was obtained.

A saw-toothed reference was given in the z direction which is the direction of the
rail. After 2-75 s the saw-tooth was shifted 0-5 m, and the same time there was a
ramp in the x direction. The velocity in the z direction was 1 m/s, and the y refer-
ence was constant.

The optimal control law (34) and (35) gave accurate tracking of the end-effector
reference with a band-width that exceeded the bandwidth of the positioning part
(Fig. 3). The optimal feedforward made the slow macro manipulator start to move
to the new position before the shift in the end-effector reference. It was clearly seen
that the micro manipulator did the high frequency motion, while the macro part did
the low frequency gross positioning.

A ramp of 1 m/s in the z direction and a single saw-tooth of +0-3 m/s in the x
direction was then tracked. The macro part moved to keep the micro part close to
the centre of its workspace as is seen from Figs. 4 and 5.

In the second simulation the performance index was

Jot) = J tf(ApTQAP + Apyy QuApy + 7' Pr) di

Ny I

e

i e el

8-
—
\.‘_‘3

ol

Ee

Figure 5. Top view of the manipulator corresponding to simulation in Fig. 4.
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where Q = 0-01 I5. Q, = 1 - 10* I3 and P = 0-01 ;. The optimal control was given
by (40), and the wrist angles were again controlled by proportional controllers. The
elements in the weighting matrices were computed from

Qi = (Ap™) ™2, QN =(Apy) 2
and
P;= (Txinax)—z,

where Ap™ and Apia* are the largest acceptable position deviations and 7 the
maximum allowable torque in joint i. The weights Q;; were high and Q; moderate,
as large deviations in the macro manipulator are tolerated as long as the joint limits
are not reached.

The saw-tooth reference was tracked once again. The response of the waggon
(z,) and the end effector (z) were similar to the first simulation where acceleration
was weighted (Fig. 6). However, the motion of the intermediate point (z,) was clearly
coordinated with the motion of the micro manipulator. When the micro part accel-
erated in the z direction, the inertia coupling made the intermediate point accelerate
the opposite way. This was not compensated for in this simulation as the square of
the input generalized forces was minimized in the performance index.

Moreover, this control scheme took advantage of the inertia coupling. The
macro part was accelerated in the z direction before an acceleration in the same

Ip®iym

- 0E

0.2 A

"\._/\(/? \/l time [s]
a1
o /\, [ 2

-84

-85

Figure 6. Simulation with 7 in the performance index. The motion of macro part endpoint
(z,) is coordinated with the end-effector motion (z).
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direction was required in the micro part. When the micro part started to accelerate,
the macro transferred its kinetic energy to the micro by accelerating the opposite
way. This is a motion which is similar to that of an athlete throwing a javelin where
the kinetic energy of the body (the macro part) is transferred to the arm (the micro
part) when the javelin is thrown.

7. Conclusion

A control system for the control of macro—micro manipulators has been pre-
sented. The kinematic redundancy was resolved by a position transformation of the
end-effector reference and optimal control was used to track the reference.

When decoupling was used in simulations, the redundant manipulator was as
fast as the micro manipulator. When the input generalized forces were included in
the performance index, the redundant manipulator was faster than the micro
manipulator.
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