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Applying parameter identification and optimal input design
in well-testing

BJARNE A. FOSS
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This article discusses the use of optimal input design and parameter identifica-
tion methods in reservoir evaluation. A new optimal input design criterion is
presented which in addition to the uncertainty in the parameter estimates
accounts for the curvature of the parameter space.

It is shown that the information content in the data obtained from a well-test
generally increases markedly, by actively using the optimal input design method.
The use of parameter identification (calculating error levels) improves the extrac-
tion of information from reservoir data, since the inclusion of prior knowledge
and the parameterization level may be chosen according to acceptable uncer-
tainties in the parameter estimates.

1. Introduction

The process of characterizing the properties of a hydrocarbon reservoir may be
divided into several stages according to the data which is used.

Seismic exploration data is used to identify the macro-geological structure, for
instance the layering of a certain formation as a basis for deciding if and where to
drill wells. Having drilled a well, well logging is used to obtain data which charac-
terizes the rock and fluid properties in the vicinity of a well, to a certain extent. In
addition, laboratory analysis of reservoir rocks and fluids are carried out.

Well-testing is an important tool which is used to investigate reservoir condi-
tions beyond a well. Such a test is performed by producing from one or several wells
for a short time-period (typically 5-30 hours). This implies that only a small part of
the reservoir will be influenced by the test, see Fig. 1. The flow-rate(s) and pressure(s)
are always monitored during this time period.

A well-test will often have several objectives in addition to estimating reservoir
properties (particularly the permeabilities). These may include obtaining a pressure
profile vs. depth, collecting reservoir fluid samples, and measuring the sand pro-
duction and the gas to oil production ratio as a function of the flow-rate(s).

During the production stages of a reservoir, data may be available from the
different production (or injection) wells. This data may consist of flow-rates, water
to oil production ratios, gas to oil production ratios and pressures. It is common
practice today to use such data for history matching, i.e., manually adjusting param-
eters in a reservoir simulator in order to match the data to the simulator output.

The importance of obtaining a good reservoir model lies in its use for optimizing
field development in order to improve the usage of hydrocarbon fields.
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Figure 1. An areal view of a hydrocarbon reservoir with wells (*) showing the investigation
area (dotted) of a typical single well well-test.
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Figure 2. A schematic view of a well-test scenario.

The above discussion shows that there are several sources of information which
are used to obtain a good understanding of a reservoir. In this study we will empha-
size well-testing. A schematic well completion which is typical for a well-test is
shown in Fig. 2. The flow-rate is adjusted by the choke value and monitored down-
stream the test separator (not shown in the figure).

Normally well-tests are analysed by the use of a graphical method, see Lee 1982
for example. This investigation aims at using parameter identification and optimal
input design methods in well-testing.

In § 2 an appropriate model is presented while § 3 deals with methods for
parameter identification and optimal input design. Results are presented in § 4 while
a discussion on the use of the methods in well-testing (§ 5) concludes this paper.

2. Model

2.1. Reservoir model
The reservoir to be considered is a single-well system, the main assumptions

being 2-dimensional cylindrical geometry, see Fig. 3. and 1-phase flow. These
assumptions are valid in many well-test situations. The geometric assumption dis-
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Figure 3. Model geometry.

regards reservoirs with significant variations about a 3rd coordinate axis. In under-
saturated reservoirs and in gas wells the flow assumption is most often valid.

The equations governing the dynamics are developed several places in the pet-
roleum literature, an example of this is Aziz and Settari (1979). The derivation uses
mass balance in cylindrical coordinates, Darcy’s law for flow in porous media and
isothermal compressibility to obtain the following parabolic partial differential
equation:
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where € is the reservoir interior and I is the reservoir boundary (see Fig. 3). This
model assumes fluid-flow, but can be used for gas wells by introducing the notion of
‘real gas pseudo pressure’. This implies that an integral transform of the pressure is
used instead of the pressure itself in the gas flow case, see Dake (1978), Chapter 8.

2.2. Model discretization

The continuous model in egns. (1)5) is discretized using the finite-difference tech-
nique. An irregular grid is used, as shown in Fig. 4. In the case of a single phase
(fluid-flow) problem with radial geometry and homogeneous rock properties the
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Figure 4. Spatial discretization of the reservoir. i + 1/2,j + 1/2 indicate grid boundaries.

stationary solution of the pressure increases linearly with In r. A suitable way in
which to construct an irregular grid is therefore,

mi o 2 w1 6)
r; Fi1
In addition the grid-block boundaries (r;;;, i=1,..., nr — 1) must be chosen.

This is, e.g., discussed in Aziz and Settari (1979), Chapter 3 and 7. The boundary
values for calculating the block volume are given by:

2
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This expression is derived by comparing the flow past the grid block boundary (for
a given pressure difference) with the flow generated by integrating Darcy’s law
between the grid points in grid block i and i + 1.

In the vertical direction a block-centred grid is used, i.e., the block boundaries
are chosen according to perforations and reservoir discontinuities, and the grid
points are placed in the centres of the blocks. The time derivative is approximated
by a backwards Euler approximation, resulting in the following linear, implicit dis-
crete time model:

Ap"tt =p" + Bprtt, n=1...,N—1 (8)

The pressure drops from the grid point adjacent to the well (i = 1, see Fig. 4) to the
corresponding pressure in the well is used as input in eqn. (8).

P:;=P';J—(P;—pgz), le’ veey NZ (9)

An expression for p,; as a function of the production rate is derived by the use of a
1st order approximation to the inner boundary condition, eqn. (5).
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The permeability in a thin zone around the well, k%, differs from the permeability
further out, because of disruptions during the drilling and the completion of a well.
Usually the total flow-rate from a well is specified. If there is production from
more than one layer, p,; depends on the reservoir pressure. In this case the well
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equations must be implicit in order to maintain the stability properties of the total
model.

The simulator model is checked against the mass balance of the reservoir by
using the compressibility relation,

1V 1 ov/or

TV, V, ol (an

where V), denotes the pore volume, d¥/dt the production rate and dp/dt the average
pressure decline.

2.3. Parametrization

Determining the reservoir permeabilities is of particular concern in well-testing
since this is the only means of obtaining good estimates of these crucial parameters
in the pre-production stages of a reservoir. The permeabilities are proportionality
factors which relate fluid-flow rates to pressure gradients (Darcy’s law). They vary as
general functions of the spatial coordinates, hence they are infinite dimensional.

In the discretized model it is assumed that the spatially variable unknown
parameters (in our examples the permeabilities) have a constant value within each
grid block. This approach has, however, been combined extensively with zonation,
ie, assuming equal parameter values in several grid blocks so as to reduce the
number of unknown parameters.

3. Identification

3.1. Parameter estimation

The optimal parameter estimates are computed by minimizing a quadratic cri-
terion as shown below.

N L
J=3 X X wOi—3%  d=y-5 w>0 (12)

The minimization is performed using a quasi-Newton method with the following
specific features:
A line search is used.
The Hessian matrix is scaled so as to improve its conditioning.
If the scaled Hessian matrix is badly conditioned a diagonal matrix with equal
diagonal elements is added to the scaled Hessian matrix.
The gradient is computed by simulating the sensitivity equations, i.e., the equations

which arise by differentiating eqns. (8) and (10) with respect to the unknown param-
eters.

3.2. Error levels

The analysis of the Hessian matrix, i.e. 82J/60@3@’, together with the noise in the
observed data is an important tool when choosing the parameters which:-can be
estimated in a given situation. The reason is that this gives a quantitative measure of
the uncertainty associated with a parameter estimate. In general, it is better to fix
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the value of an unknown parameter instead of trying to estimate it with large error
bounds. In addition, fixing one parameter will often reduce the uncertainty of the
estimates of the other unknown parameters.

Given the following assumption,

stationary, additive uncorrelated noise on the data (e, in eqn. (13))

a linear model

no modelling errors

it is possible to derive an expression of the variance of the unbiased parameter
estimates, see Foss 1987(a), Appendix J.

b2 L
Var(©,) =kr:1:1.::‘ I:l,‘(H)M] ‘;l w,Varle), m=1,...,M (13)

— 82110000 ~ i i[( o g)] (14)

This derivation is based on an eigenvalue decomposition of the Hessian matrix, v,
being elements of the eigenvector matrix and A, the k’th eigenvalue. The Hessian
matrix in eqn. (14) is computed by neglecting the 2nd order term.

3.3. Optimal input design

In optimal input design theory it is common to assume that an unbiased,
minimum variance estimator is used, hence it is just the variance that determines the
uncertainty. The minimum variance (efficient) estimate can be calculated by the use
of the Fisher information matrix, see Silvey (1970), pp. 35-44. Under suitable condi-
tions, see Mehra (1974), the Fisher information matrix can be approximated using
the Hessian matrix in eqn. (14). The input design method may now be written in a
compact form

min g(H ') (15

<0
by recognizing the fact that H directly influences the uncertainty of the parameter
estimates, and that the input, g, to the system in question, influences H. Q is the set
of admissible inputs, g is a functional. Several choices for g choices have been pro-
posed in the literature, see Mehra (1974). The one used in this investigation is based
on an augmentation of the standard criteria. It was first presented in Foss (1987(b)).
Below the commonly denoted E-optimality criterion (i.e., the use of the maximum
eigenvalue of the inverse Hessian matrix) is augmented. This criterion is used in § 4.

gH™ ) =D (H™ ") + LK(H), (20 (16)

Amax 15 the maximum eigenvalue and « is the condition number. The first term places
emphasis on reducing parameter uncertainty by reducing the largest eigenvalue of
H~' while the second term considers the curvature of the parameter space. It is
important to keep the condition number as low as possible since this improves the
robustness of the parameter estimation runs which folow the experiment. In the
cases where 4, (H!) shows a flat minimum it is especially advantageous to incor-
porate the condition number in the criterion, see Foss (1987(b)) for a further dis-
cussion on this.
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Figure 5. A schematic view of the production and monitoring equipment, and the reservoir
layering.

4. Results

The outlined approach will be used in two different examples. First, a simulated
realistic well-test situation is discussed with respect to parameter identification and
optimal input design. Second, the data from a North Sea well-test is analysed.

4.1. A simulated well-test example

In this example we assume a reservoir geometry as shown in Fig. 3. The charac-
teristic properties of the reservoir are shown in Table 1 while Fig. 5 gives a sche-
matic view of the well and reservoir layering.

Both the 1st and 3rd layer are perforated, only the 3rd layer is in direct contact
with the well however. The pressure is monitored in two locations (L = 2). Two
different permeability distributions will be discussed as shown in Fig. 6. The per-
meability is generally directional, typically the vertical permeabilities have much
lower values than the horizontal permeabilities.

The total well-testing time is chosen to be 28 hours with a sampling time of
250 secs. It is at first assumed that the well produces at a constant rate of 10 m3/
hour (starting at time zero) during the entire testing period.

A candidate parameter vector is shown below,

© = [k ks K5 K3 K3 K5 ]
while the loss function, defined in eqn. (12), uses w, = 0-02, w, = 1-00 and N = 400.

Wellbore radius: r, = 0-15 m Exterior radius: r, = 7500 m
Reservoir thickness: h = 750 m Porosity: @ = 0-25
Viscosity: u = 103 Pas = 1cP Compressibility: ¢ = 107° Pa™!

Initial pressure: p;;,, = 30 MPa ~ 4350 psi
Pore volume: 33-13 10 m? or 208 10° bbl Water saturation: §,, = 0

Table 1. Characteristic properties of the reservoir.
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Figure 6. Permeability distribution.

Case 1 and 2 in Figure 6 give rise to the following eigenvalues of the Hessian
matrices

A(HY =[27115 252 1155 091 035 1-0x 107% 10 x 10™°]
A(HY =[60325 2861 118 65 045 014 12x 1073

Both 4, and 1, are unacceptable because of the large uncertainty associated with
the smallest eigenvalues. All the same, the results are important since they support
an argument which should be taken into account before choosing the well com-
pletion for a test.

Case 1 and 2 are very different in that permeability decreases towards the
producing perforation in Case 1 while the opposite may be said of Case 2. Intu-
itively this should decrease the identifiability in Case 1, since the area which has the
lowest permeability close to the producing perforation will disguise the effect of
pressure changes in high permeability areas further into the reservoir. This is an
example of how an identifiability analysis can be helpful when designing the well
completion for a test. In Case 1 for instance it is preferable (from an identifiability
point of view) to produce from layer 1 instead of layer 3. The permeability distribu-
tion is of course not known prior to the test, an indication of permeability varia-
tions from well logging and analysis of the reservoir rocks (from the drilling of the
well) is however available in most cases.

Pursuing the identifiability analysis in Case 2, added knowledge must be utilized
in order to reduce parameter confidence intervals. Analysis shows that identifiability
suffers most from the fact that both k; and k% are estimated independently. If it can
be assumed that these are correlated, for instance as follows,

ki = 2k
the eigenvalues change to
Ay(HY =[61372 2943 409 74 042 0-14]
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Figure 7. Restrictions on the production flow-rate, g, in the input design problem. T is the
total well-testing time, 28 hours.

A further reduction in confidence intervals is sought by looking at input design
techniques. The choice of the flow-rate during the well-test is limited as given in Fig.
7. It is uniquely defined by choosing the switch-off time, t,,,. This is a common way
of running a well-test. The results are shown in Fig. 8. It shows (open markers) that
production should be terminated after only 7-25% of the total testing time. This
result did not change significantly if other permeability values were chosen, within
the same range of values as above,

Figure 8 highlights the use of the augmented input design criterion. The
minimum of the two design criteria shown in Fig. 8 appear at very different switch-
off time instants. For practical purposes the input sequence obtained by the aug-
mented criterion is superior, since the condition number of the Hessian matrix is
reduced by a factor of ten at the expense of a marginal increase in the largest eigen-
value.

In Foss (1987(a)), other examples illustrate the importance of considering the
conditioning of the parameter space since a smoother parameter space improves the
convergence rate and makes the optimization more robust, hence the parameter
optimization will be more reliable in converging in non-ideal situations.
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Figure 8. The value of the optimal input design criterion (¢ = 1:0 10~ ° open markers, { =0
filled markers) using ©' = [k5 k% k3 k% k% k%] for different switch-off time instants. The
parameter values in Case 2, see Fig. 6, are used.
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Figure 9. Parameter optimization using the input sequence defined by t,, = 0-125T. Initial
parameter estimates
© = [k K, ks k5 k5 k7
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A typical successful parameter optimization run is shown in Fig. 9. The opti-
mization run shows good performance, the other three estimates perform equally
well. A corresponding run was also carried out using a constant production rate
over the entire test period (t,,, = 1-00T) to check the importance of the input design
considerations. The run did not converge. Similar runs using smaller errors in the
initial estimates did not converge either. The reason for this is the ill-conditioned
parameter space which makes it extremely difficult to find the optimal parameter
estimates.
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Figure 10. Well completion.




Parameter identification and optimal input design 201

FLOW-RATE  (STB/DAY

3000.0 ~ I
3
2000.0 |
1000.0
HOURS
n_n 1 1 1
0.0 1.0 20.0 0.0

Figure 11. Flow-rate during the main flow period.

4.2. Analysing data from a North Sea well-test

This test stems from a well about 2500 m deep. Two intervals of oil bearing
formation were perforated, see Fig. 10. Pressure was monitored 30 m above the
reference depth. The main test period consists of a producing and non-producing
interval as shown in Figs. 11 and 12.

The layering in the reservoir model was chosen in accordance with the layering
revealed by seismics and well logging. Three horizontal layers were chosen, layers 1
and 3 being the perforated layers.

An identifiability analysis revealed that it was not possible to determine more
than two reservoir parameters, namely the average horizontal permeability (k) and
the permeability in a thin zone around the well (k). Hence, it was not possible to
determine the vertical permeability using the data.

Before looking into the estimation problem the problems of noise and model
structure validity will be discussed. Analysis of the noise level of the flow-rate and
pressure data shows that the predominant noise source stems from the flow-rate
measuring device. This noise is filtered to obtain a noise level on the input data
which agrees with the actual variations in the flow-rate. A rough estimate of these
variations can be obtained by analysing the noise level on the output data and using
eqn. (10).

The model which is to be used for parameter estimation, is based on cylindrical
coordinates. Parameter estimation runs based on the available data were performed.
It was not possible to get a good correspondence between all the data and simulator
output. The latter parts of the production and non-production periods could not be
reproduced by the simulator. This strongly indicates the influence of effects which
are not included in the simulator. These effects, which are most probably due to
faults in the reservoir, are placed some distance from the well, and data affected in
this way should not be used for optimization. In addition the data in the first part of
the production period was not monitored due to debris in the flow from the well
(dotted line in Fig. 11).

The above considerations suggest that the times between 9-15 and 11-45 hours,
and 18-00 and 22-30 hours should be used for parameter estimation. Since the latter
part of the production interval is influenced by effects which are not modeled,
special care was taken at the start of the non-producing period. This was done by
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Figure 12. Pressure during the main flow period.

assuming that the boundaries (or faults) discussed above add a constant pressure
drop to the well-pressure during the early stages of the non-producing interval in
addition to the pressure-drop calculated by the numerical simulator. The bias is
estimated in conjucntion with the parameter optimization. This measure compen-
sates for the deficiencies of the model in such a way that the pressure data in the
first part of the build-up period can be used for parameter optimization, since the
boundaries do not influence the non-producing period in its early stages.

The result of the estimation runs using the limited number of data are given in
the following estimates.

k" = 438 mD k*=21-7mD

These answers were obtained for large variations in the initial values of the param-
eter estimates. The simulator output is compared with the real data in Fig. 13.

A 2o0-confidence interval is calculated using the Hessian-matrix for the estimated
permeabilities and an estimate of the noise variance, the result being

k™: 438 + 26 mD k' =217+ 08 mD

The information lost by discarding parts of the available data is reasonably small. If
it had been possible to utilize all the data, the 2o-confidence interval of k" would be
reduced from 26 mD to 20 mD.

Further analysis of the Hessian matrix shows that the non-producing period
contributes most to keeping the confidence intervals small. The reason for this is
that the sensitivities regarding the two permeabilities are dynamically heavily corre-
lated during the producing period since the early data (6.00-9.00 hours) of this
period cannot be used. This is an important observation, and shows that it is essen-
tial that the early time data is of good quality if only the producing interval is to be
used for parameter estimation.

The conventional analysis which has been performed (by an oil company) is
based on comparing the data with the solution of a homogeneous diffusivity equa-
tion by the use of a graphical plot. This is a common analysis technique. Only parts
of the data were used in the same manner as above, the permeability was deter-
mined to be 420 mD, hence within the limits above. The near well permeabilities are
difficult to compare, since they are parameterized in different ways. The convention-
al analysis suggests the presence of boundaries at some distance from the well.
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This example highlights the use of error levels for analysing well tests even
though the data was not ‘rich’ enough to fully utilize the model. Two areas, in
which more work must be done, are:

Implementation of a more flexible model, for instance by the inclusion of faults.

Data pre-processing, i.e., a mechanism for disregarding data because of model
deficiencies or because of large measurement errors.

5. Discussion

The two examples in § 4 have illustrated the use of optimal input design and
parameter identification in well-testing. It is important to notice that these methods
constitute two different ways in which to improve the knowledge of a system.

Optimal input design enhances data quality with respect to certain prespecified
unknowns. An analysis of the confidence intervals in Example 1 (§ 4.1), in addition
to other examples regarding both single and multiple well studies presented in Foss
(1987(a)), show that on an average, the maximum variance of the parameter esti-
mates decrease by 50% by the active use of the input design method.

The augmented design criterion is shown to be important in cases where the
traditional design criteria exhibit flat minima, and the conditioning of the parameter
space is sensitive to the choice of the input sequence.

The use of parameter identification which, as a vital step, includes the choice of
parametrization in accordance with error level calculations, improves the analysis of
the measured well-test data. Compared to the traditional analysis of well-test data, a
quantitative measure of error levels provides a means of balancing the inclusion of
prior knowledge versus the choice of the parametrization level, i.e., how many and
which parameters may be regarded as unknowns. The unknown parameters may
include both variables which describe the basic structure of a model as well as
‘normal’ parameters (e.g., permeability and porosity). The consequences of dis-
carding data (cf. Example 2, § 4.2) either due to bad data quality or because of the
necessity to reduce modeling errors, can also be evaluated.

A shortcoming of the methods presented here is the fact that they are based on a
linear analysis. Thus non-linear models will have to be linearized in order to
compute the Hessian matrix. This poses no major problem in the case of mild non-
linearities. Severe non-linearities (as is the case in most muiti-phase models) do
however complicate matters, since a first order linearization only is valid in a
limited region about the linearized values. Hence, frequent linearizations are neces-
sary, increasing the computational requirements substantially. In order to assess the
methods in these cases, trials must be run using non-linear models.

Modeling errors represent a serious problem which can disrupt any analysis of
the kind discussed in this paper. The reason for this is that the analysis, in such a
case, is performed on a model which describes a different system from the reservoir
in question. There are two measures which should be included, in order to get to
grips with this problem.

It is essential to utilize as much as possible of the knowledge which is available
prior to the experiment, when deciding on the model.

The calculations should be performed using different parameter values within
their probable range of values. In some cases, when the structure of the model




Parameter identification and optimal input design 205

itself is doubtful (e.g., due to uncertain layering or the possible presence of dis-
continuities in the layers), different models should be used. In cases with compu-
tational limitations, which is the typical case in multiple well studies and history
matching, there will be severe limitations on the number of allowable runs.

State estimations has been disregarded in connection with well-testing since a major
part of the variations in the flow-rate (which are often large, see Figure 11) couples
directly through to the well pressure (cf. eqn. (10)).

NOMENCLATURE

c isothermal compressibility

e, measurement noise on output no, 1

g input design criterion

h reservoir thickness

H  Hessian matrix

J  weighted least squares criterion

k™ horizontal permeability (*)

k*  permeability in a thin zone around the well (+)
k*  vertical permeability ()

L  no. of measured outputs

M dim(©)

N no. of time steps

nr  no. of grid-blocks in the radial direction
nz  no. of grid-blocks in the vertical direction
P pressure

p,; pressure drop between the reservoir (i = 1) and the well in layer j
p,, well pressureatz =0

q flow rate

r radial axis

r,  exterior radius of the reservoir model

. well radius

time variable

measured output

vertical axis

thickness of layer j

~

B
£

porosity

viscosity

density

unknown parameter vector

weighting factor in the design criterion
eigenvalue

condition number

AT R B

Unit equal to milli-Darcy (mD = 10~ '? m?)

—
*
—

Subscript
ij  radial and vertical index, respectively

Superscript

n time index

‘ transposed
estimated value




206 B. A. Foss

REFERENCES

Aziz, K., and SETTARI, A. (1979). Petroleum Reservoir Simulation. Elsevier Applied Science
Publishers, London, UK.

DAkE, L. P. (1978). Fundamentals of Reservoir Engineering. Elsevier Scientific Publishing
Company, Amsterdam, The Netherlands.

Foss, B. A. (1987a). On Parameter Identification in Reservoirs. Doctor of Engineering Thesis,
The Norwegian Institute of Technology, Trondheim, ISBN 82-7119-005-9.

Foss, B. A. (1987b). A Modified Optimal Input Design Criterion, Proc. 26th IEEE Conference
on Decision and Control, Los Angeles, 303-308.

Lek, J. (1982). Well testing. Society of Petroleumn Engineers (SPE) Textbook Series, 1, Dallas,
USA.

MEHRA, R. M. (1974). Optimal input signals for parameter estimation in dynamic systems—
survey and new results. IEEE Trans. on Automatic Control, vol. no. 19, 753-768.

SILVEY, S. D. (1970). Statistical Interference. Penguin, Baltimore, USA.




