MODELING, IDENTIFICATION AND CONTROL, 1988, voL. 9, ~No. 2, 69-R80
doi:10.4173/mic.1988.2.2

The introduction of B-splines to trajectory planning
for robot manipulators

PER ERIK KOCH+t and KESHENG WANGi
Keywords: robotics, trajectory planning, B-splines.

This paper describes how B-splines can be used to construct joint trajectories for
robot manipulators. The motion is specified by a sequence of Cartesian knots,
i.e,, positions and orientations of the end effector of a robot manipulator. For a
six joint robot manipulator, these Cartesian knots are transformed into six sets
of joint variables, with each set corresponding to a joint. Splines, represented as
linear combinations of B-splines, are used to fit the sequence of joint variables for
each of the six joints. A computationally very simple, recurrence formula is used
to generate the B-splines. This approach is used for the first time to establish the
mathematical model of trajectory generation for robot manipulators, and offers
flexibility, computational efficiency, and a compact representation.

1. Introduction

In applications such as welding and painting, it is necessary for the robot manip-
ulator to follow the shape of the object on which it is working. In other applica-
tions, it may be necessary for the robot manipulator to avoid obstacles between goal
points. This motion is specified by a sequence of Cartesian knots, ie., positions and
orientations of the end effector of a robot manipulator.

There are two basic modes of specifying point to point robot motion. One
motion strategy is called joint interpolation motion. In joint interpolated motion,
trajectories for each joint are planned independently of the end effector motion. All
joints start and stop at the same time. In this case, the end effector passes through
the two points, but there is no control over its trajectory between the points. A
second way of specifying robot motion is to define the end effector trajectory
between points. Controlling end effector motion is of course more complex than
simple joint interpolated motion. The trajectory of each joint must be controlled to
result in the desired trajectory of the end effector.

An end effector move is executed by transforming the end effector position and
orientation into joint coordinates at a large number of points on the end eflector
trajectory. For a 6-joint robot manipulator, these Cartesian knots are transformed
into six sets of joint variables, with each set corresponding to a joint.

The use of polynomial functions for generating smooth robot manipulator tra-
jectories is a well-known technique. A plot of joint displacement versus time for a
particular move is shown in Fig. 1. The function of approximation for a particular
joint must pass through the value calculated for that joint at each of the Cartesian
knots. In addition, the function must be continuous in position, velocity, acceler-
ation, even jerk, in order to remain within the physical limitations of the robot
manipulator.

Received 29 September 1987.
+ Department of Numerical Mathematics, 7034 Trondheim-NTH, Norway.
1 Production Engineering Laboratory, 7034 Trondheim NTH-SINTEF, Norway.

70

P. E. Koch and K. Wang

Joint displacement
{degree)
20.0%
10.0
0.0

-10.0F

0 /-/\’
-20.0F

-30,00 o~

6 Ti";rue (sec)

Lo

Figure 1. A plot of displacement versus time in a joint.

There are many methods to develop the interpolation polynomials to meet the
above physical constraint conditions.

1.

4.

A single polynomial passing through all the knot points of joint trajectory
results in extremely high degree polynomials. For instance, if the joint trajec-
tory has n knot points, the degree of one polynomial passing through all the
points is usually n — 1.

Piecewise linear interpolation, i.e. a first-degree polynomial (straight line) is
used for interpolation between successive knot points. This form of inter-
polation can be unsatisfactory for a smooth servo response because a linear
function in displacement produces impulsive accelerations between constant
velocity segments.

. A number of recent papers have described the application of spline function

to the generation of smooth robot joint trajectories (Bollinger and Duffie
1979; Cook and Ho 1982; Luh, Lin and Chang 1983). Splines are used for
point to point joint motion and for motion involving a large number of joint
knot points. A classification of schemes using splines for constructing a joint
trajectory with a large number of knot points is as follows:

(1) 4-3-3 ... 3-4 trajectory
The first segment is a fourth-degree polynomial specifying the trajectory
from the initial position to the left off position of the joint. The sub-
sequent polynomials are all cubics except for the last trajectory segment,
which is quartic.

(2) 3-3-3 ... 3 trajectory
This is a cubic spline fit for all the trajectory segments. The only difference
from the 4-3-3 ... 3-4 scheme is that the acceleration constraints at the
start and destination points are ignored so as to yield only cubic poly-
nomials.

Several methods of polynomial curve fitting are described elsewhere (Paul
1981, Craig 1986, Wang and Lien 1987a).

In this paper, we describe a scheme for generating B-spline joint trajectories
which is widely used in the field of computer graphics for connecting data points
with smooth curves (Newman and Sproull 1983). These curves known as B-spline
functions, have been thoroughly studied and investigated and found to provide

B-splines in trajectory planning for robot manipulators 71

good inherent behaviour, such as preventing the loss of accuracy due to cancel-
lation, greatly reducing the amount of computation, helping the convergence
analysis (Gordon & Riesenfeld 1974, de Boor 1978, Powell 1981). We also show that
if this approach is used to establish the mathematical model of joint trajectory gen-
eration for robot manipulators, it will offer flexibility, computational efficiency, and
a compact representation.

2. Interpolation by splines

We will use B-splines as building blocks to construct curves that interpolate to
given points, see e.g. de Boor (1978). B-splines of order k are piecewise polynomials
of degree k — 1 in one variable. They are k — 2 times continuously differentiable,
positive on exactly k consecutive intervals and zero everywhere else. Inside their
support they are bellshaped.

Let t, <t,<...<t,,, be a non-decreasing sequence of real numbers, where
n =k = 1. The points 1y, ..., t, 4+ are called knots. In 1972 both de Boor (1972) and
Cox (1972) discovered a stable recurrence formula for computing B-spline values.

The simplest B-spline, that of order 1, is given by

1’ ti g t< Ii+ 1
. = 1
B {0, otherwise ()
The B-splines of higher order are recursively determined by
t - ti tf.'.z - t
B, () =—— B, ; ,() + By, ;-4
l"i+JT—1_ i i+j " ti+1
i=12...,n j=2 2)
The derivative of a B-spline is given by the following formula (de Boor 1978)
. B; ;_,(t B, i 4t
B = — pf ;e Bl @
Livj—1— b Livj—lisa

A spline of order k is a piecewise polynomial of degree less than k which is k — 2
times continuously differentiable. Schoenberg (1946) originally introduced the
splines and showed together with Curry (1966), that on (¢, ¢,) splines and linear
combinations of B-splines are the same thing. The ‘B’ in B-splines stands for basis.
The B-splines constitute a basis for the vector space of kth order splines.

If I = [a, b] is the global parameter-domain of interest, then by choosing

h=ty=..=4;=0, lyy=ly,=...=l,=b)

any spline of order k on I is equal to some linear combination of B-splines on the
whole of I.

Let m > 1. In our case usually m = 6. A parametric spline curve of order k in R™
can now be defined by

s(t) = _g ;. B Wf), tinl)

where the ¢;s are vectors in R™.
Let 7, €1, €... < 1, be n abscissas in I and set d; = Max j.
Ti—j=E

72 P. E. Koch and K. Wang

If Py, P,, ..., P, are n points in R™, then we say that the curve (5) Hermite
interpolates to these points at 7,, 7,,..., 7, respectively if

s@)t) = P,, i=1,2...,n ©6)

Let us relate this to ordinary scalar spline Hermite interpolation. Let P, ; be the Ith
component P; and ¢, ; similar for c;. By (5), the Ith component of (6) is then equal to

Y ¢;BM)=P;, i=12..n %)
i=1

This is an ordinary linear system of n equations in n unknowns ¢; 1, ¢; 2, ---, €, -
Hence the interpolation condition (6) is equivalent to m different systems of linear
equations. The system (7) has a unigue solution if the matrix

M= (Bfifjs!(ti)}?;"u J=1 @)

is non-singular. This is the case if there is at least one interpolation point in each
(t:, t;e) i = 1, 2,..., n(Schoenberg and Whitney, 1953).
The curve (5) which solves (6) can now be constructed in the following steps:

Step 1. Construct the matrix (8) by using the formulae (2) and (3).
Step 2. Solve the linear system (7) foreach I =1, ..., m.

Step 3. For each evaluation point t calculate the right side of (5) by using the
recurrence relation (2).

If there are many fs for which the sum (5) has to be calculated, it is more eco-
nomic to first find the different polynomial pieces of each component of s and then
use Horner’s scheme. This then replaces Step 3 above.

In practice only the vectors P, P,, ..., P, are given so that the interval I, the
knots ¢, t5, ..., t,4; and the interpolation points 7,, 7,, ..., 7, can be chosen by the
user. The first k and last k knots have to be chosen according to (4), and
Schoenberg—Whitney condition has to be fulfilled. Since the interpolation points are
ordered in an increasing sequence, the following inequalities must hold:

tl{tl{ti"'k’ f=1,2,...,". {9}

where the left inequality may be weakened if k knots coalesce. This leaves quite a bit
of freedom. If we want the abscissa 7; to have multiplicity d, i.e. 7;_, <1, =...=
T;1a_1 < Ti+a» the difference 1;,, — 17; and the distance between P, and P,,, ought
to be proportional. A reasonable means of selecting the knots is the following (de
Boor 1978):

=+ T4t T k=1 i=k+1,...,n (10

In the next section we will look at some numerical examples for robot manipula-
tors.

3. Numerical examples

In order to illustrate how to use B-splines to construct joint trajectories for
robot manipulators, a PUMA 600 robot manipulator with six joints is considered as
a numerical example.

B-splines in trajectory planning for robot manipulators 73

Knot

joint 1 2 3 4 5 6 7 8 9 10
1 150 300 500 90-0 130-0 90-0 450 —100 —300 —=500
2 10-:0 250 300 150 —-20-0 —-550 -700 —200 0-0 10-0
3 500 700 1500 2000 1200 350 —100 50-0 60-0 50-0
4 150 200 400 80-0 BO-0 400 —60-0 —1000 —60-0 —30-0
5 100 300 100 —40-0 —60-0 10-0 500 —400 -—200 10-0
6 60 200 400 80-0 70-0 100 —100 15:0 300 20-0

Table 1. Joint variables for the PUMA 600 robot manipulator.

Ten knot points from a Cartesian path of the end effector of the robot manipula-
tor are chosen. Using the closed form solution for the inverse kinematics (Wang and
Lien 1987b), the joint variables are solved for these knots and shown in Table 1.

The robot is at rest at the starting point, and comes to a full stop at the end
point.

The velocity, acceleration and jerk constraints are given in Table 2.

Since the velocity and acceleration have to be zero at the start and end points,
the spline to be constructed must Hermite interpolate to the following points:

P, =(150, 10:0, 50-0, 150, 10:0, 6:0)F
P,=(00, 00, 00, 00, 0:0, 0-0)T
Py=(00, 00, 00, 00, 00, 0-0)F
P,=(300, 250,700, 20-0,300,20-0)7

Py, = (—50:0, 100, 500, —30:0, 100, 20-0)"
Piy=(00, 00, 00, 00, 00, 0-0)T
Piu=(00, 00, 00, 00, 00, 00)"

where 1, = 7, = 73 and 7, = 7,3 = 7,4 and the rest of the ts are simple (d; = 0).

We want the spline curve to be three times continuously differentiable. Hence we
cannot use cubic splines, k = 4, since they are only twice continuously differentiable.
But quartic (k = 5), quintic (k = 6) and higher degree splines can be used. We
choose quartic splines, since piecewise 4th degree polynomials are cheaper to evalu-
ate, needing only 4 multiplications per point.

We want to find interpolation abscissas and knots (the dividing points between
subintervals) on an interval [0, T, where the spline curve Hermite interpolates to
the data and satisfies all the joint constraints, and where the total time T is as short
as possible.

Joint constraint 1 2 3 4 5 6
Velocity (degree/sec) 100-0 95-0 100-0 150-0 130-0 110-0
Acceleration (degree/sec?) 45-0 40-0 75:0 70-0 90-0 80-0
Jerk (degree/sec?) 60-0 60-0 55-0 70-0 750 70-0

Table 2 Joint constraints of the PUMA 600 robot manipulator.

74 P. E. Koch and K. Wang

Let us observe that we can work with a fixed interval, for instance [0, 20], and
scale this interval at the end of the calculations.

If we find interpolation abscissas 7; and knots t; on [0, 20] for which all the
constraints are satisfied, that means we can use a linear scaling to a smaller interval
[0, T]. The new abscissas and knots will be (T/20)z; and (T/20)t;.

If s; was the joint j spline on [0, 20], then the corresponding scaled spline on
[0, T] will be s; ((20/T)1). Let us denote the constraint for joint j and the ith deriv-
ative by M ;. By differentiation, the following inequalities have to hold

20‘ ‘=19 3

where || ||, denotes the sup-norm. By (11), the lcast total time T we can have and
still satisfy all the constraints, is the following

= ax Max [—L-= (12)

1=5js6 1=is3 Ji

This T is a function of the abscissas 7; and knots ¢; on [0, 20]. Here, 7, = 1, = 13 =
Oand 1y, =173 =1,,=20andn = 14.

The knots have to satisfy (4), so thatt; =1, =...=ts=0and t;,s =g =... =
tyo = 20. Hence T given by (12) is a function of the 8 internal abscissas 7, ..., T;;
and the 9 internal knots t, ..., t4.

It seems natural to use some optimization algorithm to minimize T. We chose
the conjugate gradient method, (see Rao 1978). Let X denote the vector (z,4, ..., 71,
Loy .- tya), sO that (12) becomes a function of X, T = T(X). We want to find an X
that minimizes 7(X). The conjugate gradient method can be summarized as follows:

Step 1. Start with a vector X, and compute the negative gradient S, =
—VT(X,).

Step 2. Find the point X ; along the direction S, from Xy, X, = X, + A¥S, so
that T becomes a minimum along this line. Set i = 1 and proceed.

Step 3. Compute VT, = VT(X)and set S, = —VT, + (VT)/IVT,_,)*. S;_,.

Step 4. Find the point X,,, along the direction §; from X;, X,,, = X, + 2*S;
so that T becomes a minimum along this line.

Step 5. If X, is optimal, stop. Otherwise set i = i + 1 and repeat Step 3, 4 and
5.

We used numerical differentiation to approximate the partial derivatives. The secant
method was used to solve the one dimensional minimization problem, i.e. to find the
minimum of a function g(t) of only one real variable t.

For cach abscissa and knot set the six different interpolating splines were con-
structed and transformed to piecewise polynomial form by some subroutines written
by Carl de Boor and modified by D. E. Amos, see the SLATEC library of
FORTRAN subroutines and (de Boor 1977).

Our FORTRAN program needs a set of starting values for abscissas and knots.
Let us now only consider those vectors P; that correspond to spline values and not
to derivatives. Set Pf = P, P =P, , P =P, ..., P{o=P;and tf =1,, % = 1,,

--» Tio = Ty,. It seemed reasonable that the difference between two abscissas,

B-splines in trajectory planning for robot manipulators 75

Experiment no. Weight W) Total time T (sec)

1 1-0 3332
2 2:0 18-89
3 30 17-81
4 35 18-06
5 27 17-50
6 25 17-21
7 23 16-85

Table 3. Total time after one iteration.

¥, — t¥ should be proportional to the distance between PF and PF, .,
[|P¥, , — P¥|, . We tried with a weighted proportionality,

Wil Pty — Pfllo
9

Z “’}"P?+l "'P?"oo
i=1

* —
Tl“"l _T?—ZO

s i=12..9 (13)

where the Ws are somc chosen positive weights. It is reasonable to have higher
weights at the end points since the robot manipulator starts and stops with zero
velocity and acceleration. Therefore it must have more time there. So let W, =
Wy =...=Wy=1and W, = W,. The knots were then chosen according to (10) in
the start.

We tried one iteration of the conjugate gradient method for some different Ws.
Only one iteration of this method really means a search for a minimum of T along
the negative gradient of T (i.c. one iteration with the steepest descent method). Table
3 shows the results for some choices of W,.

We notice from Table 3 that the last experiment where W, = 2-3 gave the least
total time after one iteration with the conjugate gradient method. The interpolation
abscissas and knots on [0, 20] in this case are shown in Table 4.

The plots are given in Fig. 2. For each of the six joints the sup-norms of the
velocity, acceleration and jerks are given by Table 5.

1 T t;

1 0-000 0-000
2 0-000 0-000
3 0-000 0-000
4 2-186 0-000
5 3-868 0-000
6 5-508 1-468
7 8-006 2-748
8 10-659 4-731
9 13-780 7-028

10 16-590 9-486
11 17-840 12-258
12 20-000 14-718
13 20-000 17-052
14 20-000 18-607

Table 4. Interpolation points and knots for the case W, = 2-3 after 1 iteration.

135 37 22

-135 37 -22 -40

Jomnt 1
d v a j
¥ 26 4 35
v
a
d]
0] o] 0
-7 -26 14 -35
Joint 2

Joint 3

-208 -98 -70 -64
Figure 2. Joint trajectories for the example; d = displacement, v = velocity,
a = acceleration, j = jerk.

B-splines in trajectory planning for robot manipulators

d v a i
116 48 33 40

-116 -48 -33 -40

75 53 41 52]

Joint &

-7% -53 -41 -52

S0 52 35 67 |

Joint S

-9¢ -52 -35 -67

Figure 2—continued

Joint &

71

78 P. E. Koch and K. Wang

Joint Velocity Acceleration Jerk

1 273 16-2 297
2 209 109 246
3 529 382 31-8
4 40-9 331 32:2
5 46-3 355 440
6 268 21-5 351

Table 5. The maximum value of the joint variables.

Next we tried to run the program with different weights W, in the start and with
6 iterations of the conjugate gradient method. The result is shown in Table 6.

Experiment no. Weight W, Total time T (sec)

1 1-0 19-69
2 20 17-70
3 30 16-30
4 35 17-95
5 27 17-28
6 25 16:79
7 23 16-77

Table 6. The total time after 6 iterations.

We notice from Table 6 that it is an advantage to begin with the weight W, = 3-0
even though W, = 2-3 was favourable in the one-iteration case. Hence we chose the
weight W, = 3-0. But even after more than 10 iterations the total time had only
crept down to 16-22. A local minimum had been reached. We retreated to the situ-
ation just after iteration number 6, restarted the program with a slightly different set
of abscissas and knots, and performed 7 iterations of the conjugate gradient method.
This yielded T = 15-35. Then a slight perturbation of the parameter-vector, restart,
and 4 iterations gave T' = 15-10. After some searching for a good restart vector and
5 iterations we obtained T = 14-80. The abscissas and knots for this final stage are
given in Table 7 and the sup-norms for every derivative of the six joints are given in
Table 8.

i T t;

| 0-000 0-000
2 0-000 0-000
3 0-000 0-000
4 2-420 0-000
5 4-214 0-000
6 5-647 1-610
7 8-499 2:957
8 10-117 4-781
9 13-008 7-001

10 16-101 9-484
11 17-613 11-943
12 20-000 14-502
13 20-000 16-902
14 20-000 18-274

Table 7. Interpolation points and knots after a total of 22 iterations.

B-splines in trajectory planning for robot manipulators 79

Joint Velocity Acceleration Jerk

1 313 233 22-4
2 227 12-1 16-4
3 557 35-6 222
4 364 23-6 259
5 478 299 304
6 39-4 242 247

Table 8. The maximum value of the joint variables.

From Table 8 and Table 2, we notice that the sup-norm for the jerk of joint §
has the same relation to its joint constraint, viz. 30-4/75 = 0-405, as that of the
sup-norm for the jerk of joint 3, viz. 22-2/55 = 0-404. In all the previous experience
the jerk of joint 5 has given the maximum value in (12), so that we probably have
reached a global minimum for 7. In any case, to lower T further would now be
much more difficult. Some experimentations showed this. After many iterations and
restarts, we only reached T = 14-71.

4, Conclusions

Computer programs have been written to implement the procedure for B-splines
joint trajectory for robot manipulators. The new approach makes velocity, acceler-
ation, and jerk all continuous. The continuous jerk is a very important parameter
for the motion of robot manipulators. To obtain continuity in the jerk it is neces-
sary to work with splines with a higher degree than 3. Since the cubic splines
approach could not make the jerk continuous, we have worked with quartic splines.
The problem with these quartic splines was solved by using the B-spline representa-
tion. The output to the robot manipulator is the knots and the coefficients for the
polynomials that constitute the spline on each interval. For each point, 4 multiplica-
tions are necessary for evaluation.

This approach also offers more flexibility than was previously possible, it is easy
to switch from Lagrange to Hermite interpolation incorporating zero velocity and
acceleration at the starting and end points. No ad hoc scheme is needed. Since knots
and interpolation abscissas need not coincide, more freedom is added in searching
for spline curves that satisfy all the constraints for a small time T.

The conjugate gradient method has been used in the computer program in order
to minimize the total time T given by (12). This algorithm often converges to local
minima depending upon the input parameter vector. Therefore, when two iterations
give the same T the program gives the control to the user, so that the user inter-
actively can change components of the parameter vector (abscissas and knots). The
user may then decide when to start the conjugate gradient algorithm again. After
the user is satisfied the program furnishes the scaled interval [0, 20], the scaled
abscissas and knots and every derivative of each of the polynomial pieces for each
joint. This is the information needed to be stored and retrieved by the controller of
the robot manipulator at run time.

REFERENCES

BOLLINGER, J., and DuUrFiE, N. (1979), Computer algorithms for high speed continuous path
robot manipulator, Ann. CIRP 28, 391-395.

80 P. E. Koch and K. Wang

Cook, C. C,, and Ho, C. Y. (1982), The application of spline functions to trajectory generation
for computer-controlled manipulators, Digital Systems for Industrial Automation, 1,
325-333.

Cox, M. G. (1972), The numerical evaluation of B-splines, J. Inst. Math. Applic., 10, 134-149.

CRAIG, J. 1. (1986), Introduction to robotics mechanics and control (Addison-Wesley Publishing
Company) pp. 191-219.

Curry, H. B, and SCHOENBERG, L. J. (1966), On polya frequency functions [V: The fundamen-
tal spline functions and their limits. J. d’Analyse Math. 17, 71-107.

DE BooRr, C. (1972), On calculating with B-splines, J. Approximation Theory, 6, S0-62.

De Boor, C. (1977), Package for calculating with B-splines, SIAM Journal of Numerical
Analysis 14, 441-472.

Dt Boor, C. (1978), A practical guide to splines, (New York: Springer Verlag) pp. 219 & 138.

GorRDON, W. J.,, and RIESENFELD, R. F. (1974), B-spline curves and surfaces in Computer aided
geometric design, edited by Barnhill, R. E. and Riesenfeld, R. F., (Academic Press),
95-126.

Lun, J. Y. S, LN, C. S, and CHANG, P. R. (1983), Formulation and optimization of cubic
polynomial joint trajectory for industrial robots, IEEE Trans. Automatic Control, 28,
1066-1074.

NewmMaN, W. M., and SprouLL, R. F. (1983), Principles of interactive computer graphics,
McGraw-Hill Inc) pp. 320-325.

PauL, R. C. (1981), Robot manipulators: mathematics, programming and control, (Cambridge:
MIT Press), 119-155.

PowtLL, M. J. D. (1981), Approximation theory and methods Cambridge University Press) pp.
227-236.

Rao, 8. S. (1978), Optimization Theory and Applications, (Wiley Eastern Limited) pp. 307.

SCHOENBERG, I. J. (1946), Contribution to the problem of approximation of equidistant data
by analytic functions, Quart. Appl. math., 4, 4549, 112-141.

SCHOENBERG, 1. J., and WHITNEY, A. (1953), On polya frequency functions III: The positivity
of translation determinant with applications to the interpolation problem by spline
curves. Trans. Amer. Math. Soc., 74, 246-259.

Wang, K., and Lien, T. K. (1987a), The planning of straight line trajectory in robotics using
interactive computer graphics, Modeling, Identification and Control, 8, 125-135.

WanG, K., and Lien, T. K. (1987b), The solution with closed form for the inverse kinematics
of PUMA robot manipulator, Proceedings of the International Conference on The
Robotics, Paper No. 10, Yugoslavia.

