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Extended Kalman Filtering (EKF) is applied to the condition monitoring of
hydro-power production plants. This method is well suited to real-time failure
detection and identification. This paper presents one important application:
monitoring of hydraulic performance of hydro-power plants.

The method uses a number of parallel Kalman filters based on plant models
to describe the normal operational condition and a selection of the most frequent
and critical failures that may occur. These include sensor failure.

Hypothesis testing is carried out based on the innovation sequence resulting
from each of the filters. The probability density function for each set of observa-
tions is calculated from these sequences, and the model with the highest likeli-
hood of being observed is taken to represent the plant.

Simulations show that this approach provides both unbiased estimates of
nonmeasurable states and fairly good estimates of the process parameters. The
two main fields of application are optimum individual setpoint control in large
power stations and better maintenance planning. The method will be tested in a
Norwegian hydro-power plant in 1988. This field test has been supported by the
Norwegian State Power Board (Statkraft).

1. Introduction

The problem of supervising power plants with respect to production efficiency
and potential failure often implies a complicated measurement system with high
redundancy to avoid shutdown caused by sensor failure. Many of the interesting
quantities are often difficult to observe by direct measurements, a good example
being the volume flow through a hydro turbine.

In such high-cost plants it is vital to have an adequate way of discriminating
between serious changes in the process that may lead to shutdowns which in cases
will mean periods with high loss-of-production costs, and in other cases less critical
process changes and sensor faults.

We have found that the combination of good measurements, satisfactory process
model, state estimation of unmeasured, interesting quantities, and parameter estima-
tion of process parameters and sensor bias, constitutes a promising method for the
condition monitoring of power plants.

Such a model reference approach has many advantages over direct measurement
methods using high/low alarm limits in the observed values, since the latter have the
tendency to give false alarms during normal start/stop transients and normal
dynamic responses to various switching operations in the connected power grid.

The availability of industrial equipment has become important as a result of
increased operational costs. Redundancy is an expensive solution, and is no longer
common. Instead, advanced systems for monitoring and control are installed.
However, in addition to collecting data, it is necessary to have such data analyzed
by an expert. Since the number of experts is limited and they are often far away
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from the plant where they are needed, there should be a means of automating the
evaluation of collected measurements.

It was decided to examine the possibilities offered by knowledge-based systems
in order to make the process of analysis more independent of human experts. The
main task of knowledge-based systems is to incorporate a restricted amount of the
expert’s knowledge in computer systems and let the systems automatically evaluate
the data.

A computer system which is capable of diagnosing the state of the machinery
would be cheap to use and would provide continuous surveillance of the machinery.
The operator could use the information to improve maintenance planning. Today,
machinery maintenance is usually performed at fixed time intervals.

Norwegian hydro-power plants are not usually equipped with reliable monitor-
ing systems that are able to detect efficiency losses in the region of 1-2 per cent of
the total energy produced.

The main reason for this is that volume discharge sensors, ie€. ultrasound
doppler types with a measurement accuracy better than 5 per cent, are considered to
be unreliable, costly and complicated to operate and maintain. Pressure sensors,
however, are much easier to operate, they have better performance both in terms of
accuracy and long-term stability and are cheaper and more robust. If they are com-
bined with a good mathematical model of the plant, they can provide satisfactory
flow estimates.

Many authors have discussed the use of Kalman filtering applied to failure
detection, for example Mehra and Peschon (1971), a survey of design methods for
failure detection, Willsky (1976), Isermann (1982). The most promising results for
power plant condition monitoring were found in the multiple model hypothesis
probability test method (MMHPT) first published by Digernes (1980).

2. Plant model
In general terms, a continuous-time plant model which includes normal oper-
ation, process failure, and observation failure may be defined as:

(a) Process model
dx/dt = f (x(t), ©(1), u(t) + »O(1), 1) )
(b) Observation model
y(t) = g(x(t), p(e) + wiplt), 1) 2
where ¢ = time variable
x = state space vector
u = control vector
© = parameter vector defining the process failures
¥ = process noise vector

J = nonlinear vector function describing the deterministic process
hehaviour

y = measurement vector

u = parameter vector defining the sensor failures (biased sensors)
w = measurement noise vector

£ = nonlinear vector function defining sensor behaviour
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With  a  simple Euler discretization x(k + 1) = x(k) + ¢f(-k--) where
7 = tlk + 1) — t(k) is the discrete time interval, eqns. (1) and (2) can be rewritten in
discrete form.

The noise vectors v and w are assumed to be approximately Gaussian white
noise v ~ N(0, V) and w ~ N(0, W) and statistically independent.

The discrete-time prediction of error covariance is

X(k + 1) = Dk + 1, k) X(HDK + 1, )T + V(O(K), k) )

where @ is the transition matrix.

3. Estimator

A failure identification system has an estimator as its basic component. In this
case we have used standard filtering and prediction equations from the Extended
Kalman Filter (EKF). Prediction is simplified as we only consider steady state oper-
ation, the only dynamics being the result of the noise processes, updating states and
parameters.

Mathematically, however, there is no difference between state variables and esti-
mated process parameters in the stationary case.

Linearization of the measurement function g is done for each time step and the
discrete measurement matrix H is:

H(k + 1) = dg(x, p(k + 1))/ox™ | x = %(k + 1| k) 4)

where X(k + 1| k) = a priori estimate of state vector at time k + 1.

4. Hydraulic performance in a hydro-power plant

There is increasing interest in developing and improving methods for volume
flow measurements in hydro-power stations. Reliable flow measurements are needed
to determine the efficiency of the hydro-power units and the head loss coefficients of
the waterway. These parameters should be known in order to calculate optimal
operation of hydro-power stations. The changes that take place over a period of
time, such as packing of trashracks, sliding in tunnels, wear and leakage in turbines
etc., are also very important when determining the best and most economic main-
tenance plan. A preliminary calculation of the expected benefit from introducing
loss monitoring equipment has been made by Skarstein et al. (1984). This calcu-
lation shows that in Norway it is possible to save more than NOK 30 million per
year by having such equipment permanently installed. The purpose of the
‘Efficiency monitoring in power plants’ project is to develop the methods and
instrumentation required for the surveillance of the hydraulic losses in power plants.

Total efficiency #,,, including the generator is the ratio between produced active
electrical power P, and natural available power, Py, ie.:

P, =t - Py 5
Py = pgQH (6)
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where p = density of water,
g = acceleration due to gravity,
Q = discharge,
H = gross head of water.

The total efficiency is the product of the efficiencies of the tunnel, trashrack, pressure
shaft, tailrace, turbine and generator.

An adequate monitoring method for hydraulic performance should meet the fol-
lowing requirements:

provide a reliable means of estimating the discharge,

give information about changes in the head loss coefficients and turbine and
generator efficiencies,

take into consideration that some of the sensors might be erroneous and thus
lead to bias in the above estimates.

Such a method has been developed and is about to be implemented in a simple
power plant as shown in Fig. 1.

Using state estimation we are able to exploit the fact that the pressure differences
along the tunnel, the pressure shaft and the trashrack are dependent on the flow.
Consequently, these pressure differences are an independent set of measurements for
flow monitoring. The guide vane positions and the turbine output can also be used in
the same way. By comparing the calculated discharge based on all these ‘sensors’, it
should be possible to improve the accuracy of the discharge calculation and point
out within certain limits, the most probable faults in some of the sensors, if any.

5. Measurement scheme

When monitoring a plant, like that in Fig. 1, we use the following measure-
ments:

H,, = upper reservoir level (m)

Hgy = pressure head upstream of the trashrack (m)

H,, = pressure head downstream of the trashrack (m)

H,, = pressure head upstream of the turbine (m)
H,, = pressure head difference within the spiral casing
(Winther-Kennedy measurement) (m)
H,, = tail water level (m)
P, = power output of the generator (MW)
o = guide vane angle (%)

It is possible to measure these units very accurately. The best pressure transducer
has a tolerance of approximately 0-01%. Angle transducers with a tolerance of 0-7°
are available. The measurement of the output power is dependent on the accuracy
of the MWh-meter in the power station. Precision meters of classification 0-2 (the
tolerance is 0-2% of full scale) are available. This is comparable to the accuracy of
the measurement transformers.
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Figure 1. The pilot plant with a gross head ranging from 20 m to 60 m, one turbine unit
with 15 MW rated power and nominal discharge 20 m?/s.

6. Mathematical model

For the simple power station in this study, the interesting quantities are the
discharge and the gross head. Given these, and with all the parameters known, such
as the turbine characteristics and all the loss coefficients, the intention is the predic-
tion of the measurements listed in the previous section. In addition, we need to
know the absolute level of either the upper reservoir or the tail water. The mathe-
matical relationship between the hydraulic losses and the measurements are nonlin-
ear, but rather simple.

The following equation describes the hydraulic head losses in stationary flow

AH =k . Q? 0

where k is a head loss coefficient. The losses in the tunnel, trashrack, pressure shaft
and the tailrace can be described by means of this type of relationhip. The same
equation also applies to Winther—Kennedy measurements.

The electrical power output is

P.=n..n.pgH, .0, (8)
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Figure 2. Hill diagram of a Francis-turbine.
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Figure 3. Turbine efficiency as a function of electrical output power, for three different gross
head values.

where H, is effective head of the turbine. From the definition of the relative guide
vane opening k
0
k=30 ©)
where Q is the reduced discharge, Q = Q/,/2gH . (the asterisk indicating the design
point of the turbine), it follows that the effective head is
H, = const Qz. (10)

xl

The actual measurement, the guide vane angle o, is an almost linear function of .
The deviations from linearity must be determined for each individual power plant.

The turbine characteristics can be represented by a Hill diagram determined by
measurements on a scaled model turbine as shown in Fig. 2. This diagram can be
verified by efficiency measurements on a full-scale turbine. Interpolation between the
measured values is done by use of the affinity equations. The result is shown in Fig.
3 for three different values of head. Full-scale measurements have been made for two
values of gross head, 42 m and 59 m.

These two data sets are the basis of the interpolation. This method for efficiency
representation gives a tolerance better than 1%.

As we can see from Eqns (7)10), discharge Q can be calculated in different
ways. Consequently, we have more measurements than strictly needed to determine
the discharge Q. However, since all measurements have noise, the measurement
redundancy can be used to improve the accuracy of the calculation of Q.

7. State space model

As we have only taken into account stationary conditions, the state model of Eq.
(1) reduces to

x(k + 1) = x(k) + ». (11)
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The elements of the state vector must be chosen in such a way that all the measure-
ments can be uniquely expressed in terms of the vector function g of Eqn. (2). This is
done by choosing the following three quantities as the elements of the state vector
x:

H,, = estimated level of upper reservoir,
H,, = estimated tail water level,
Q = discharge.

Discharge Q is essential and is found in almost all of the measurement equations. In
the case of several parallel turbine units, the state vector should contain one element
for each individual Q for the turbine units. The upper and lower water levels are
independent of the number of units. For example, a plant with four parallel turbines
will be described by a state vector of six elements, the two water levels and four
discharges.

The 8 elements of the measurement vector as given above are connected to the
state variables by the following measurement model for the system:

H,=H,, (12)
Hy = H, — (k). Q? (13)
Hy=H,, —(k,+ k). 0% (14)
Hu=h’m—(k.+k‘;+k,‘).Q2 (15)
H, =k, .0 (16)
H,—H,, (17
P.=k,.nH,. Q). H,. 0 (18)
o =gk, . Q/v/H,) (19)

where
H.=H, —H, —(k+k +k). 0%. (20)

Quantity H, is the effective head of the turbine and is used as shorthand notation in
the equations. Factors k,, k, and k; include both the loss of pressure and changes in
the velocity head. Function g, in Eqn. (9) is assumed to be linear in the simulations.
Corrections must be added after having gained some experience with the model
applied to the pilot plant.

8. Method of identification of hydraulic condition

The purpose of condition monitoring is to identify possible changes in the
hydraulic losses throughout the whole waterway. The method is based on estima-
tion using the Extended Kalman Filter (EKF). Because the discharge is defined as a
state variable in this filter, this method gives a direct estimate of the discharge in
which the information from all the measurements is taken into account depending
on their individual relative accuracy.

The ability to estimate the discharge is however only one out of three require-
ments that the identification method must meet. Changes in the loss conditions in
the waterway and sensor faults must also be taken care of. The Extended Kalman
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Filter provides an effective means of estimating parameters of a state space model.
This is done by extending the state vector with as many of the system parameters
that we want to estimate. Though this has to be paid for in terms of reduced obser-
vability, with the high measurement redundancy it is still possible to estimate
parameters. The higher the redundancy, the greater the number of parameters that
can be estimated. Sensor faults can be treated in exactly the same manner. A bias in
a sensor can be added to the state vector as an ordinary system parameter. By doing
this we refuse to ‘trust’ the particular sensor, and we “ask’ the other sensors in the
system what measurement value this ‘bad’ sensor should show. This obviously
leads to reduced observability for states and parameters, but is an efficient way of
identifying single sensor faults.

The slow variation of the parameters and sensor bias with time can be identified
by making a model of each of the most common changes in the losses in a power
plant, combined with the optional assumption that one of the sensors has failed.
This situation is modelled as a number of distinct hypotheses. The hypotheses are
based on the estimation of parameters in the expanded state vector, as explained. In
this study we have used hypotheses for 6 parameter changes and 5 sensor faults.
Only single faults are considered in the simulations. In principle, the number of
hypotheses is only limited by computer time and reduced observability. These single
faults give a total of 12 hypotheses (one hypothesis is to account for the normal
condition).

Having different hypotheses, and corresponding models, the task is to find which
model fits the data from the current (unknown) situation best. This hypothesis will
also give the best estimate of the discharge. To find the best hypothesis, we have
used a method called the Multiple Model Hypothesis Probability Test (MMHPT).
This method iteratively finds the relative probability of each hypothesis. The
method is based on the estimation error of each hypothesis and the distribution of
this error. It uses Bayes® formula in the iteration process.

Assume that we wish to test a specific number (NH) of hypotheses:

Hk + 1): process model P; and measurement model M, are true at time k + 1,
i={1,2,...,NH}

Estimated probabilities for each hypothesis are denoted:

gk + 1): Pr {H{k + 1)| Y(k)} = a priori probability for hypothesis H;(k + 1) being
true given all measured data up to and including time k.

Y(k) = {p(1), ), ..., y0)}, i = {1, 2, ..., NH}

gk + 1): Pr {Hy(k + 1)| Y(k + 1)} = a posteriori probability for hypothesis H;
(k + 1) being true at time k + 1 given all measured data up to and includ-
ingtime k + 1,i = {1,2,..., NH}

The relation between these two probabilities is given by Bayes’ rule

Yik + 11 R)g(k + 1
Y Wik + 11kgk + 1)
=1
in which W,(k + 1|k) = Pr {yp(k + 1)| Hi(k + 1), Y(k)} is the conditional probability
density of the innovation g(k + 1|k) = y(k + 1) — y(k + 1| k) based on hypothesis

,i={1,2,...,NH} @1
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Hik + 1). If Y(k + 1) is Gaussian we have
Wk + 1|k) =cexp (—3&"(k + 1| K)R™(k + 1| k)etk + 11k)) (22)

where ¢ = (2m) ™2 (Det R(k + 11k))~ "%

m is the dimension of the y-vector. R(k + 1|k) and Det R(k + 1|k) is the a priori
innovation covariance at time k + 1 and its determinant respectively. These vari-
ables are available from the estimator:

R(k) = D(k)X (k) D"(k) + W (k) (23)

If we assume that we have considered all the possible hypotheses likely to represent
the plant. we have approximately

NH NH
Z &i(l.] = Z Gi(k) =1 (29
i=1 i=1
The prediction of these probabilities are static with a lower bound
gk + 1) =qk)  if  G(K) > gun(k)

= Gun(k) U Gi(K) < gimlk)

The choice of the lower limit is a matter of experience. A typical value is 10~4.

Figure 4 schematically shows how the calculations in the diagnostic system are
done.

If we cannot find an obvious winning hypothesis, it is still possible to find an
estimate of the discharge and loss parameters. In this case, we have to calculate the
weighted means of estimated parameters, the weighting factors being the probabil-
ities of each hypothesis. This is not included in the present state of the model, but
can casily be added if necessary.

The method can consequently find the most probable change in the loss condi-
tions, estimate the amount of change and, at the same time, give an estimate of the
discharge.

The condition monitoring program system is made so that it can estimate
several parameters. The system is thereby able to consider a combination of faults,
but this means that the number of hypotheses necessary to cover all possible com-
binations increases rapidly. As the system is designed to monitor the loss conditions
at different times (for example once a month), it does not run in real time. In prin-
ciple, this will be possible, but having many hypotheses, the estimation task can
easily become too time-consuming. With the present implementation on an
IBM/AT personal computer, it takes about 30 minutes to run through the 12 single
fault hypotheses after the raw data have been stored on file. One complete set of
measurements consists of 400 samples from each of the 8 sensors. The sampling
interval can be chosen between approximately 1 second and up to several minutes.
The software for the Kalman Filter is based on a gencral program package
EXKALM, from CAMO (1985), which interfaces with the special application sub-
routines developed and coded in standard FORTRAN 77. EXKALM has proved to
be well-suited for this kind of offline estimation applied to condition monitoring.

9. Simulation of changes in hydraulic loss conditions

In order to test the capabilities of the estimation method, we have simulated
changes in the hydraulic loss coefficients, the turbine efficiency, as well as single
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Figure 4. Schematic diagram of the calculation sequence in the diagnostic system. The
parallel hypothesis models EXK produce state and parameter estimates, innovations
and their probability densities. These probabilities are converted into normalized
hypothesis probabilities by BAYES formula, parallel time series are output. The oper-
ator runs the system by defining hypotheses (GHYP) and interpreting the probability
time series and their corresponding parameter estimates, thereby determining the con-
dition of the plant.

faults in the sensors. These simulations are also done using the EXKALM program.
With this simulator it is possible to develop a quite detailed model of the hydraulic
behaviour of the power plant. Before the data are transferred to the estimator, mea-
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Figure 5. Calculated probability for Hypothesis no. 5, which assumes that the efficiency of
the turbine is changed, (Case a).
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Figure 6. Estimated efficiency (0-97 of original value) for this case (Case a).

surement noise is added to the stationary values. In this way, quite realistic mea-
surements can be simulated.

To illustrate the properties of the state and parameter estimation method as well
as the mthod of hypothesis tests, we have simulated three faulty events:

Case a The efficiency of the turbine is reduced by 3% from its normal value.
This is done for all points on the turbine efficiency curve. All other
parameters are kept unchanged.
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Figure 7. Upper curve: Estimated discharge using the correct hypothesis (solid curve),
correct discharge as calculated by the simulator (dotted curve). These two curves have
the same mean values and are difficult to distinguish from each other, (Case a). Lower
curve: Estimated discharge assuming that the state is normal. This is not the currect
hypothesis in Case a, and the estimate is seen to be biased by some —0-25%, which is
10 times the standard deviation of the estimate itself.
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Figure 8. Case b. A simulated increase in the head loss coefficient of the headrace tunnel by
25%. Hypothesis no. 1, which is the correct one, initially competes with Hypothesis
no. 7, which assumes that there is a bias in the upper reservoir level sensor.

Case b The head loss coefficient in the headrace tunnel is increased by 25%
from its normal value, a case that has a negligible effect on the dis-
charge. All the other parameters in the system are kept constant at
their normal values.

Case ¢ A bias in the measurement of the pressure head upstream of the trash-
rack of —5 cm is simulated. All the parameters and other measure-
ments are as normal.

The results are shown in the Figs 5-11.

By visually inspecting the raw measurements themselves it can be very difficult
to distinguish between a pure measurement error and measurements indicating an
increase in head loss parameters. In our simulations we have used quite large stan-
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Figure 9. Case b. The head loss coefficient (per unit). Broken line is the normal value. Solid
line is the simulated value and the solid curve is the estimated value.
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Figure 10. Case c. Simulated sensor bias. Probability of Hypothesis no. 8, bias in sensor 2,
pressure upstream of the trashrack.

dard deviations in the measurement noise. For example, the pressure head upstream
of the trashrack has a standard deviation which is 50% of the total head loss in the
tunnel. The advantage of the MMHPT method is that the measurements are com-
bined in a complete model of the hydraulic behaviour of the power plant, and the
hypothesis of having the model that best corresponds to the measurements is taken
to represent the condition of the power plant. This also shows that it is important to
be aware of the fact that all hypotheses, with their corresponding models, give an
estimate of both the states and parameters which will converge even if the hypothe-
sis is wrong. Estimating parameters and discharge in this way means that we must
be critical about which hypotheses we use. We should not rely on the state estimates
without making sure that the corresponding hypothesis has a reasonably high prob-
ability of representing the plant.
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Figure 11. Case c. Solid line is the simulated bias (—5 cm), and solid curve is the estimated
bias.
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When two hypotheses compete as shown in Fig. 8, it is because of bad observa-
bility. The only thing that is different between measurement errors in the upper
reservoir level sensor, and a change of head loss in the headrace tunnel is that a bias
in the reservoir level measurement is obviously independent of the discharge, while
the head loss in the headrace tunnel is proportional to the square of the discharge.
This is the reason why the estimation method still reaches the right conclusion in
this particular case, even for steady state flow conditions.

We have assumed random noise in all measurements. The variance of this noise
is probably realistic in our simulations, but in practice, the noise will be oscillatory
with only a few separate frequency components. These can be elastic pressure oscil-
lations in the headrace system having a period of just seconds, or slow level hunting
if there is a balancing reservoir or an airfilled pressure cavity on top of the pressure
shaft. Furthermore, the controller equipment will impose hydraulic pressure oscil-
lations as a result of variations in the frequency of the electric grid.

Once the installed measurement equipment becomes operative, hopefully during
the summer 1988, we should be able to gain experience with respect to equipment
reliability and calibration, the quality of our hydraulic model, and the ease with
which the monitoring system can be operated by power plant maintenance staff.

The method described above has also been successfully introduced on the moni-
toring of gas turbines. DIAMOND (Diagnose and Monitoring Device) is a
knowledge-based prototype system developed by Kongsberg KVATRO. The main
task of the system is to diagnose a gas turbine driven generator set in steady state
situations. This research has been reported by Skatteboe (1985, 1986) and Skatteboe,
Tangen and Berge (1987).

10. Conclusions

A separate sensor for measuring the discharge with the same accuracy as the
other measurements would of course make the loss monitoring more reliable, accu-
rate and simpler, but the development of such sensors is expensive. Today’s dis-
charge meters have tolerances of the order of a few percent, typically 5%. Therefore,
state estimation techniques might be worthwhile investigating more carefully, if
accuracy of the order of 1% or less is required.

With permanently installed sensors it is possible to carry out condition monitor-
ing of the hydraulic system during operation. The remote data acquisition system
which can be added at a relatively low cost makes this monitoring system well
suited for installation in the process computer or background computer in the
control centre, as a tool for maintenance planning.

For larger power plants with several parallel hydraulic turbines, this monitoring
system can also be used as a tool for adjusting the power output setpoints in order
to make optimal use of the water during normal operation.

The estimation of conditions and parameters indicates the cause of many prob-
lems more directly. The result is improved direct diagnosis and a decreased need for
the diagnostic system to know many alternative sources of faults in each case.

It is easier to construct and modify the diagnostic system if the measurement
model of the process is known. It is for instance possible to add to the complexity of
the functional description without having to change the monitoring hardware which
has been installed.

The integration of this monitoring method into a knowledge-based system




Condition monitoring of power plants 163

(expert system) is possible in two ways. First, the expert system might act as a front
end between the operator and the simulation and estimation routines. Second, it
might work as an inference machine acting upon a number of estimated parameters
and states,

Mathematical models and modern recursive estimation techniques might well be
part of the knowledge base of expert systems applied to condition monitoring and
fault identification.
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