MODELING, IDENTIFICATION AND CONTROL, 1988, voL. 9, No. 4, 179-189
d0i:10.4173/mic.1988.4.2

A data and program structure for a modular extended Kalman filter

INGAR SOLBERGY

Keywords: extended Kalman filter, nonlinear filtering, state space methods, com-
puter programming

The paper presents a data and program structure that makes it easier to imple-
ment a nonlinear process or measurement model when using the extended
Kalman filter. This is achieved by a composite data type containing both the
estimated value and covariance information. The basic operators (+, —, *, /) and
common functions are implemented for this data type. These enable a model for
the extended Kalman filter to be implemented as easily as a discrete-time simula-
tion model.

1. Introduction

The Kalman filter is an optimal filter for the state estimation of linear stochastic
processes. For a discrete process description the transition matrix is specified and
used both for state prediction and covariance update:

x(k + 1) = ®(k)x(k) + v(k)
X(k + 1) = ®ERX RO + V(K)

For nonlinear processes, a modified version called the extended Kalman filter may
be used. In this case, the state space model is used for the state prediction, while its
Jacobian is used for the covariance update.

x(k + 1) = f(x(k), v(k), k)
of of\"* of of\"

X(k+1)= = Xk ax) + N V(k(av)
The conventional way to do this is to specify both the state space model and its
Jacobian by separate program statements. This means that the Jacobian must be
found by differentiation and then coded. Errors in this process will lead to an
expression for the Jacobian which is not consistent with the state space model.
These problems are particularly extensive in the design phase of an extended
Kalman filter, as frequent model changes normally occur.

One way to solve this problem is to have a program that makes code for the
calculation of the Jacobian once the state space model has been described. Pro-
grams for symbolic differentiation (e.g. MACSYMA), or other programs (Rall
(1981)) can be used for this purpose.

The Jacobian may also be calculated by numerical differentiation using the state
space model,

Received 18 August 1988.
+ Division of Engineering Cybernetics, The Norwegian Institute of Technology, N-7034
Trondheim, Norway.

180 I. Solberg

This paper presents another method, where the estimate and the covariance
information is updated simultaneously when the code for the process model is exe-
cuted. This is achieved by a set of functions for a composite data type that carries
both the estimated value and the associated covariance information.

The paper is organized as follows: First the data structure is presented. Then it
is demonstrated how functions for this type of data are made. The way this applies
to the extended Kalman filter is shown, and some details of a possible implementa-
tion (using Ada) are presented. These are followed by a brief example showing how
a process model can be implemented. Some practical experience with the method is
presented, and finally, a possible modification/extension to the functions is dis-
cussed.

2. A composite data structure

An estimate can be described by its value and covariance. Normally this is done
using a vector for the estimated values and a matrix for the covariances. Here,
another representation will be used: An estimate is represented as a composite vari-
able where one part is the value, and the other part is a vector carrying covariance
information. Such a variable will be denoted with a tilde, while the vector part will
be denoted with an asterisk.

a={a, i)
A set of such variables can be stacked to form a vector with composite components.

When estimating a vector x = (x; x, ... x,)7, a vector of estimates & = (X, X, ...
X,)" can be defined with components

ii = {in ﬁ'ir}

X;: estimated value of component i

2 S Conventional representation
x - *
X | % i
5 | x i
2 2 > = | ¥ New representation
*
% | x xr

Figure 1. Representation of estimates and covariances.

Modular extended Kalman filter 181

with the vectors §}' carrying covariance information satisfying
1%, = ElG: — x)%; — x))1
This corresponds to a square root representation of the covariances
E[(® — xX& — x)"] = 8§87
where

ST=[§1 §2---*--1

The square root matrix § is not unique, but it is often preferred to keep it square
and triangular. The conventional and new representation are shown in Fig. 1. Both
representations contain the same information.

3. Functions for composite variables

A convenient means of using variables of the composite type is having a set of
operators and functions for such variables, ~
From an original function f(a, b, c ...) the composite function fis defined:

f(ﬁ,E,E...)={f(a,b,c...),g—faﬁ"+gf—b1>'+%?+...})
a={a ¥} b={(b b} &=t
Some examples:
a+b6=1{a 8} +{b b} ={a+b i+ b7}
2 = 2{a, &7} = {da, 24T}
a-b=1{a a7 -(bb)={a-bb-3T+a- b7}
sin(@) = sin({a, &T}) = {sin(a), cos(a) - 4T}

The two first examples can be combined to show that the composite data type has
the properties of a vector field.
There is no problem with functions of functions

h(a) = f(g9(a))
i) =@ = fora, 2 a7})

~{rean L2 s} - o, 5 7}

The chain rule is automatically applied.
The extension to vectors and vector functions is (for proof, see appendix):

Theorem I :
From a function

f(x) = (/i) %) ... fulX)"

182 L. Solberg

a new function is defined

10 = (i®, £ ... [0)"

with components

Ji%) = {fa(x), g, 1, . m}

where each X; = {x;, X.}.

Then (%) contains both f(x) and % S, where

[il, *2 e *,.]T =8

4. The extended Kalman filter
The state vector x, the process noise v, the measurements y and the measurement
noise w are defined:

X =(Xg X3 e X,)" V=(,0,...0)"

y=()’lly2‘ooym)1 W=(W1,W2...w,)1

4.1. Time propagation
The state and covariance updates of the extended Kalman filter for time propa-
gation is
x(k + 1) = f(x(k), ¥(k))
_ of oa\T of of\T
Xk + 1)_&X(k ax) +2 V(k 5)
with the partial derivatives taken at x = %(k) and v = ¥(k). X and X are the a priori
estimate and covariance, while & and X are the a posteriori estimate and covariance.

¥ and V are the expected value and covariance of the process noise.
% and ¥ can be stacked together into a vector z and their covariances into a

matrix Z.
% X 0
= [v] Z= [0 V]

A square root matrix for Z can be formed

§ o
Z=5.5 S‘=[0 S.,]

Then the equations can be rewritten

X(k + 1) = f(z(k))

T T T
.i’(k+1)=g %) =%S=33(g) =(§S, :;‘_:S,)

Modular extended Kalman filter 183

Thus by defining
i=f21’ 22 e En'l-r‘r = §T’ §1)T
[il.’ 22 e !n+r]1. = S:

% ={zi, 2]}

f(z) will contain f(z) and 6f/éz S, from Theorem 1.
Since of/dz S, is rectangular, modified Gram-Schmidt orthogonalization or
Householder transformations are applied to obtain

;?(k-}- 1)=§§T

where § is square and triangular.

The matrices X, X, V and Z are not used by the algorithm, they are only
included here to show that the square root formulation is equivalent to the original
one. The square root formulation possesses superior numerical properties.

4.2. Measurement update

The calculation of the predicted measurements can be done in a similar fashion:
The equation is:

= g(X, W)
% and W are stacked into a vector q and the covariances X and W into a block

diagonal matrix Q (similar to z and Z in the previous section). Then a square root
matrix S, is formed with the two blocks S and §,,.

e H IS I IR
Next the composite vector § is defined
1=0y g - 7}n+;)1 = (iTa '="T)T
[&1. az i..ﬂ]T = Sq
3= {4, i-}

O]
AT)

The update of the estimate is

/2’\

o%’
\‘--..-/
g
.E’|o‘3’
Elﬁ’
\../"'

X=X+ K(y—9

and the covariance update is

_ Byg_so_k®s
=X -KEX=ST-K2 5"

184 1. Solberg

i |
G - f
1)
y; measurement update loop time propagation loop H
i——§
update 1 MGS
¥i

Figure 2. Information flow of the extended Kalman filter.

Evaluating
y=8@
gives ¥ and (dg/q)S, from Theorem 1
S
aq Se= [3.\: S, ow S“’]

Thus all the information needed for the update is available after this evaluation.
Quite often (Jg/ow)W(dg/ow)" is (assumed to be) diagonal. In this case it is pos-
sible to perform the update by processing one measurement after the other. The a
posteriori estimate after the update using one measurement is the a priori estimate
when the next measurement is used. Matrix inversion is then avoided, and it is
possible to use a very robust algorithm for the update (Carlson 1973, Bierman 1977).
This algorithm requires S;, (9g,/8x)S; and (2g,/dw)S,, for the calculation of K, and
the a posteriori covariance (5,). &; is calculated from X;, ¥;, y; and K. (The index i is
for component i of y.) Then X, , = &, until all measurements have been processed.

4.3. Summing up

A top view of the algorithm is shown in Fig. 2. The right loop is used for time
propagation, while the left loop is passed once for each measurement y; at the corre-
sponding instant.

Here X is used for the intermediate result in the time propagation loop, while % is
used for both a priori and a posteriori estimates in the measurement update loop.

The block ‘update’ represents Carlson and Bierman’s algorithm together with
the update of the estimate. The block * MGS’ contains the modified Gram-Schmidt
orthogonalization making the covariance square root matrix triangular. The covari-
ance information is contained within the composite variables %, X, and ;.

5. Implementation

It should be easy for a user to specify the process equations. Thus normal oper-
ators and functions should be used in the specification. To obtain this, a program-
ming language that permits the overloading of operators and functions will be used.

Modular extended Kalman filter 185

Overloading means that many functions can have the same name as long as they
can be distinguished from each other by the context in which they are used (e.g. the
argument type). Since Ada permits overloading, it will be used here. (Another possi-
bility is defining a special language and a precompiler producing code in a common
programming language such as FORTRAN or Pascal.)

In the following a type VECTOR that can be used to store vectors is assumed to
be available, together with operators for vector addition and multiplication with a
scalar.

The composite data type ESTIMATE is then declared:

type ESTIMATE is

record

EST : FLOAT; -- estimated value

COV : VECTOR; -- covariance information
end record;

The most common operators and functions are then implemented using the defi-
nition in eqn (1). Some examples follow:

function "+"” (A, B : ESTIMATE) return ESTIMATE is

begin
return (A.EST + B.EST, A.COV + B.COV);
end "+";
function "*" (A, B : ESTIMATE) return ESTIMATE is
begin
return (A.EST*B.EST, A.EST*B.COV + B.EST*A.COV);
end "*";
function SIN (A : ESTIMATE) return ESTIMATE is
begin
return (SIN(A.EST) , COS(A.EST)*A.COV);
end SIN;

A package containing these functions should be available to the normal user. If a
more complex function is required, it can usually be put together from these simple
functions. For instance, a function SINAB which calculates sin{a*b) will be

function SINAB (A, B : ESTIMATE) return ESTIMATE is
begin
return SIN{A*B);
end SINAB;

This function will call the previously defined functions “*” and SIN. This enables
the user to implement functions f and g.

The procedures for updating and triangularization should also exist as a soft-
ware package together with utilities for initialization etc.

6. A process example
The example is a second order system where two states and two parameters are
to be estimated. Both states are measured, but there are noise on the measurements.

186 I. Solberg

The system is described by the equations:
xy(k + 1) = 0,(k) - x,(k) + (k)
xa(k + 1) = 0,(k) - x5(k) + (x4(K) + x,(k + 1))/2
0,(k + 1) = 0,(k)
B,k + 1) = 6,(k)
Y1k = x,(K) + wy(k)

ya(k) = x,5(k) + wy(k)
The vectors can be defined:

X= [xls Xz 91’ 92]T
v=[v]"

y =D, 52"

w= [wlv Wz]T

To simplify the implementation, a new data type is declared:

type STATE is
record
THIS : ESTIMATE; -- x(k)
NEXT : ESTIMATE; -- x{(k+1)
end record ;

Then the variables are declared
X1,X2,TH1,TH2 :STATE:;

Vv :ESTIMATE;
W1, W2 :ESTIMATE;
Y :ESTIMATE;

The procedure MODEL, implementing T, will be:
procedure MODEL is

procedure ORDER1 (X : in out STATE; TIMECONST, INPUT : in ESTIMATE)
is
begin
X.NEXT := TIMECONST * X.THIS + INPUT; -- first order process
end ORDER1;

procedure PARAMETER (P : in out STATE) is

begin
P.NEXT := P.THIS; -- a parameter is constant

end PARAMETER;

begin
ORDER1 (X1, TH1, V); -- X1(k+1)
ORDER1 (X2, TH2, (X1.THIS + X1.NEXT)/2); -- X2(k+1)
PARAMETER (TH1). -~ TH1(k+1)
PARAMETER (TH2); -- TH2(k+1)

end MODEL,;

Modular extended Kalman filter 187

Modularity has been extensively used for the implementation of the process
equations.
The procedure MEASURE, implementing the functions g; will be:

procedure MEASURE (I : in INTEGER) is

begin
case l is
when 1 => ¥ := X1.THIS + W1;
when 2 =>Y:= X2.THIS + W2;
end case;

end MEASURE;

This completes the model specification. The estimates and covariances should be
initialized, and the declared variables put into vectors for use by the measurement
update and factorization algorithms. This is achieved by using utilities which are
available as a part of the software supporting this estimation method.

7. Practical experience

The method described has been used for the estimation of states and parameters
in a crushing and screening circuit (Solberg 1988). The possibility of making a
modular implementation of the process model was utilized to a large extent. The
original Kalman filter equations were used instead of a square root formulation,
which in fact made the programs more complex. Pascal was adopted for the imple-
mentation, however since overloading could not be applied, procedure calls were
used for all operators and functions.

The modularity and the fact that no partial differentiation was necessary made it
very easy to modify the model. There was no problem of inconsistency between the
estimate and covariance updates. It was also possible to simulate the process using
the implemented model directly. This made it quite easy to find errors in the model,
and make a set of simulated measurements that could be used for testing the con-
vergence of the estimator.

8. A possible extension
The extended Kalman filter is based on the approximations:

E(f(x)) ~ f(E(x))
of . of
E((f®) — fooXf®) — o)) ~ 2| E((% — x)& — X)‘)(a

X=X

Y oe

These approximations are sometimes rather unsatisfactory. A simple example is for
f(a, b) = a - b where a and b are close to 0. In this case the partial derivatives are
both close to 0 so the calculated covariance of the product will almost vanish.

Using the presented method the arguments to a function will also carry covari-
ance information. This makes it possible to detect cases where the approximations
do not hold. If so, a warning message can be given or some remedial action can be
taken.

188 1. Solberg

If the distribution of the arguments is known, a function could utilize this infor-
mation to achieve a better result. Assuming a multinormal distribution of the argu-
ments, the following can be used for the product (Solberg 1988):

G-6=1{a-b+457h,ab" + GAT + ATABTD + @16y %)

where e, is the unit vector associated with an extra noise variable. This gives correct
values for the estimate and covariance, but the product will not have a normal
probability distribution. The effect of such a modification to the extended Kalman
filter has not been thoroughly investigated.

9. Computational requirements

The covariance update represents most of the computational burden when using
an extended Kalman filter. This method utilizes the sparsity of the matrices of
partial derivatives, and can thus be faster than methods based on straightforward
matrix multiplication. When a square root method is applied, the factorizations
involved will often be the bottleneck of the filter. This means that the way the model
is implemented becomes a matter of minor importance.

As modularity is implemented on a very low level (basic operators and
functions), the calculations can be freely distributed to more processors. The method
is well suited to parallel processing.

10. Conclusion

The presented method solves two problems involved with the implementation of
the extended Kalman filter:

The need to specify partial derivatives.

The problem of achieving consistency between the process model and the partial
derivatives (due to error-prone differentiation and coding).

The properties of the filter (convergence, numerical properties, etc.) remain
unchanged.

With the filtering, the factorization, the low level procedures (basic operators
and functions) and the set of initialization procedures available, the implementation
of a process model is very simple. The task has about the same complexity as the
implementation of a discrete simulation model.

The method makes it very easy to make a modular implementation of a process
model. The different modules can even be executed on different processors, thus
making parallel processing feasible.

Appendix
Proof of Theorem 1.

A function f(x) and a matrix § is given, such that x is an n-dimensional vector,
and S has n rows. The matrix S can be split into row vectors:

S= [il? iz o in]r

Modular extended Kalman filter 189

A vector X = (X,, X, ... X,)" is defined with components

X = {xb i“r}
A function f(X) based on f(x) is defined to be

) = {f(x), g i’} {m.jf }

This is consistent with the definition (1), the only difference is that the arguments
have been put into a vector.

For a vector function f(x) = (f3(x), f2(X) ... f,(X))" the extension is quite simple:
%) = (i®), £2x) ... fu®)T

fi(x)._{f‘(x),z aflp} {fi“’af}

When stacking the values and covariance components, this yields

where

_ % S.l
fi(x) Qf
2

fz() = f(x) 8x hY _ g s
..(X) Bf,..
| ax

which proves the theorem.

For a function f(g(x)), the two composite functions T and § are defined. If %
contains x and S, §(x) gives g(x) and (dg/dx)S. f(EX)) then gives f(g(x)) and
(of/dg)(dg/0x)S), which shows that the chain rule is automatically satisfied.

REFERENCES

BiErMAN, G. J. (1977). Factorization Methods for Discrete Sequential Estimation (Academic
Press, New York).

CARLSON, N. A. (1973). Fast triangular formulation of the square root filter. AIAA Journal,
11, 1259-1265.

MACSYMA. Symbolics Inc., Four Cambridge Center (Cambridge, MA 02143).

RaLL, L. B. (1981). Automatic Differentiation: Technigues and Applications (Springer Verlag,
Berlin).

SOLBERG, . (1988). A modular implementation of the extended Kalman filter with application
to a crushing and screening circuit. Dr. Ing. thesis, Norwegian Institute of Technology,
Division of Engineering Cybernetics, Trondheim.

