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On-line component estimation and analyser calibration for
a complex industrial processing plant using Kalman filtering
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The paper presents an on-line analyser system based on a Kalman filtering tech-
nique. The system is implemented on a computer, and tested against an analyser
simulator. A mathematical model for the analyser is also determined since an
extended Kalman filter can perform both component estimation and analyser
calibration, accuracy in the analysis is improved.

1. Introduction

On-line multi-component analysis of chemical composition has considerable
economic potential in the chemical industry. At Norsk Hydro’s plant near Pors-
grunn, Norway, an automatic on-line analyser is being used to determine the con-
centration of a number of different components in a complex product. By modeling
the physical phenomena involved in the different processes in the analyser, a
Kalman filter can provide an optimal estimation of the chemical components and
can also be used for the calibration of the analyser.

In this paper a Kalman filter (1) for two of the sensors in the analyser is
designed. The method will be examined by computer simulation experiments.

2. System description

2.1. General

With a fixed frequency, samples are removed from the process stream for
analysis using a liquid analyser.

The analyser employs standard solutions of known composition. Both the
samples and the standard solutions are treated identically in the analyser. The liquid
is transported to the sensors by air-segmented continuous flow in a sequence such
as that shown in Fig. 1.

The sensors used are ion-selective electrodes which have a Nernstian response
described by the formula
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Figure 1. The flow sequence.

where

E is the measured potential
E, is a temperature-dependent constant

RT .
2-3 — is the Nernst factor
zF

a; is the activity of the ion being measured

a; is the activity of the jth interfering ion

z;, z; are the charges of the ion being measured and the jth interfering ion
respectively

k;; is the selectively constant for the jth ion

Ion-selective electrodes measure ion activities and not ion concentrations. However
activity is equal to the concentration multiplied by the activity coefficient, or q; =
c;f;. The activity coefficient, f;, is a function of the ionic strength of the solution. In
our system a Total Ionic Strength Adjustment Buffer, TISAB, is added. This raises
the ionic strength to a level where the activity coefficients of the ions in the sample
will be identical with those in the standards. The activity coefficient can now be
regarded as a constant. Thus a single calibration curve will suffice to determine the
concentration of a particular ion.

The electrodes have a drift which, apart from the change in temperature, is due
to the change of the reference potentials as well as the electrode responses. The
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Figure 2. The static response of an ion-selective electrode,
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sources of the drift consist of: the inner reference electrodes, the membrane and its
asymmetrical potential, the junction potential and other reference electrodes.

A typical response curve for an ion-selective electrode is indicated in Fig. 2. Drift
in the various parameters is indicated by dashed lines.

In this paper we will only deal with two of the +ion-selective electrodes in the
analyser, the A-electrode and the B-electrode. We assume that the A-ion is the only
interfering ion in the B-electrode, and that the B-ion is the only interfering ion in the
A-electrode. However there are many other species present, but they do not affect
the measurements significantly.

2.2. Mathematical modeling

In the actual system there is a continuous flow of pulses with different composi-
tions. The sequence in Fig. 1 does not give the sensors enough time to reach steady
state signals. Similarly the signal from the preceeding pulse is not entirely swamped
out when the pulse arrives for analysis. This carryover from one pulse to the next is
due to three phenomena: the diffusion of ion in the membrane takes time, the
washout in the flow cell is imperfect, and a thin film from the preceding pulse is
mixed with the next pulse in the transport system.

These phenomena can be modeled as time constants, resulting in a simple math-
ematical model for the dynamics of the sensor:

1
x,(t) = T Tkoy + ky log (cy(8) + kyz¢5(0) + o) — x4(2)]

il

2
1
x,(t) = T [koz + k; log (ca(t) + kay ¢,(1) + ¢o) — x2(1)]

i2

where
x,(t) the measured potential of the A-electrode

x,(t) the measured potential of the B-electrode

¢,(?) the concentration of A-ions

¢,(t) the concentration of B-ions

ko1 » ko2 constants corresponding to Eq in (1)

k, , k, constants corresponding to the Nernst factor
ki3, k,, selectivity constants

1.1, T;, are time constants for the rising (i = 1) and the falling edge (i = 2) for the
A-electrode and the B-electrode respectively.

co = 0-5 1073 is a ‘constant contamination’ used in the simulations to prevent the
log-term from converging to — co.
The following measurement model is used

yi(t) = x4(2)
(3)
ya(t) = x,(t)

Discrete versions of (2) and (3) are employed when implementing the models in a
computer system.
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Figure 3. The analyser simulator.

3. Kalman filter simulations

3.1 Simulator

The Kalman filter is designed and implemented on a digital NORD-10 com-
puter. For purposes of testing and evolution of the Kalman filter, a simulator for
generation of realistic analyser-signals has been developed.

The simulator simply uses the model described in (2) and (3) with concentrations
¢,(t) and ¢,(1), varying as square-pulses with different amplitudes according to the
sequence in Fig. 1. The simulator is shown in Fig. 3.

The time constants were investigated by recording the step response of the
analyser. Figure 4, shows the step responses for the A- and B-electrodes. The dashed
lines show how the model responds using the time constants indicated in the figures.

The actual time constants fluctuated along the curves, which can be modeled as
illustrated in Fig. 4. However in the simulations we opted for fixed time constants.
An extension to include varying time constants is possible as long as these varia-
tions can be modeled.

Figure 5 shows the measurements generated by the simulator for one of the
electrodes. In this simulation the concentrations of the sample pulses were held
constant. It can clearly be seen that the sample measurements are influenced by the
preceeding sample.

3.2. Estimation of concentration and calibration of analyser using Kalman-filter

We are primarily interested in determining the concentrations of the different
species in the sample. Due to drift in the ion-selective electrodes it is also necessary
to calibrate the analyser. Using a Kalman-filter we can determine the concentrations
using the non-linear model described in (2), and calibrate the analyser on-line. The
calibration is performed when analysing the standard solutions, while the concen-
trations are estimated when analysing the process stream components. This is illus-
trated in Fig. 6.

Using model (2), drift in the analyser is represented by drift in the parameters of
the model. The parameters most likely to be drifting are kg, , ko5, k; and k,. The
system is therefore augmented with the following state variables:

X3(1) = ¢,(t),  xq(t) = 1), xs(t) = ko4
xe(t) = Koz, X4(t) =k, xs(t) =k,
These augmented variables are modeled by the simple differential equations:
=0, i=34546718 4
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Figure 6. Component estimation and analyser calibration.
The total augmented model thus becomes:
] 1
X1 = [xs + x; log (x5 + ky2 x4 + o) — X4]
i
) 1
Xq =E [x(, + Xg lOg (x4+k21 X3 +Co)—x2] > (5)
k3=0, j:4=0, is=0, 5:6=0’ k7=0
.is = 0,
Vi=X1, V2 = Xz, (6)

Based on the model given by Eqns. (5) and (6) an extended Kalman-filter is
implemented. The filter equations are given in Appendix L.

When in the calibration modus, the composition of the standard solutions are
known and no estimation of the concentrations (x5, x,) is performed. While esti-
mating the concentrations the parameter-estimates are held constant.

The structure of the Kalman filter is shown in Fig. 7. The switching between
calibrating the analyser and estimating the concentrations is illustrated by switches.

Figures 8 to 11 show the performance of the filter when using the following
parameters in the simulator and estimator:

Simulator: Estimator:
koy = 100 [mV]
ko2 = 100 [mV]

ky= 56 [mV]

k,= 56 [mV]
T,, = 90 [sec] Tp= 90 [sec]
T3y = 150 [sec] T3; = 150 [sec]
Ty2 = 110 [sec] Ty2 = 110 [sec]
T, = 20 [sec] Ty, = 20 [sec]
kio= 02 ko= 02
k21 = 0’01 k21 = 0'01

Only parameter estimates for one of the electrodes are shown. The parameter
estimates for the other electrodes are similar to those in Fig. 11.
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Figure 7. Kalman filter structure.

The accuracy of the concentration estimates depends on the accuracy of the
parameter estimates. The selectivity constants k;, and k,, were assumed to be

known. We investigated the filter’s sensitivity to wrong assumptions in these con-
stants.

Simulator: k,, = 0-15, k,, =0-01
ESﬁl‘n&tOl’: 12 — 0'20, kz] = 0'01

Figure 12 shows the results of the simulation. The accuracy of the concentration

estimates now depends on how much the unknown concentration deviates from the
standard concentrations.

Finally we also tried to estimate the time constants. The model was further
augmented by the following variables:
xq = Tyy (=90)
X0 =Ths (=110
Xy = Ty (=150
x12=Tp, (=20)

These variables were modeled as before

.

=0 i=9,10,11,12

-3

Estimated measurement

Figure 8. Estimate of x,, X,.
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Figure 12(a)}-12(f). Simulation results with different selectivity constants in the simulator
and the estimator (‘ wrong assumptions in these constants’).
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Figure 13(a)}-13(b). Estimates of the time constants.

For one of the sensors (B-electrode) the estimates converge to the correct values
(Fig. 13). For the other sensor (A-electrode) the estimates diverge. The reason for
this could be a programming error. However, it is also possible that the signals from
this sensor do not vary enough or that the system is insufficiently excited. This will
be investigated further.

4. Conclusion

The simulations show that on-line component estimation and analyser cali-
bration in analytical chemistry using Kalman-filtering has a considerable potential.
The system gives correct concentration estimates even though the unknown concen-
trations may differ significantly from the standard concentrations. Further investiga-
tions regarding parameter identifiability are necessary.
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Appendix
Kalman-filter algorithm

(1) An a priori estimate of the state vector %,., and its covariance X, is assumed to
be known.

(2) The filter gain matrix is computed by
K,= X, D"(DX,D" + w)™!
where
W covariance matrix of the measurement noise

D measurement matrix
k  time parameter

(3) The a posteriori state estimate, X;., is given by
i‘ﬁ = i't + Kk(yﬁ - Dik)

(4) The covariance matrix of %, is computed by:
X = - K. DX,
(5) The state vector at time k + 1 is predicted by:
Xi+1 = f(&, wy, %)
where

f state transition vector function
u, control signal
¥, measured disturbances

(6) The covariance of X, ,, is computed by
Xpo1 =0 X, 00 +V

where

O, = offox,

X, = X
V covariance matrix of process noise

(7) k: = k + 1 and return to (2)




