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Learning control of redundant degrees of freedom robots by
optimization in parameterized control space

ERLING LUNDEt and JENS G. BALCHEN{Y
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A framework for the learning control of robots based on a parameterized control
space is discussed. Emphasis is put on how to utilize stored motion knowledge.
The principles are applied to an example of redundancy resolution for a simple
manipulator. Global sub-optimal solutions for feedforward control are achieved
using a simple optimization algorithm. A time-integral performance criterion is
used.

1. Iniroduction

This work was inspired by observing the fast and accurate movements of a
tennis player, and even more impressive, the swift movement of the highly flexible
arms of an octopus. Both are examples of systems with redundant degrees of
freedom performing skilled movements which obviously are the result of a learning
process. This suggests that it should be worth while studying the underlying prin-
ciples of these processes.

Motor control in man is dominated by learning how to do rather than calcu-
lating the proper control signals on-line. The learning mechanism is characterized
by (1) using a priori knowledge (genetic information or previous experience) and (2)
acquisition of knowledge through repeated trials.

From a mathematical/control theoretical point of view, human motion is
extremely difficult to explain.

The locomotor system has redundant degrees of freedom for the vast majority of
possible movements.

Both the dynamic and the kinematic equations are highly non-linear.
The number of variables/the system dimension is very high.

In spite of all this, the brain is capable of learning the most complex movements ina
smooth, optimized way. What is optimized is not very well known even though
some features are identified (Brooks 1987, Hogan and Flash 1987). Real life experi-
ence indicates that the rate of convergence in the learning process is sometimes very
poor, while on the other hand it is usually quite robust.

The human control system seems to contain all the familiar principles: sensory
feedback loops, feedforward control, adaptivity (compliance), optimization fea-
tures. . . . When learning, the brain is in a supervisory state and the task is executed
under sensory feedback control. When executing skilled motion, the brain is unat-
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Figure 1. The learning process.

tentative and feedforward control is dominant. Accuracy and execution speed are
improved at the same time as the system becomes more independent of sensory
information (Fig. 1). Furthermore, learned motion can usually be repeated elsewhere
in the task space, even after scaling and rotation.

A learning-based concept for manipulator feedforward control is developed in
this paper according to the above-mentioned ideas. The method is based on para-
metric representations of the task and the system, i.e., introducing a parameterized
control space. The main properties sought are:

a simple and robust learning algorithm
dynamic resolution of the redundant manipulator dofs

(sub-Joptimization of overall behaviour (throughout the optimization time
interval)

a compact and effective parametric representation requiring low storage capacity
utilization of a priori knowledge when performing new, but similar tasks

This also reflects the approximate contents of this paper. A demonstration of the
final algorithm will be given in a simple example.

1.I. Work on motor control

Research on learning motor control (in humans and/or machines) can be

roughly divided into two groups:

(1) Every specific movement is related to a ‘motor program’, which in general
means the motor control trajectories (e, a joint space, time series
representation) (Arimoto et al. 1984, Harokopos 1986, Hauser 1987, Saridis
and Lee 1979).

(2) The proper (inverse) transformation from the task description to joint
control signals is learned, usually in terms of the inverse dynamics. Raibert
(1977) proposed learning and tabularizing linearized representations of the
dynamics. Similarly, Albus’ (1975) CMAC algorithm uses pure table look-up.
Mukerjee (1988) suggests estimating inertial and geometrical parameters and
then compensating for model errors by parameter perturbation.

The two groups do not exclude each other: Both in (Craig 1988) and (Atkeson
1986) the inverse plant model is assumed known (a priori or by learning) and used in
a feedback loop, then additive correction trajectories are learned to compensate for
model errors.
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The method in the first group is relatively straightforward, and learned motion is
reproduced by simply running the corresponding motor program. Unfortunately,
the number of stored trajectories may very well become too large to ensure a rea-
sonable repertoire of movements. In addition, the stored knowledge will not gener-
ally be useful when executing a new task, irrespective of whether it is similar to a
previously learned one or not.

The second group is more general, mainly in the sense that it allows a separation
of the task representation and the inverse plant model description. This means that
different tasks (movements) can be compared, and previous experience utilized when
performing new tasks.

1.2. Work on redundancy resolution

Most reported attempts to resolve manipulator redundancy are based on a kine-
matic analysis of the arm, using generalized inverses of the manipulator Jacobian
(Klein and Huang 1985). By adding nullspace vectors, an instantaneous optim-
ization will be performed; the inverse kinematic equation then becomes a gradient
method:

p=J"@q— - I (gU@lVelg ) 1)

where p and § are the task space and the joint space velocities respectively.
J* = JT(JJT)"!is the right-inverse (pseudoinverse) of the Jacobian matrix and Vg(g,
§) is the gradient of a criterion function to be minimized. The criterion function
might be chosen as the manipulability measure g(g) = det \/(J (¢)J(¢)) (Yoshikawa
1985), the distance to an obstacle (Kircanski and Vukobratovic 1984), etc. Both the
pseudoinverse and the manipulability measure can be modified to take the manipu-
lator inertias M(g) into account, for example J3; = M " 'JTJM ')~

Khatib (1987) uses a similar redundancy resolution scheme, but in terms of joint
forces rather than joint velocities. The generalized inverse of the Jacobian is quite
analogous to J;; above, minimizing the manipulator’s instantaneous kinetic energy.

Despite the simplicity and the optimization feature of Eqn. (1), its disadvantages
are obvious. The optimization is instantaneous, which might oppose the overall
behaviour during the optimization time interval. Furthermore, the manipulator per-
formance will be strongly dependent on the initial state (joint position and velocity),
as well as on the nature of the reference trajectory.

The augmented task space method, proposed in (Lunde et al. 1987), is based on
a different principle, here the redundancy is eliminated by augmenting the task
space to the dimension of the joint space. This method is particularly well suited for
a micro-/micro-manipulator. The dynamic properties of the manipulator are then
utilized through the control system design, e.g., by optimal control theory.

The global redundancy resolution problem has been addressed by Suh and Hol-
lerbach (1987) and Nakamura and Hanafusa (1987), global in the meaning that
optimality is obtained throughout the duration of the motion. Both approaches
demand extensive calculations to find the (sub-) optimal solution.

2. The control problem
The manipulator dynamics are given by

M(g)g =nlg, §) + = @
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where ¢ is the joint coordinates, t the generalized joint forces, M(g) the inertia
matrix and n(g, §) the vector of centrifugal, Coriolis, frictional and gravitational
forces. The kinematic position and velocity transformations are given by

P = k), dim (g) = n (3)
p=Jgiq dim@p)=m 4

where p is the task space position vector. The joint position and torques are
restricted by ¢ € @ = R", 7 € T < R". The initial state is (0) = ¢, §(0) = o
The general optimal control problem is to minimize the performance index

T
J(u] = S(yy) + J; L, x, y, 7, 0) dt (5)

and/or satisfy the endpoint condition F(xz, y7) = 0, T might be given or free. Here
xr=x(T) and x = [¢", §"]" is the state vector, ¥ =z is the control vector and
y=[p" p"1" is the measurement vector. 7 and @ are the task and environment
(obstacle) descriptions respectively.

When applying the computed torque (the inverse dynamics) method (Lunde et
al. 1987) we choose the torque vector t = M(q)i — n(g, §) which gives the simple
system § = .

In this paper, the manipulation variable will not be the control vector u(f) itself,
but rather a parameter vector 8 € ©® c R? determining # = #(0, ¢), i.c., the mapping

u:0® - Ux [0, T]

The problem is then to find the optimal solution @* of the control problem
described above.

We will assume that any robot task can be represented by the pair (&, 8) where
& defines the (mathematical) structure on which the parameters 0 are applied. The
control signal should preferably be a linear combination of & and 0

u(0, 1) = F(1)0 (©6)

where, for the scalar u, we will have

S =L fas s fdd M

Here, the f; 5 are linearly independent functions of time f; = f{(t).

3. Parameterizing the control space

Usually, in the human mind, motion or actions are represented by some
abstraction of the real signals (the neural activity), which in our consciousness will
be a simple image of the real action, e.g., the command ‘throw’ triggers a complex
series of neural signals that cause the actual throw to be executed. In our subcon-
sciousness (the motor cortex), the representation has to be far more concrete; in a
form that transforms the oversimplified image of the action into motor control
signals. The transformation is obviously influenced by the relevant sensory informa-
tion.

It seems probable that the task description—-execution transformation should
consist of two fundamentally different parts (1) A parametric description of the
(abstract) task, (2) A control scheme based on the manipulator dynamics. For a
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traditional tracking task, the first part can be a trajectory generator, while the
second is a feedforward/feedback controller possibly including the inverse manipula-
tor dynamics. Alternatively, there could be only one transformation, from the
abstract description to the real control signals.

Why do we want to parameterize the robot control problem?

The original optimal control problem, which is essentially infinite dimensional, is
reduced to a d-dimensional non-linear optimization problem.

The parametric representation is well suited for effective storage.

A proper choice of parameterization allows the transfer of knowledge within a
class of tasks (see later subsections).

Unfortunately, this also introduces some disadvantages:

The solution space is reduced (giving sub-optimal solutions).

It is difficult to find a ‘ close-to-optimal* parametric structure.

We will, for the remainder of this paper, restrict our investigation to end-point
position control only. However, we believe that the concept is generally applicable,
for example to force control and obstacle avoidance problems.

3.1. Parameterized task representation

Parametric representations of (human) motion trajectories have previously been
investigated especially in the motor control/neuroscience literature: Flashner et al.
(1988) proposed least squares curve fitting, while Hogan and Flash (1987) investi-
gated optimized solutions of point-to-point trajectories.

The theory of series expansion states that any time trajector x(t) can be arbi-
trarily well approximated by a finite series

x(t) = 6o folt) + - + 6, f,()

where 6, is a constant (vector), and f; a function of time. The error e(t) = x(f)
— x,(t) = 0 uniformly as n — co. When analysing these series expansions the ques-
tion of orthogonality is important. The set of functions f;, ..., f, is orthogonal with
respect to the weight function w(t), on the interval [a, b], if

b Yy -
f SO oo de = {0 iz ®)
A ¢ ifi=j
Furthermore, the set is orthonormal if co = -~ = ¢, = 1.
Some functions frequently used for mathematical approximation are shown in
Table 1 together with their orthogonal intervals and weight functions. The first
function f{(t) = ¢' defines the finite Taylor series expansion, which is very simple, but
not orthogonal. When orthogonalizing the basic polynominals we get the Legendre
polynominals Z{t) (a detailed overview of orthogonal polynominals 1s given by
Vlach (1969)). In Vlassenbroeck and van Doren (1988) Chebychev polynominals Ti(t)
are successfully used to solve non-linear optimal control problems, here both the
control and state signals are parameterized. Laguerre polynominals can be made
orthonormal (with w(t) = 1) by defining the Laguerre functions, I{t) = e "*L{t). In
communication theory, the Laguerre functions have been used to represent correla-
tion functions as well as power spectrums (Lee 1960). Fourier series are obviously

best suited when approximating periodic functions.
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Polynominals Interval w(t)
Basic ¢ — —
Legendre ZLAt) [—1,1] 1
Chebychev (st class) TAt) [—1,1] Uﬁ
Laguerre L) [0, co] e’
Fourier series sin it or cos it [—n, n] 1

Table 1. Some functions used in approximation theory

Alternatively, we might consider non-linear dependence on the parameters, e.g.,
x,(t) = 6, sin 6, ¢.

In particular, the parameter vector might be chosen as a sequence of sampled
trajectory values @ = [xo, X;, ..., xx]7, where x; = x(i AT), AT is the sampling
interval and the final time T = N AT. This parameterization is simple, though inef-
fective with regard to the number of parameters, and it allows a general solution
(limited only by the choice of the sampling interval) of the optimal control problem
which, however, may be very difficult to find. In Hsu and Cheng (1981) this is for-
malized by using block-pulse functions, applied to a linear optimal control problem.

At this stage the parameterization should be designed with respect to the kine-
matic properties of the manipulator. Certainly, the dynamics also need to be con-
sidered and therefore the choice of parametric structure should allow an additional
variation (using an optimization algorithm) of the parameters to utilize these
properties as well.

3.1.1, Smooth motion. Point-to-point problem

Given the initial values x,, Xo (%o), move to the point x{(k,, %,) at time T.
*Good’ ways to do this are characterized by smooth movements causing low joint
transmission wear and non-jerky motion (Hogan and Flash 1987). For example, the
bang-bang solutions which are typical for minimum time problems are counter-
optimal in almost every other respect; they cause maximum strain on the joints and
they produce jerky and overshooting motion.

In the mathematical sense, a smooth curve x(t) is continuous and has a contin-
uous first derivative x(t) for all ¢ € [0, T]. In this paper we will usually assume
continuous second and third derivatives as well.

Smooth trajectories can easily be derived analytically, e.g., by the calculus of
variation: Let the trajectory be characterized by the criterion functional

J[x] = rp(x, X, %, z) dt ©)

where the jerk z = dx/dr. Euler’s equation gives the necessary condition for the
minimum:

d d? &

PI—EPi+FP§—d—t3P,=O (10)

where P, = P/éx.
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Reasonable integrands might be the quadratic functions

1. P(x) = 3x* (min. acceleration)
2. P(z) = 4z (min. jerk)

3. P(%, z) = 3%? +gz2

Deriving the analytical solutions is straightforward

1. x(t) =6, + 6,1t +6,t> + 651
2. x(t) = 0o+ 0,8 + 0,87 + 038 + 0,t* + 051°
3. x(t) = 0o + 0,t + 0,12 + 058 + O, 0% "* 4 G50%e"

The parameters can be determined from the endpoint conditions, if these are known.
At least some parameters can be identified from the initial conditions.

If the number of parameters equals the number of endpoint conditions the
parameterization is minimal, and there is exactly one solution 6* that will bring the
system to the desired final state. If, however, we choose a larger number of param-
eters, the problem might be said to be overparameterized, which means that an addi-
tional optimization with respect to 6 is possible.

3.2. Transferring knowledge

Once a specific movement is learned, it can of course be repeated with the same
degree of accuracy (assuming no external disturbances), but this knowledge should
also be of use when performing a new, similar movement. To deal with this problem,
we need the following definitions.

Let two tasks be defined by the pairs 7 4, = (¥4, 0,) and J gz = (¥, 05), where
the structures are assumed to be linear (Eqns. (6), (7)): ¥, =[a4, ..., a,], ¥ =[b;,
vens bl

Definition 1. The task Z  is said to be similar' to 7 , if every function g; can be
expressed as a linear combination of the b;s:

m
Va, 1 <i<n 3", 0;eRst.a= ) o;b;
i=1

The converse is not generally true, ie., 9 g similar to & 4,57 , similar to . This
means that even though any task defined on &, also can be defined on &y, it is
possible to define a task on % which might not be realizable on & ,.

We will say that a learned task J , is transferable to a new 7 g if g is similar
to 7 ,. Furthermore, it is possible to transfer knowledge both ways if the tasks are
structurally equal.

Definition 2. Two tasks 7 , and 7 g are structurally equal if both are similar to each
other.

1 Similarity in this context should not be confused with the similarity transformation of
linear algebra.




214 E. Lunde and J. G. Balchen

The ‘quality” of knowledge transfer from a learned task 7 , to a similar g
depends of the distance between them.

Definition 3. The distance between two tasks means the corresponding distance in
the parameter space

AT 4, Tp) =110, — 6l
where any suitable norm applies.

If necessary, the definition includes a transformation of 8, to fit the structure %.
For the linear parameterization (Eqn. (6)), let P,5 be a transformation matrix per-
forming linear combinations of the elements of 8, to make this ‘compatible’ with
0p. The matrix P,, will in most cases be very simple: Let %5 = [1, t, t% t*] and
Fa=[1Lt, t*] (¥ is similar to &4, according to Def. 1). Then the transformation

OA b PABQA,WhCIC
I
P =
AB [0]

(I3 is a 3 x 3 unity matrix) fits @, to the structure & such that 6% = [6%0].

The above definitions applied to a proper parameterization should also be valid
after scaling, rotation and translation of the movements (Mukerjee and Sastri 1986).
However, identifying which representation is the best for the actual class of tasks
may not be simple, and might be a learning process itself (see Sec. 3.3).

3.2.1. Interpolation in the parameter space

Assume that the tasks ;, i =1, ..., n, are learned, how can this knowledge be
used when performing a new task 7 y = (&, 0y) similar to the 7;s?

Let d; be an estimate of the distance between 4 , and 7, in the parameter space:
d; = d(T y, T) (the real measure is obviously not available since @y is unknown).
Furthermore, assume that 7 is “close’ to ; for all i. Then, a reasonable initial
value for 6y might be the weighted least squares estimate

0% = arg min > 3 a0y — 0,17 an
By i=1

where o; = 1/d? reflects the uncertainty of using points ‘ far away’ from the estimate.
Deriving the analytical solution is straightforward:

n
0% = 1/Za; Z] ) (12)
To obtain good estimates of all elements of 8, we need at least d 4 1 distinct points
in the d-dimensional ©-space, among these, d of the vectors 0; should be linearly
independent. Less points or linear dependence means that we get an estimate pro-
jected on a subspace of ©.
For the point-to-point problem (§§ 2 and 3.1.1), the only possible a priori
measure of distance between the tasks is in terms of the desired final position y¥

di= llyTn — ¥l (13)
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Because of the non-linear relationship between 8 and y,, the estimate should only
be used when y¥y and y¥,; are ‘close’.

3.2.2. Curve fitting by feedback control

If there is (almost) no previous experience about how to solve a motion problem,
and if a feasible solution is needed (e.g., to avoid an obstacle) the following approach
might be favourable:

Apply a simple non-optimal feedback control algorithm and record the corre-
sponding control trajectory u(t), t € [0, T]. Then, approximate this by a param-
eterized signal up(r) = ) 7, 6; f{t), e.g., as the minimum mean-square estimate

T
6h = arg min 3 [1u) — o) a (14
BN

Here, the calculations will be considerably simplified if the functions f; are orthog-
onal. With the definitions from Eqn. (8) we then get for the scalar u(r):

T
6%, =é L W) ) di (15)

3.3 Generalization

What makes human intelligence superior to machine intelligence is the extensive
ability to generalize information: General rules are derived from limited amounts of
information by high-level reasoning. In our parameterized world, this means to
identify the ‘best’ parametric structure describing the actual class of tasks. After
learning a few specific movements, related to some a priori given structure, the struc-
ture itself should be updated, if necessary, to a maximum ‘level of transferability’.
By this we mean that the new structure will be general for the class of movements,
while the old one was valid for only a few individual trials.

The problem of structure identification includes several important issues:

Should the structure be linear or non-linear?

Should it be based on physical knowledge, or should it be a black-box type
model?

Should the representation be defined on the time or the frequency domain? Be
continuous or discretized?

Normally these decisions will be made by the system designer based on his/her a
priori knowledge about system properties, physical relations and heuristics. The
choices distinguish between fundamentally different types of representations. Other
substantial problems include the questions of system dimension, parameter identi-
fiability and the optimality of the structure with respect to the performance cri-
terion.

The problem can be formalized as follows (Ljung 1987):

Definition 4. A structure set is
S={L(): x € A}
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where the index set o/ might be a connected (open) subset ./ < R® or a set of
numbers of = N%a is the dimension of .<#).

Now, find o giving the ‘optimal’ structure. &/ < R? allows a differentiation of
L (1) = #t, o) with respect to o, thereby making possible an analytical or numeri-
cal optimization of some performance criterion. However, it will be more natural
that .«# = IN“ making § a countable set of possible structures. The selection mecha-
nism might then be based on performance evaluation as « is varied.

4. Resolving redundancy by learning

This section will consider algorithms for improving performance through repeat-
ed trials. The algorithm might be considered to be learning if each trial is actually
performed, or iterative if the solution is found off-line by simulation. The learning
approach should give a (close to) feasible solution for every step to prevent disas-
trous results when executing the motion. The pure iterative method has no such
limitation, but demands extensive knowledge about the dynamics and the kine-
matics of the manipulator.

Throughout this section we will assume that the inverse dynamics are known
and may be used in the controller. A feedforward algorithm will provide the desired
joint position, velocity and acceleration trajectories (Fig. 2) (kinematic learning).
Our problem is how to calculate the optimal trajectories.

Specifically, the task is to move to the final point y(7) while minimizing the
performance criterion J_[#]. The question of resolving redundancy will not be
addressed directly, as this is implicitly taken care of by the general optimization
problem—which has inherent features of redundancy: The nonlinear relationship
Y(T) = ¥(P) is a many-to-few mapping of possible solutions @ giving the same result
wT).

4.1. A feasible solution

Given the initial state g, = ¢(0), §, = (0) find a solution 6* that moves the arm
to the final position p¥ = p*(T) at the given time T. With the computed torque
method applied, we have the system

§(t) = u(6, 1) (16)
Initialize Feedforward Inverse u

—— | controller P dynamics Mpﬁ)h\lrllfl'xb?gso :

94

l a4 X
(5.0) Measurements
Task
specification Learning Performance y
algorithm y evaluation
Je]

Figure 2. Trajectory learning algorithm,
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where u(0, t) = (1)0 is the parameterized acceleration vector. Let 6 be the solution
of the ith iteration, and 8p%. = p%. — p* be the endpoint deviation.
From the definition of (@, t) we obtain

§r = J;T.S"’(t) dtb + g, (17
T [t
gr = J; J;.S"’(t) dt dth + Tgo + qo (18)
We have p. = h(g"), and a Taylor series expansion of p¥ at ¢’ gives
= Kal) + et — ¢h) + Hat — 6" 32 Jakat — gD+ (19
Combining Eqns. (18) and (19) and introducing 56' = 8' — 0%, 5¢'; = ¢’ — q%, we get
oph = [J’(qf,n) LT .Ltéf‘(t) dr dt + R(ﬂ‘)] o0 (20)

where R(#) contains higher order terms of Eqn. (19) which are practically uncom-
putable since they contain the unknown value of g% .

Consider the following simple iterative algorithm for updating the parameter
vector

0t =6 + L 5py (21)

where L is a linear or non-linear (L = L(#")) learning operator (Arimoto et al. 1984,
Hauser 1987). We can now rewrite Eqn. (21) as follows, by subtracting 6* on both
sides:

56'*! = (I + L[H(6") + R(@©"]) 66 (22)

Convergence of the algorithm is assured if Eqn. (22) defines a contraction mapping,
ie.,

17+ L@)H@) + RO <p <1

Alternatively, evaluate (estimate) the eigenvalues of the matrix expression in
Egn. (22). The algorithm converges when all the eigenvalues are inside the unit
circle. Obviously, the best possible operator would be

L(#) = —[H(®) + R@O)]* (23)

which gives p = 0 and convergence in one step. This is, unfortunately, not generally
possible, for two reasons:

R(#) is unknown.

The matrices H(#) and R(#") will have the dimensions m x d where usually
d > m, consequently the matrix inversion in Egn. (23) will not be possible.

We might try a pseudoinverse L = —T*, where T+ = T(TT")"L. For example,
choose the sub-optimal operator L(6") = —[H(6)]*. However, convergence is not
clear (not even for R(6) ‘small’), and it is generally very hard to investigate.

Several methods for non-linear optimization are proposed in the literature. The
properties of convergence of the different approaches depend on the nature of the
equations, and the method should be chosen and adjusted after investigating the
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actual problem. For example, to minimize the criterion J, = | épz||* (Euclidian
norm), we might choose a gradient method: By Eqns. (4) and (17) we find

T ft
VoJ, = %ﬁ = J; J;ST(-r) dt dt J(O)5p’; (24)

We now get, analogously to Eqn. (21)
6 =0 — o'V, J, (25)

Convergence of the algorithm depends on the choices of of and the starting point 6°;
a local minimum can always be found by a line search method (Luenberger 1984).

4.2. Constrained optimization

In addition to satisfying the end-point conditions, we want to minimize the per-
formance criterion J,[6] (i.e., with respect to the constraint k(g%) = p¥). As argued in
the previous section, T(6") = H(6") + R(#') is practically not computable so that we
should consider the approximation T(#) &~ H(#'), which is accurate for & close to 6*.
To find the minimum, let @ ‘slide along’ the nullspace of T(#), thus not changing
the final position p¥ :

6t =6 — piI — T*OVT(6)]V,J.[61] (26)
where I — T*T is the null space projection matrix (defining a tangential plane in
©-space at ) and ' > 0 is a scalar step-size parameter (the gradient projection
method (Luenberger 1984)). The problem is that since T(#") is non-linear in &', the

nullspace projection of V, J.[6] will probably not lie on the solution surface for p¥
for most reasonable values of #', thereby causing an error

apiijl = T(0(+l) 50i+1
= BT(0" I — T ()T (6)1VeJ [6] # 0 @7

(assuming &p = 0 and 66° = 0).

To overcome this problem we repeat the positional algorithm Egns. (24), (25)
after every iteration of Eqn. (26). The step-size parameter f; should be determined
such that the value of J, is reduced and the constraint deviation 8p. is kept within
‘reasonable’ limits. (If J.[0] is non-convex in # this method might not work at all.)

4.2.1. Minimum acceleration

We want to minimize a joint acceleration performance measure during the time
interval [0, T]: Let Q be a symmetrical, positive definite weight matrix, and define

T T
J.[6] =% I u'Qu dt = % J; 0" ()QF (6 dt (28)
0
Introduce
T
So= J; FLUOQL(t) dt (29)

which immediately gives the performance criterion

J.[6] = $67S,6 (30)
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Figure 3. 4 dof. manipulator.

where S, is a constant symmetrical matrix. The gradient vector becomes
VoJ. = So0 @1

which can be derived analytically.

The weight matrix Q might be chosen @ = diag (m,, ..., m,), where m,, ..., m,
are the manipulator inertias (the diagonal terms of the inertia matrix M(g)}—we get
an approximate measure of ‘ energy’ consumption.

5. Example

Consider the 4 dof. manipulator of Fig. 3 (all the links are of equal length:
I; = 1). The task is to position the tip of the arm in the (p,, p,)-plane, the initial state
is given by g, = [0-45n, —0-90m, 0-90%, —0-907]" and § = 0. We will investigate the
double integrator model Eqn. (16), with four parameterized control signals

ui{e, t)=91‘+92it+93it2, i=l,,4

i.e., we have the parameter vector 8 = [0,,, 6,,, 04, 0,,, 015, 035, 0,3, 6,3, 053,
014, 024, 03,]" and the structure matrix

1 ¢t 200000000 0
00 01 ¢ 2 000O0O0OCO0
O=10000001 1t 000
00000O0O0O0O0T1 1 2

Assume that the manipulator Jacobian J(g) is known.

First, we find a feasible solution. The desired final position is p* = [2:0, 1-5]7
and the final time T = 1. A reasonable choice for the initial parameter vector might
be °=[—-1, -1, —1, 1, 1,1, —1, —1, —1, 1, 1, 1]™—a positive value of y; is
defined to give a rotational acceleration in the counter-clockwise direction. This
initial trial gives the final position p, = [1-89, —0-74]". The optimization algorithm
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Figure 4. Learning curves.

is given by Eqns. (24) and (25), where the step-size parameter o is chosen as the
inverse second derivative of J{@") in the gradient direction (a quasi-Newton
method). The step size is however bounded by || — 6°*!]| < 1 to prevent diver-
gence when starting far away from the optimum. The convergence condition is
J; < 0-0001, or an absolute positioning error of less than 0-01. This rather simple
algorithm converged in 19 iterations, see the learning curve of Fig. 4.

Given the feasible solution, we want to minimize acceleration throughout the
time interval (see Eqns. (28) to (31)). The weight matrix is chosen Q = diag (4, 3, 2,
1). The constrained optimization is carried out as given in § 4.2, where the local
‘optimum’ of each trial is found by line search in the projected gradient direction
(allowing only a small endpoint deviation). Starting from the feasible solution 8 the
algorithm converges in 11 steps to the optimal ., with the corresponding J , =
7-43 and endpoint deviation within the previously defined limit. The learning curve
is shown in Fig. 4. The final configuration resulting from this (sub)-optimal solution
is shown in Fig. 3, notice that the inner joint has hardly moved at all, in accordance
with the high cost related to this.

Equivalently, several experiments with different final positions are carried out
with the results given in Table 2. The same parametric structure is applied to each
experiment; the tasks are obviously structurally equal (see Definition 2).

Now, assume that we want the manipulator to move to the new position pfy =
[1-7, 1-6]". By applying the weighted least square estimate 8% as explained in § 3.2.1,
the manipulator moves to the point p; = [1-67, 1-65]T which is much closer than

i PTi Jei
1 [20,1-5]" 743
2 [20,10]" 539
3 [1512]" 278
4 [10,1-5]" 323
5 [1518" 649

Table 2. Different final points.
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when using the initial guess 8°. Alternatively, using the non-weighted estimate o; = 1
gives the result p; = [1-62, 1-44]", a deviation of d = 0-18 vs. d = 0-05 for the
weighted estimate.

6. Conclusion

The new generations of robots are expected to perform a greater variety of tasks,
to be more adaptive to changes in the environment, to be faster and more accurate,
to be more ‘intelligent’. In this paper, a learning control system based on the
parameterization of the control space has been discussed. Stored knowledge about
how to solve sample tasks provides good initial solutions to novel situations; fast
convergence is achieved with simple algorithms.

By parameterizing, the dimension of the problem is reduced, with the conse-
quence that we should expect some loss of optimality in the solution. However, a
careful choice of parametric structure can give a satisfactory approximation with
few parameters. Very complex non-linear optimization algorithms can be avoided if
we assume that the robot is equipped with some basic motion knowledge (‘ genetic’
information), i.e., a selection of points distributed in @-space such that we will
always be able to find a starting point ‘close’ to the desired optimum. This means
that we only have to worry about local convergence.

The manipulator dynamics can (and should) be included in the parametric learn-
ing algorithm, by learning either the dynamic model or the actual control signals
(torques etc.). Non-linear dynamic systems can be linearized around a finite number
of points in the state space, each linearized model can be learned and stored in a
table for later use (Raibert 1977). Alternatively, the equations can be represented by
a Volterra series which is a generalization of the convolution integral of linear
systems, containing higher order impulse responses (Eykhoff 1974), here the problem
will be to identify the Volterra kernels.

The example presented is simple, but should be fairly representative of the more
general problems: Manipulation in a six dof. task space increases the problem
dimension substantially, but the geometry will essentially be the same so that similar
algorithms should work well. For complex optimization criteria where analytical
derivations are unrealistic, the gradient vector can be evaluated by parameter per-
turbation. Tracking tasks can be treated in a similar way as the point-to-point
problem, though requiring more parameters.

The section on redundancy resolution does not discuss this phenomenon explic-
itly, and we want to emphasize. Resolving redundancy is basically a optimization
problem, rather than a problem of kinematic analysis. In the present example, singu-
larities are avoided simply because they contribute to increase acceleration (which
should be minimized) during the motion.
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