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Maximum likelihood estimation of ocean wave spectra
from general arrays of wave gauges

HARALD E. KROGSTAD?
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The paper discusses estimation of directional ocean wave spectra from a spatial
array of sensors by means of the Maximum Likelihood (ML) method. An iter-
ative improvement of the ML estimate is proposed and illustrated on synthetic
and real data. The wave data was obtained by an acoustic Doppler current meter
in the Current Measurement Experiment (CUMEX) carried out by Esso Norge
a.s at the Odin platform in the Norwegian Sea.

1. Introduction

The wind generated gravity waves on the ocean surface are of major concern in
naval architecture and ocean engineering. However, since the complexity of wave
motion is evident with wave patterns that are constantly changing in time and
space, any mathematical model has to be of a stochastic nature. Given appropriate
temporal and spatial scales, the surface may be considered to be a stationary and
homogeneous Gaussian stochastic field. The wavenumber-frequency spectrum of the
ficld thereby becomes the basic quantity which enters computations of the response
of offshore structures and ship motion.

Wave measurements have traditionally been limited to single point measure-
ments of the surface elevation by means of buoys or wave staffs. Today, however,
multichannel measurements which reveal directional properties of the spectrum are
becoming routine and heave/pitch/roll buoys have proved to be robust and reliable
instruments for long term data acquisition (Barstow and Krogstad, 1984). On fixed
structures, vector measuring current meters, often combined with pressure cells or
wave staffs are commonly used (Borgman, 1982a). Arrays of wave gauges have so far
mainly been used for research purposes, but new concepts, in particular small arrays
of infrared laser altimeters and the acoustic doppler current profiler may soon
change this state of affairs.

The present paper summarizes some of the methods that are used to process
data from arrays of wave gauges, mainly focusing on the Maximum Likelihood
Method (MLM) and an iterative refinement to it. The methods are illustrated using
data from the CUrrent Measurement EXperiment (CUMEX). CUMEX is a joint
programme between Esso Norge a.s and Exxon Production Research Company
with the objective of instrumenting Esso’s Odin platform in the Norwegian Sea to
study the characteristics of ocean currents generated by severe storms. The instru-
mentation includes four Acoustic Doppler Current Meters (ADCM) developed by
R&D Instruments, San Diego (Gordon and Skorstad, 1985). Thesc ADCMs are
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designed to record the along-beam velocity at 25 equally spaced positions along two
horizontal orthogonal beams. Since the wavelength of the shortest observable water
waves is shown to be 35 m as opposed to the array spacing of 46 m, there is a large
amount of redundancy in the data sets which requires numerical modifications to
the algorithms that had been used previously. For a more complete description of
the measurement system and the iterative MLM applied to a larger set of data from
CUMEX, we refer to Krogstad, Miller and Gordon, (1988).

2. 'The stochastic model

Consider a Cartesian coordinate system with horizontal x and y coordinate axes,
the z-axis pointing upwards, and the origin at the mean water level. The ocean
surface is denoted z = n(x, t), x = (x, y), t = time. With appropriate temporal and
spatial scales the surface is a zero mean, second order homogeneous and stationary
stochastic field with a covariance function p(x, t). The spectrum of the field, y(k, w),
is a function of wavenumber & and frequency w:

plx, 1) = I exp (itk - x — wt)) dylk, w) @.1)

o

We recall the spectral representation of the field:

m

nx, t) = I exp (i(k * x — wt)) dB(k, w) (22)
k Jor

where B(k, w) is the spectral amplitude (Gihman and Skorohod, 1974).
The term ‘ wave spectrum’ is commonly used for the frequency spectrum, S,(w),
defined by

2,0, 1) = waexp (—iwt)S (w) dw (2.3)

-

Hence, formally,
S,(w) do = J: dy(k, w). 24)

Measurements have revealed that gravity waves on the ocean surface are very close
to a Gaussian field. In fact, this is probably among the phenomena in nature closest
to the realization of a Gaussian field, see Fig. 1.

If we assume incompressible, inviscid and irrotational conditions, the surface, #,
and the velocity potential, @ (u(x, z, t) = V@), satisfy to the first order in char-
acteristic wave steepness (Philips, 1977)

w?* = gk tanh (kh), k = | k|, h = mean water depth

nx, t) = _I; LGXD (i(k - x — wt)) dBlk, ©) 2.5)

—iw cosh (k(z + h) )
)= - * x — wt)) dB(k,
Dx, z, 1) J: L Kk sinh(h) OF (i(k - x — wr)) dB(k, w)
This is usually referred to as the linear stochastic model. Experience has shown that
the linear stochastic model is a good approximation for the dominant parts of the
field.
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Figure 1. Aerial imagery of ocean waves llluslralmg the randomness of the sea (Courtesy
Norsk luftfoto og fjernméling A/S, Oslo)

The spectrum in the linear model is supported by the surface w? = gk . tanh (kh)
and may be expressed in terms of w and the direction, 8, of &, formally,
dy(k, @) = S(w)D(6, w) dw do (2.6)

Analytical expressions for § are discussed in Kinsman (1965) and Phillips (1977).
Borgman (1979) and Barstow and Krogstad (1984) list some suggested analytical
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expressions for D. In practice, with several co-existing wave fields, neither S nor D
have simple shapes.

In the linear stochastic model, quantities such as surface elevation, surface slope,
wave induced water velocity, dynamic pressure at a certain location are related to
n(x, f) by linear filters mapping the surface into a corresponding stochastic
process, X,

X(@) = J. j Tk, z, ©) exp (i(k * x, — wt)) dB(k, w) 2.7
Ik Jea

where Ty exp (ik - x,) is the transfer function for the quantity in question. Apart
from the factor exp (ik * x,), the following transfer functions are easily derived
(Borgman, 1979)

Surface elevation: T, = 1

Slope in x-direction: T, = ik cos 6

Slope in y-direction: T, = ik sin ¢
cosh (k(z + h))

Velocity in x-direction: T, = @ sinh (kh) s 6
L. L cosh (kiz + h)) .
Velocity in y-direction: T, = -Smh—(kh)- sin 6

' w? cosh (k(z + h
Dynamic pressure (p = —p 00/01): T, = p - sin(:( (kh) :

All transfer functions (now including exp (ik * x,)) can be written T = Rh where R is
independent of 6 and h may depend on w through the factor exp (ik * Xo).

The cross-spectral matrix, £ = Z(w) = {o,{@)}};-, for a set of quantities,
{X i}f—- 1» iS

Yw) = IT(k. )Tk, w) dylk, ©) (2.8)
k

where T = (T}, Ty, ..., Ty)'and * H’ means Hermitian transposed. Obviously,
2n
0:{w) = S(@)R{w)R}(w) .f h{6)h}(6)X6) d6 (2.9)
0

where the z- and w-dependences are suppressed when self-evident.

In the following, we focus on the estimation of the directional distribution. In
practice, the recording of {X;}}_, may involve filters of a hydrodynamic or elec-
tronic origin in addition to the basic wave theory filters.

3. [Estimation techniques

3.1 General considerations

The starting point is a set of N measured time series, {W;}}=, of some of the
wave-related quantities discussed in the previous section. We shall assume that the
series are recorded with a certain sampling frequency, w,, with M samples in each
SEries.
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In practice, the recording interval, 2nM/w,, will typically be rather long com-
pared to the correlation time of the series. Thus, the series are ‘ well-recorded ’, and
the asymptotic relations for the discrete Fourier coefficients W = (WX, apply to a
high degree of accuracy (Hannan (1970), Brillinger (1975)).

() For each w, = aw/M, |a] < M/2, « # 0, {W(w,)}Y., are zero mean jointly
complex Gaussian variables, with a covariance matrix defined by Eqn. (2.9).
(i) W(w,) is independent of W(w,)if o # +a.
The standard estimate of the cross-spectral matrix is

¥/2

£ % X W) @.1)
=1

where @, runs over w,s surrounding the frequency in question. £ has asymp-
totically a complex Wishart distribution with v degrees of freedom, and, moreover

(i) EE) =%
(i) Cov (6,00, unl2) = = 0300 )0@,), 0, %0, 0,2 62)
(i) Cov (6;(w,), 6ynlw,)) = O for disjoint frequency bands.
From Equation (2.9) it follows that
Y = SROR® 3.3)
where
R =diag (R, ..., Ry) and

2n (34)
Q= J; H(6)h*(6)D(6) db.

Given {W(w,), ..., W(w,,;)} as in Equation (3.1), the log likelihood function of
¥, L(W, ), is proportional to

v/2
LW, %)= —10g|2|—% Y. WL 'W(wg) = —log || — tr (E712) (3.5)
B=1

and the maximum likelihood (ML) estimates of S and D are the solutions of
(W, ) = max
subject to

in
S?O,D?—O,J‘; D(6) do = 1 (3.6)

To our knowledge, no simple algorithm for a solution of (3.6) has appeared in
oceanographic literature. The geometry of the array will generally impose certain
constraints on the structure of Z. X is for instance a Toeplitz matrix for a uniformly
spaced linear array of identical sensors. With no constraints on X, the ML estimate
is simply £ (Mardia et al., 1979, pp. 102-108).
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For £ as defined in (3.1), the equation for D and §,

2n
$= ER(I h@)h"(0)D(6) dG)R", (3.7

does not necessarily have a solution. Even if we knew that £ belonged to the class of
‘ admissible * matrices, the direct inversion of (3.7) is awkward.

3.2. Linear and maximum likelihood estimates

For the methods discussed below, multiplicative constants in the cross-spectral
matrix are of no importance, and we shall work with estimates of @, @, rather than
T (See Eqn. 3.3). Linear directional estimates have the form

D(6) = y*(O)YDy(6) (3.8)

where the weight factors 9(0) are independent of ® (Davis and Regier, 1977).
Since ® is positive semi-definite, D(6) = 0 and

2n
E(D(6)) = _[ K(6, )D(@) d¢' (3.9)

where the integral kernel K is
K(6, 6) = y"(O)n(@)H"(@)(6)
= 17"(OHe) (310)

The objective is now to select weight factors y such that K approximates a -
function situated at 6 = #. From Eqgns (3.2) and (3.8), it follows easily that (Capon,
1969)

Var (B(6) ~ > EDO)? (3.11)

Thus, the variance of D(f) can only be reduced by increasing the averaging of the
cross-spectra. Several optimizing algorithms for the weight factors are given in the
literature (Davis and Regier, 1977, Capon, 1969, 1979). The following approach
leads both to an optimal linear method and a high resolution method introduced by
Capon (1969). Let the range of @ as a linear map on Cy be R(®) and L =
span g« oh(@). We shall assume for simplicity that h and D are continuous. It is
obvious that R(®) < L since ®x = [3™ h(B)(h*(0)x)D(0) db € cl(L) = L. Conversely, if
x € R(®)*, then 0 = x#dx = (27| hH(0)x |>D(f) d6 and h*(6)x has to vanish whenever
D(6) # 0, that is, x € [. Hence R(®)= L. Consider the following optimization
problem:

yH®y = min while |y7h|? = 1. (3.12)

Since exp (ix)y,, « € R, is a solution if y, is a solution, the constraint may be replaced
by y#h = 1. The constraint thus imposes 8”h =0 for the variation § around y,.
Since

(35 + Y d(y, + 8) = Y@y, + 2 Re (6"@y)) + 5@,

y, must be proportional to y, where @y, = h. Since h € R(®), such a y, always exists,
in fact,
yo=®%h+ 7" (3.13)
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where @ is the Moore—Penrose inverse of @ and y* € R(®)*. The general solution
(apart from a constant of modulus 1) of (3.12) may thus be written

7, = OO HH O (3.14)

where @ is some generalized inverse of @.
If we return to Eqn. (3.9) and the comment following Eqn. (3.10), an obvious
optimizing criterion would be

K(6, 6) = |y"(O)n6)|* = max
while

J:"K(e, &) O’ = yHOV(6) = 1,
(3.15)

2z
V= L HO)HE(6) db.

If h(0) # 0, the problem is equivalent to (3.12) with D(6) = 1/2x, and the solution is
WO) = Vh(OY(h*(6)Vh(O)'/?
leading to

| Y (O)Vh( )|
HE(6)Vh(D)

For the special case h(0) = (1, exp (i0), exp (2i8), ..., exp (iN6)), K(6, 6) = ap(0
— @), the Nth Fejér kernel function.

Capon (1969) developed a high resolution method for seismic processing which
later has become known as the maximum likelihood method (MLM) for directional
spectra. The method was introduced in the context of ocean wave spectra by Davis
and Regier (1977), Jeffreys et al. (1981), L. E. Borgman (1982) and Isobe et al
(1984). It is most easily explained by considering the optimal kernel for the case of
one dominant, plane wave in direction 6 superimposed on the background *noise’.
This amounts to

K, ) = (3.16)

K@, 0)=1
while

2n
L K(6, 0)D(6) d6’ = min, (3.17)
=0

the solution of which is again given by (3.14). The procedure is repeated for each
direction, and the estimate, D, , is scaled to 1 afterwards:

Duun(®) = 17 (0)01(0) = x/H"()D*h(6)

o (3.18)
k! =I (H*(EYD°h(6)) ' dO

0
In practice, an estimate @ for ® is used, but (3.18) remains meaningful as long as ®
is positive semi-definite. The method offers a choice for ®9. L. E. Borgman (loc. cit.)
obtained numerically stable estimates utilizing ©* computed from the singular
value decomposition of @, whereas the present author has used Cholesky decompo-
sition with diagonal pivoting followed by a reduction of the problem to channels
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that occur with non-zero pivots. This latter approach corresponds to renumbering

the channels and using
o 0)
Y = 3.19
(3 5 619

where rank (&,,) = rank (®).

These two approaches are theoretically equivalent, but small changes may occur
in practice since R(®) is in general different from R(®). The reduced problem has
some obvious computational savings, but a detailed intercomparison has yet to be
made. For an extensive treatment of the MLM applied to wavenumber/frequency
spectrum estimation, we refer to Capon (1979) and McDonough (1979).

Let @, = [3"h(@)h"(6)D(6) dO and consider the operator M: D — Dy defined by

D — ®p — Dy = k/h @ h (3.20)

The operator is not generally 1 — 1 since any function orthogonal to h;k} for all
1 <i, j < N may be added to D without affecting the result M(D) as long as D is
positive and has integral equal to one. Moreover, Dy, is typically smeared com-
pared to the true D. One obvious way of improving the estimate would be to solve
the equation

M(D) = Dy (3.21)

where D, ,, is the MLM estimate based on the data. This idea was basically intro-
duced by Pawka (1983) and Oltman-Shay and Guza (1984) and is denoted the Iter-
ative Maximum Likelihood Method (IMLM). Numerical experiments with the
iterative scheme

D,.,=D,+ wn(ﬁmm — M(D,)),
Dy = ﬁMLM (3-22}

where wg is a relaxation parameter and the integral of D, is normalized to 1 after
each iteration are shown in § 4.

3.3. Maximum entropy methods

The concept of maximum entropy spectral estimation (MEM) has become
popular in many applications. For one-dimensional time series the procedure is
equivalent to fitting an autoregressive (AR) model to the data, commonly referred to
as the Box—Jenkins approach. Unfortunately, for general arrays, no manageable
algorithm for an MEM estimate seems to have been worked out (McDonough,
1979, p. 233).

In our setting, the MEM estimate for the directional distribution is equivalent to

- J.hlog (D(6)) dff = max

0

while

2r
WO (O)D(6) d6 = ® (3.23)
0
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The introduction of a Hermitian matrix of Lagrange muitipliers, A, leads to the
functional

2n 2r
H(D, A) = — J; log (D()) d6 + J‘ K (O)AR(6)D(6) dO — tr (AD) (3.24)
(t]

Variation with respect to D immediately yields
D(0) = 1/h*(B)Ah(0) (3.25)

and the condition D(f) > 0 is taken care of by requiring A > 0. The constraints are
equivalent to

2n
I log (K*(6)AR(0)) d6 — tr (AD) = max (3:26)
0

No simple, general solution of (3.26) appears to be known. The MLM estimate is
recovered if the integral in (3.26) is replaced by —log | A|.

A discussion of the uniformly spaced line array which in principle is similar to
one-dimensional AR-spectral estimation is given in McDonough (1979), § 6.4.4. The
one-dimensional case is nevertheless interesting since ‘single point triplets” of wave
gauges produce estimates of the Fourier coefficients of D. Single point triplets
include heave/pitch/roll buoys (Barstow and Krogstad, 1984) and vector measuring
current meters. Small arrays are also often processed to give Fourier coefficients
rather than the directional distribution itself (Borgman, 1979).

We recall that

2r
—I log D(6) d0 = max
o

subject to
D(6) > 0,
Zn
L D(O) d6 =1, 3.27)
2n
J; exp (—inf)D(f) d0 = c,, 1 < n < N,
is

D) = - o 328
T Y S ——" T G.28)

where the parameters ¢, - ¢, and ¢? are obtained from the Yule-Walker equa-
tions (Box and Jenkins, 1976):

1 cf ko, ¢, o1
€ cr o l=|: (3.29)
Cyoy € 1 On Cn

Ge= 1= it — = — by
The estimates for the Fourier coefficients entering Eqn. (3.29) have to be positive
definite. This requirement may easily be satisfied for single point triplets where the
most common estimates of ¢; and ¢, have turned out to be ML estimates in the
sense of Eqn. (3.5). See Lygre and Krogstad (1986) for further applications of the
MEM to data from a heave/pitch/roll buoy.
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Figure 2. The CUMEX ADCM array configuration: a pressure cell (p) at the origin and up
to 25 velocity recordings along two orthogonal horizontal axes. The distance from the
origin to the nearest velocity measurement is 6-9 m and the distance between the
velocity measurements 4-6 m. The instrument is situated on a platform leg, 142 m
below mean water level.

4. Applications

The dimensionless parameter A determining the resolution of a spatial array of
wave gauges is the characteristic array dimension times the wavenumber. For ocean
waves the typical frequency range is 0-05-0-5 Hz, and since k = ?/g in deep water,
A will vary about two decades. One therefore has to expect a variation in resolution
with frequency. A second matter to consider is varying directional sensitivity with
the orientation of the array.

We shall now illustrate these aspects of the MLM and the IMLM algorithms for
the ADCM ‘array’ from CUMEX displayed in Fig. 2. The ADCM measures the
water velocity along a narrow beam of sound by observing the Doppler shift in the
backscatter from impurities in the water masses. Time-gating allows recordings from
different locations along the beam. In addition, a pressure cell is situated at the
instrument. See Gordon and Skorstad (1985) and Krogstad, Miller and Gordon
(1988) for further description of CUMEX.

The direction dependent part of cross-spectral matrices from the array has the
structure

®P.P .DHP (DH 2n
o=|o, o, o= J O (B)D(6) dO @
@, 0, @ ?
where
i 1 ]
cos 0 exp (1A(1) cos )
cos 8 exp (iA(2) cos )

) =| cos 0 exp (IA(M) cos 6)
sin 6 exp (1A(1) sin 6)

| sin 0 exp (A(M) sin 0) |
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a4=15

. “b.oo eb.o 150, 1bo. 2ho. 3ho.

Figure 3. MLM estimate (thick line) of a narrow double peaked distribution (thin line) with
a peak separation of 20°. The included channels are p, uy, ..., uyq, vy, ..., vy and
A=k - a,c Figure 2

and A(j) = |k|a( + 3), a=46m, and ®,,is | x 1, ®,, and ®, M x1,and ®,,,
¢, and &, M x M, M = 25.

The full ® matrix is close to being singular, and any attempts to numerically
invert the matrix for the frequency range in question will fail. In order to become
familiar with the array, a series of numerical simulations have been carried out using
subsets of the available channels.

In general, the performance of the array improves as A increases, but if A
becomes too large, the estimate deteriorates due to poorly correlated channels in the
presence of noise. The varying resolution for the MLM estimate Dy, ,, = k/hF®§ h
corresponding to a narrow double-peaked distribution D is shown in Fig. 3.

Although some instruments like the single point triplets are easily seen to be
independent of orientation, varying directional sensitivity has to be expected in
general. An example is shown in Fig. 4. The estimate varies to some extent with the
direction of the incoming waves although the observed variation is roughly within
the sampling variability if the degrees of freedom in the spectral estimates are of the
order of 50-100. Numerical experiments indicate that the sampling variability for
the IMLM estimates is comparable or slightly larger than indicated by Eqn. (3.11).
These results will be published elsewhere.

Since we are using pivoting in the factorization of ® (and ®), a submatrix is
actually used in the estimate. Iterations (Eqn. (3.22)) on the MLM estimate shown

T T
&0 20 Lo

o 0 120 w@o 240 s00  sen

Figure 4.  Effects of array orientation: MLM estimates for identical wave trains arriving at
directions varying in steps of 50°, Including channels: p, u,, ..., us, vy, ..., vs. A = 0'1
(left), A = 0-4 (middle) and A = 1-0 (right). Input distribution shown with a dashed
line.
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Figure 5. Left: Superimposed IMLM estimates for various values of wg. A = 0-5, input
channels p, u,, ..., Uz, Uy, ..., U3, stopping criterion max | M(D) — D| < 0-01. Number
of necessary iterations as a function of wg shown to the right.

below are therefore based on the actual channels used in the MLM-estimate, and
not the full set of channels. Experiments varying the relaxation parameter, wg,
showed that the iteration converged even for wy slightly greater than 1. However, as
divergence occurred rather abruptly when wy was increased much beyond 1, wg = 1
appears to be reasonable.

An example of IMLM estimates for synthetic data is shown in Fig. 5. It is clear
that the IMLM estimate in this case is superior to the MLM estimate. Although
extensive numerical experiments using a slightly different iteration scheme were
reported by Pawka (1983), no rigorous analysis of the convergence performance of
the IMLM has been carried out.

The CUMEX measurement site at the Odin field in the Vikingbanken area is
shown in Fig. 6. We note the narrow opening between the Shetland and Orkney
islands towards the Atlantic. Figure 7 shows an example of time series observed
with the ADCM. The time axis is horizontal with the pressure channel scaled and
shown in the centre. The velocity channels along the x-axis are shown in increasing
distance from the origin downwards and similarly for the y-axis channels upwards.
The outermost channels suffer from occasional data errors due to low signal to
noise ratio. Waves, and in particular groups of waves travelling through the array
are clearly seen. Moreover, a high amount of correlation from channel to channel is
evident. The correlation in the significant parts of the spectra is also obvious, see
Fig. 8. The flat noise level seen in the spectra indicates an RMS random error of
about 0-05 m/s. This limits the high frequency response of the system to about
0-2 Hz, that is, ocean waves longer than approximately 35 m.

Figure 9 shows contour plots of the directional spectrum obtained by the MLM
and IMLM after two and four iterations. We note that when going from zero to two
iterations, the estimate appears to improve significantly, whereas only minor
changes are seen when going from two to four iterations. A typical error trace is
shown in Fig. 10. After an initial phase with geometric decay, the error stabilizes.
This suggests running 3-5 iterations on the MLM estimate in order to improve the
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Figure 6. The CUMEX measuring site at the Odin field in the Norwegian Sea. Note the
narrow opening towards the Atlantic between the Shetland and Orkney Is.

estimate while not necessarily reaching an overall fix-point. Note that Atlantic swell
is visible in the spectrum at 0-07-0-1 Hz at a direction of around 260°.

5. Discussion

The Iterative Maximum Likelihood Method (IMLM) offers an algorithm for
extracting directional wave spectra which is completely general with respect to array
geometry and the type of sensors. However, the large spatial oversampling of the
CUMEX ADCM ‘array’ caused failures in the first attempts to apply the MLM.
Near singular cross-spectral matrices lead to numerical problems, and it became
evident that a procedure was needed for selecting a reasonable subset of channels.
The Cholesky diagonal pivoting algorithm offers a way to select channels in an
order which adapts to the actual data matrix.

As the cross-spectral matrices get gradually more singular when the frequency
drops, it often turns out that different channels are used for different frequencies.
For the practical applications of the method, it is conforting that 35 iterations on
the MLM estimate appear to suffice. Pawka (1983) applied 50 iterations for a slight-
ly different scheme, and this would prohibit the use of the method on large data sets.
The method lends itself naturally to real time processing. Computation of cross-
spectra is routine and the iteration starting from the MLM estimate is only based
on the array geometry.

Although the CUMEX system was designed for current measurements, the
instrument configuration seems to be promising for directional wave measurements.
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Figure 8. Example of velocity autospectra. The significant parts of the spectra are heavily
correlated due to the correlation between the time series.

It has turned out that the pressure gauge at the instrument is superfluous (Krogstad
et al. 1988), and if this is omitted, we may have a platform-based instrument which
is measuring away from the influence of the platform. In a system specially designed
for directional wave measurements, 4-6 measurement positions along each beam
would be sufficient.
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Figure 9. Contour plots of directional estimates based on real data using channels p, u,, u, ,
Uy, Uyg, Uy Uy, U7 and vy,. Left: MLM, middle: MLM + 2 iterations, right:
MLM + 4 iterations.
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Figure 10. Characteristic behaviour of the error, max | M(D) — Dy |, in the IMLM traced
from iteration to iteration for real data.
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