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Adaptive control of a manipulator when the mass of the load is
unknown
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An adaptive controller for a robotic manipulator is presented. In the control
system, the computed torque technique is used to linearize and decouple the
dynamic model. The computed torque technique requires that the complete
dynamic model is known. Normally, this model is known except perhaps for a
few parameters, e.g. load inertia and centre of gravity and friction co-efficients. In
this paper, the unknown parameters, which all represent physical quantities, are
estimated using a recursive prediction error method. The most recent parameter
estimate is then used in the computed torque technique. The control system is
applied to the positioning part of an industrial robot in a simulation experiment
where the unknown parameter is the mass of the load. The controller performed
well, and the mass of the load can even be estimated when the manipulator is
accelerating and there is a large control deviation.

1. Introduction

The state space equations of motion of an n-link robotic manipulator are non-
linear and contain a large number of terms. However, by using the computed torque
technique (Bejczy, 1974), a linear time-invariant state space model consisting of n
decoupled double integrators is obtained. The controller design for these decoupled
double integrators is straightforward.

In order to apply the computed torque technique, the dynamic model of the
manipulator must be known. This model can be found from Newton—Euler’s equa-
tions of motion (Luh, Walker and Paul, 1980). The parameters of this model are the
link and actuator inertias, the Denavit-Hartenberg parameters, friction parameters,
and the centre of gravity and the inertia of the load. The link and actuator inertias
and the Denavit-Hartenberg parameters are constant and can be found before the
manipulator is installed. When this is not the case, these parameters can be found
using parameter identification techniques before the manipulator is used in pro-
duction. However, friction and load parameters may be time-varying and this may
cause problems in the implementation of the computed torque technique.

The mass of the load can be found with a wrist force sensor (Paul, 1981).
However, most industrial robots are not equipped with this type of sensor, and this
solution has the drawback that the load must either be at rest or be moved at a
constant speed while the mass of the load is measured. The mass of the load may
also be found from the joint torques, but in this case also, the load must not be
accelerated while the torques are measured.

Adaptive control of manipulators has been proposed. Koivo and Guo (1983) use
a minimum variance controller based on a linear ARMAX model and Landau
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(1985) uses model reference adaptive control. In these techniques, the dynamic
model of the manipulator is assumed to be unknown, and quantities which are
functions of joint positions and velocities are assumed to be slowly varying para-
meters.

Craig, Hsu and Sastry (1986) present an adaptive controller which takes full
advantage of any known parameter, while estimating remaining unknown para-
meters. The computed torque technique is used, and the unknown parameters are
estimated using a model reference adaptive control technique.

In this paper, an adaptive controller is presented which is based upon the same
ideas as the one proposed by Craig et al. (1986). The main difference between the
two adaptive controllers is the parameter estimation algorithm, which in the present
paper is a recursive prediction error method. This means that here the parameter
estimates are updated from the prediction error, while in Craig et al. (1986), the
parameter estimates are updated from the control deviation. In periods where the
control deviation is large, such as when there is a step in the position reference,
updating from the prediction error will be better than updating from the control
deviation. This situation may occur when an unknown load is to be lifted.

When the mass of the load is to be found, the proposed adaptive algorithm has
the advantage that the manipulator need not move in a specified way as when the
mass is to be found from a wrist force sensor or the joint torques.

The paper is organized as follows: First the computed torque technique is
reviewed. Then the parameter estimation algorithm is developed, and finally the
performance of the control system is demonstrated in a simulation experiment.

2. The computed torque technigue

The equations of motion for a general n-link manipulator can be found from
Newton—Euler’s equation (Luh et al. 1980), and is written

Mig; 0)g =nlg, §;0) + t (1)

where g is the vector of joint displacements, Mig; 0) is the inertia matrix, n(g, §; 0) is
a vector defining friction, gravity, Coriolis and centrifugal terms, and t is the vector
of input generalized forces in the joints. 8 is a parameter vector.

First, we assume that the parameter vector 0 is known. In the computed torque
technique, the input generalized forces are chosen as

T = M(q); O)u — nlg, ¢; 6) 2)

where & is the transformed control vector.
By inserting (2) into (1), we get the linear time-invariant system

g=u (3)

or in state space form
X, =x, (4a)
k,=u (4b)

where x;, = gand x, = §.
The problem of finding a controller for the system described by (1) is now reduced
to the much simpler problem of finding a controller for each of the » decoupled
double integrators in (4).
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In this paper we assume that u is generated by state feedback:
IJ:GI Axl +G2 sz (5)

where Ax, and Ax, are the control deviations Ax; =x; —x; . and Ax, =
X, — X, . Where x, . and x, . are the position and velocity references. G, and
G, are constant diagonal gain matrices. The diagonal terms of G; and G, can be
chosen from classical servomechanism theory, pole placement techniques or linear
quadratic optimal control.

We now consider the case where the parameter vector 0 is unknown. In the
computed torque technique, an estimate @ of ® must be used. The input generalized
forces are then chosen as

© = M(g: O + n(g. ¢: 6) ()

For brevity, we introduce the notation M = M(g; 8), n = n(q, §; 0), M = M(q; 9)
and # = n(g, q; ﬁ] Because the estimated inertia matrix M is equal to the inertia
matrix of the manipulator when 0 = @, it follows that M is always symmetric and
positive definite.

By inserting (6) into (1), we get the state space model

X=X, (7a)
i, =u+ M '[n— i+ (M— Mu] (7b)

We see that when our parameter estimate @ is not equal to the correct value 0, the
computed torque technique fails to linearize and decouple the system.

3. Parameter estimation

A commonly used parameter estimation algorithm in adaptive controllers is the
recursive prediction error method (Ljung and Séderstrom, 1983). Here the extended
Kalman filter formulation of the algorithm is used:

Ok + 1) = 6(k) + K(k + ek + 1) ®)
K(k + 1) = P()¥(k + D[Pk + DPK)¥(k + 1) + W] 1 9)
Pk +1)=[I — Kk + )¥T(k + D]P(k) + V (10)

where (k) is an estimate at time k of the parameter vector 0, K(k) is the updating
gain, (k) = y(k) — y(k) is the prediction error, where p(k) is the actual process mea-
surement, and p(k) is a measurement prediction generated by a process model. P(k)
is an estimate of cov (0(k)), and W(k) = — de(k)/06(k) is the sensitivity matrix.

The sensitivities are given in terms of old values of control inputs, u(k), and
measurements, p(k), when an ARMA model and a least squares method is used. In
our case, (k) is computed by solving a set of sensitivity equations (Slid, Jenssen
and Balchen, 1983).

In order to track a time varying @, the parameter vector is modeled as a Wiener
process

Bk + 1) = 6(k) + v(k) (11)

where »(k) is a white noise process with covariance cov (v(k)) = V
The measurement is modeled as

Y(k) = Dyxy(k) + D; x5(k) + w(k)
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where w(k) is a white noise process with covariance cov (w(k)) = W.
We first consider the case where only joint displacements are measured, which
means that
y=x;+w (12)

The measurement prediction is generated by a state estimator.
We discretize the model (7) using the Euler method with sampling interval T':

xyk + 1) = xy(k) + Tx,(k) (13a)

Xk + 1) = x,(k) + Tu(k)
+ TM~'[n — & + (M — M)u(k)] (13b)

The state estimator is

Xk + 1) = (k) + Tx,(k) (14a)
Xk + 1) = %,(k) + Tu(k) (14b)
Pk = %,(k) (13)
&(k) = y(k) — (k) (16)
Xx,(k) = x,(k) + K,&(k) (17a)
x,(k) = x,(k) + K, &(k) (17b)

where X, and X, are the a priori estimates of x, and x,, while %, and %, are the a
posteriori estimates. K, and K, are constant diagonal matrices.

As only position is measured, state feedback as given by (5) is not possible.
Instead, feedback is taken from the a posteriori estimate of the state vector

u(k) = Gi(&,(k) — x;, (k)
+ G3(X(k) — x3_er(K)) (18)

where G{ and G} are constant diagonal gain matrices.
The sensitivity matrix ¥ is computed by differentiating the equations for ¥, =
%, —x, and ¥, = X, — x, with respect to 6. We obtain from eqns. (13}+17)

Zy(k + 1) =(I — Ky — TK)Z,(k) + TZ,(k) (19a)
Zy(k + 1) = —K, Z,(k) + Z,(K)
[ om oM
~-T™M [—w+55ﬂ@| (19b)
k) = Z,(K) (20)

where Z, = 8%,/80 and Z, = 8%,/80.
The total parameter estimation algorithm consists of (8), (9), and (10), where the
parameter estimates are computed, the state estimator given by (14), (15), (16), and
(17), and the sensitivity equations (19) and (20). The computational requirements of
the algorithm are very modest except for the last term in (19b), and to some extent
(9) and (10). The adaptive control system is shown in Fig. 1.

We now consider the case where the joint velocities are also measured. We also
assume that the measurement noise is negligible. As a consequence of this, we let the
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Figure 1. Adaptive controller.
a posteriori estimates be given by
%,(k) = x,(k) (21a)
X(k) = x5(k) (21b)
We now get from (13a), (14a), and (21a)
x| (k=0 (22)

which means that the position prediction error g, is not sensitive to variations in 6.
This means that the parameter estimates are only updated from the velocity predic-
tion error £, . The sensitivity equations are

Z, (k=0 (23a)

B on oM
Zok+1)=TM ‘[ ~ %" % u(k)] (23b)
W(k) = Z,(k) (24)

The parameter estimation algorithm now consists of (8), (9), and (10), the velocity
estimator is given by (14b) and (21b), and the sensitivity equations (23b) and (24).
As stated above, the computation of the term

| _om_ oM ]
M [ %+ o "

may cause problems in a real time system. For one parameter, the computational
requirements will be comparable to the computed torque technique. It is clear that
with current state-of-the-art micro-processors, only a small number of parameters
may be estimated for a 6-link manipulator.

In the computed torque technique, the input generalized forces t in (2) can be
computed using the recursive Newton—Euler scheme (Luh et al. 1980). However, in
this parameter estimation algorithm, an analytical model is required to compute the
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Figure 2. Positioning part of an industrial manipulator.

inertia matrix M and the partial derivatives 6i#/0@ and 6N /@6. The generation of
analytical dynamic models for manipulators by hand is a very lengthy process
except for manipulators with three joints or less.

The need for an analytical model is a weak point. However, this problem can be
solved by using an analytical model generator (e.g. Burdick, 1986) and symbolic
computation to find the partial derivatives of # and M.

In an adaptive control system for an industrial manipulator, there will be few
unknown parameters. In many cases the only unknown parameter will be the mass
of an unknown load. In this case, it should be possible to run the proposed para-
meter estimation algorithm in real time.

Parameter estimation algorithms are often derived under the assumption that
there is no feedback. This is because in a closed loop, there may be problems with
parameter identifiability. However, in the proposed adaptive controller, the para-
meter estimation algorithm is applied to the system consisting of the process with
controller. As a result of this, there are no problems with closed loop identification.

Also, because the parameter estimation algorithm is applied to the system after
the computed torque technique has decoupled and linearized the system, the
resulting state estimator becomes very simple with very modest computational
requirements,

4. Simulation

In a simulation experiment, the proposed algorithm was applied to the posi-
tioning part of an industrial robot with rotational joints, see Fig. 2. The dynamic
model of the manipulator is

M(g; m)qg =nlg, q; m) + t (25)
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where
Jy 0 0
M=|0 Jy +2J,3C3+ Jaz J23C5 + J3s (26)
0 Jy3Cy+ Jas Ja3
Jy=J1 +J3Ci 4733053+ J23C,Chu 27
n=[ny, ny, ny]”
where

ny=2[J538,Crue3 4+ J225,C21044,

+2[J538243C3 + J335243C243)01(32 + §) (28)
ny = —[J23(Ca435, + C;8,43) + 122 (55,

+J33C343854304F + J23 8345 + M, C,

+2M;Cyy s (29)
ny=—[J,3C28,,3+ J33C2+332+3]G‘f
—J338:45 + M3Cy 45 (30)

Here C,=cos q;, Cpi3=c0s (g2 +q3), C3=c08 g3, Sp;=sinq,, Sp43=
sin (g, + ¢5) and S3 = sin g,. J;; are the appropriate moments of inertia and M,
and M, are gravitational coefficients.

The computed torque was used. The feedback gain was chosen by pole place-
ment with the desired poles being A, , = —22 + j22. This corresponds to

G, = —10001, (31)
and

in the continuous case, where I is the three-dimensional identity matrix.

The unknown parameter was the mass, m;, of a load which was a point mass
located at the tip of link 3. In the dynamic model, the unknown parameter m, enters
the parameters J,,, J13, J,3, M, and M linearly. The derivation of the sensitivity
equations is straightforward, and the resulting equations have a structure which
resembles the dynamic model.

To get an indication of the computational requirements, the adaptive control
algorithm was run at our robot control system which has a Motorola 68020/68881
microprocessor. The execution time was about 2-5 ms when three joints were con-
trolled and one parameter was unknown. With minor simplifications it will be pos-
sible to control six joints with one unknown parameter with a sampling interval of
10 ms on the same hardware.

The adaptive controller was first simulated with position measurements only.
The updating gains in the state estimator were chosen as

Kl =13
K2 =0'2T_113
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Figure 3. Step response in z, direction with only position measurements.

where T is the sampling interval. This gives a state estimator with a high band-
width.

The initial covariance of the parameter estimate was set to P(0) = 1, and the
noise covariance in the Wiener process (11) was chosen as V = 0-011 3. Measure-
ment noise covariance in the position measurement was W = 1 x 1076I,. The
initial position of the manipulator was as shown in Fig. 3 where g, = —90° and
q3 = 90°. The z, position of the tip of link three was 0-8 m. The reference in the zy
direction was given a step change from 0-8 m to 1-0 m at the time t = Q. The
unknown mass, m, , of the load was 2 kg. The initial estimate of the mass was 0 kg

The step response in the z, direction of the manipulator with the adaptive
control system is shown in Fig. 3. The parameter estimate ti , is shown in Fig. 4. We
see that the parameter estimate converged fast even though the control deviation
was large initially. The step response in the z, direction was fast considering the
initial error in the parameter estimate.

The manipulator was then simulated with an adaptive contro! system with posi-
tion and velocity measurements. The controller and noise patameters were chosen
as above except for the measurement noise. The velocity measurement noise covari-
ance was set to W = 0-011, in the parameter estimation algorithm.

In this case, the step response in the z, direction was as shown in Fig. 5. The
parameter estimate, 1y, , is shown in Fig. 6. The results were somewhat better than
in the case where only the position was measured.
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Figure 4. Estimated mass with only position measurements.
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Figure 5. Step response in z, direction with position and velocity measurements.
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Figure 6. Estimated mass with position and velocity measurements.

5. Conclusion

An adaptive control system for a robotic manipulator has been presented. The
control system uses the computed torque technique, and full advantage is taken of
the known part of the dynamic model. The unknown parameters in the dynamic
model are found from a recursive prediction error parameter estimation algorithm.

In the case of one unknown parameter, the computational requirements of the
parameter estimation algorithm are comparable to those of the computed torque
technique.

As the parameter estimates are updated from the prediction error, the parameter
estimates converge even if the control deviations are large or if the manipulator is
accelerated.

The adaptive control system performs very well in a simulation experiment
where the mass of the load is the unknown parameter.
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