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An adaptive controller based upon continuous estimation
of the closed loop frequency response
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An adaptive control algorithm based upon on-line estimation of the —180
degree shift frequency and the gain margin is investigated. The estimates are
found by perturbing the system with a small signal and then correlating the
system deviation with the excitation. As only two parameters are estimated, the
algorithm is robust. Moreover, the estimator can be applied to non-minimum
phase systems, including systems with a varying time-delay. The control algo-
rithm can be of any form as long as there is a functional relationship between the
estimated parameters and the control algorithm parameters. To avoid an exces-
sive perturbation signal, the square of the amplitude of this signal is automati-
cally adjusted to a certain ratio of the variance of the error signal. A
mathematical analysis of convergence is presented and the theory is confirmed by
experimental results.

1. Introduction

In the design of control systems for monovariable processes, a number of the
process properties are the most important determinants of the behaviour of the total
system. As is well known from classical control theory, the open loop frequency
response behaviour in the neighbourhood of frequency w, g, (the frequency at which
the phase shift of the loop transfer function is — 180 degrees) has a very strong
influence on the closed loop control performance.

A number of different types of models can be used to express the behaviour of
the process with reference to control. State space models express most details about
the internal behaviour of the process whereas input—output models offer compact
parametric descriptions for linear systems.

Adaptive or self-tuning controllers for monovariable processes are usually
based upon discrete transfer function models, e.g.

bz ' +byz7?
1+az ' +az?

hfz™Y) = z " (1.1)
where the polynominal coefficients in the model are estimated using efficient on-line
algorithms (Ljung and Soderstrom, 1985). Depending on the control strategy, the
coefficients of the discrete controller transfer function are given by an explicit
formula of the estimated parameters of the process model (Astrém et al., 1977).
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Though this approach to the design of adaptive or self-tuning controllers has
many advantages, there are also some drawbacks. Some of the disadvantages are:

— The adaptive control algorithm in its ordinary form does not contain a provi-
sion for assuring proper excitation of the process which will make the parameter
estimator perform satisfactorily. If the process excitations are too small or have
improper frequency distributions, the variance of the parameter estimates may
become significant resulting in low performance control. In the concept of dual
control (Feldbaum, 1960) the generation of proper process excitations which
facilitate efficient parameter estimation appears as an integral part of the algo-
rithm. ‘Dual control’ is, however, rarely implemented in existing adaptive
control schemes.

— The type of parameterization of the process model used in (1.1) is efficient for the
implementation of time-discrete controllers, but does not efficiently reflect the
most significant properties of the control loop. Thus much of the computational
burden on the adaptive controller may be irrelevant.

— The ability of an adaptive controller to cope with changing amounts of transpor-
tation lag in the process dynamics is not always satisfactory. In fact, most adapa-
tive algorithms are based on the assumption that the transportation lag is fixed
and known. In many industrial processes, the transportation lag is very much
dependent upon process conditions and should be taken into account in the
adaptation procedure.

In this paper an approach to adaptive control is suggested which is based upon
a description of the control loop in the frequency domain. The two most significant
parameters in the frequency response (hy(jw)) of the control loop are estimated
on-line and are used to directly adjust the controller parameters. Since there are
only two parameters to estimate, the algorithm is robust. The parameters, which are
estimated, will automatically handle non-minimum phase systems, e.g. systems with
varying time delays. The robustness is further improved by including an algorithm
which assures proper excitation of the process.

2. Basic principles of the new adaptive controller

In Fig. 2.1, a block diagram indicates the functions of the adaptive control
system. At the setpoint input to the controller, a small sinusoidal perturbation
signal (8y) is added and the response in the system deviation is fed to the
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Figure 2.1. Basic scheme of the adaptive controller.
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‘Estimator’. This unit adjusts the frequency of the perturbation signal so that it
reaches g4 (the frequency at which the open loop frequency response ho(jw) has a
phaseshift of £ ho(jw) = —180°). The estimated value of this frequency is referred to
as @y go. The Estimator also determines the magnitude of the ‘disturbance reduction
ratio’

i
1 + ho(jw)

at the particular frequency, and this estimated value is denoted by | N(je, go)|- Flgurc
2.1 also indicates how typical parameters of a PID controller (proportional gain K,,
integral time 7;, derivative time T}) are adjusted based upon the estimated system
parameters.

Figure 2.2 shows the frequency response characteristics for three types of
systems. One major difference between these plots, is the number of integrations
encountered in the systems. System nos. 1, 2 and 3 have zero, one and two integra-
tions, respectively. The frequency @, g, is easily recognized in Fig. 2.2, and the con-
tours of constant | N(jow)| are given by the inverted Nichols chart. The gain margin
AK of the control loop is recognized as the distance along the logarithmic gain scale
between point w, g, and point (|he| =0 dB, £ hy = —180°). Consequently, we may
find a simple relationship between N(jw,go) and AK. Since hy(jow,50) = — 1/AK we
have

N(jw) = (2.1)

1 __AK
1 AK — 1

1___

AK

A method which is frequently used for the adjustment of controller parameters is
specifying a certain gain margin and a phase margin for the control loop. In most
cases of process control, the gain margin will be the determining factor because
most processes encompass some transportation lag or another type of non-
minimum phase behaviour which results in a rapidly increasing negative phase shift
with increasing frequency. If we want the control loop to have a specified gain

N(jw,g0) = 22

e~

2\ ‘?‘_ N(ju)|=consranf

s Ve == e
- - et ot S e -\\/}‘."
=<7 \/3454«_[3( /i ANEY S
i \w % .-J- yamﬁwm: -ohrlj T A‘{[

Figure 2.2. Frequency response characteristics for three types of systems.
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margin of AK, it follows that we have a specified value of N(jw,g0) according to 2.2.
Furthermore it is easily verified that for a stable system, / N(jw;go) = 0° so that
N(j©,80) = IN(j, o)l

By adjusting the proportional gain of the controller in a feedback sense until
|N(jew 1 50)| Teaches its specified value, the first part of the controller adaptation has
been achieved.

The adaptation of the dynamic parameters of the controller, i.e., integral time T;
and derivative time T, in a PID controller, is conveniently done by relating these
factors directly to @, g - In the simplest case the following relationships are chosen:

1

T,

1 51 wih s~01-04
T T -

It is thus up to the designer to choose the parameters y and 4. In most cases of
normal industrial control, this choice will not be very critical, but it is necessary that
the designer has a basic understanding of the mechanisms of the process so that he
can make a reasonably valid choice. The same type of relationships are well known
from classical tuning techniques such as the Ziegler—Nichols method for instance.

The basic pricinciple of the adaptive controller to be described, is thus as
follows:

(1) Frequency w, g, for the closed loop and quantity |N(jw,g)| are estimated
using a continuous experimental technique.

(2) The controller gain is adjusted until a prescribed value of |N(jw,go)| is
reached, thereby achieving a certain gain margin (AK) in the loop.

(3) Dynamic parameters of the controller such as integral time (7;) and deriv-
ative time (7)) are adjusted in a fixed relationship to w, g -

3. The Estimator

3.1. Estimation of w,g¢

Figure 3.1 shows a block diagram of the basic system for estimating @, go. It
consists of a signal generator which produces a sine signal and a cosine signal with
adjustable frequency. The sine signal also has adjustable amplitude (Ay). The small
sinusoidal perturbation (8y) is added to the regular setpoint (y,) thereby producing
the total controller setpoint (y,). The system deviation is denoted e and the total
amount of disturbances acting upon the loop which is referred to the output of the
process is denoted v. The Laplace transform of these signals yield the relationship

e(s) = N(s)yo(s) — N(s)uls) (3.1)

In Fig. 3.1 the frequency of the signal generator may be changed. In the simplified
analysis which follows, it is assumed that the rate of change in this frequency is
rather low. It is of course also assumed that due to the small perturbations, a linear-
ized description such as that of (3.1) is vahd.
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Figure 3.1. Basic scheme for estimation of @gq.

If it is assumed that the closed loop contains an integral action and that the
setpoint () is constant, the time response of the system deviation will be

e(t) = Ay|N(j@,go)lsin [@yg01 + L N(jdy50)] — 2) (3-2)

in which #(r) is the time domain representation of the last term in (3.1). The fre-
quency of perturbation is denoted @,g,. This is going to be the estimated value of
D180+

As is seen from Fig. 3.1, the rate of change in the perturbation frequency (&, 50)
is made proportional to the product of the response in the system deviation (e(t))
and cos @,go t. This is so because at w, g the phase shift of the sinusoidal response
will be / N(jw,s0) = 0°. Since sin wt and cos wt are orthogonal functions, the
signal produced by the multiplier will on average be equal to zero at w;g49. The
factor o in Fig. 3.1 constitutes the gain of the estimation loop and determines the
rate of convergence. The output of the multiplier in Fig. 3.1, m(t) will become

m(t) ~ $Ay|N|[sin (20,80t + L N) + sin £ N]
— (1) cos 4ot (33)
in which the simplified notation
[N} = |N(j@d150)l and [N = £ N(j@so)

has been introduced. Normally the process disturbances will have a stochastic
nature and since the closed loop is assumed to have integral action, the average
value of #¢), and thus the average value of the last term in (3.3), will be zero. Fur-
thermore it is observed that the first term in the bracket of (3.3) is sinusoidal with
the frequency 2@,;go. This means that there will be a small modulation of the fre-
quency around an average. The frequency of this modulation will be 2@, g, as indi-
cated in Fig. 3.2. Neglecting this modulation which will be small when o is small, the
approximate differential equation for the estimator will be given

@80 = 30Ay|N| sinZ N (3.4)
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Figure 3.2. The oscillation in the estimate of @, 4.

The stability of the w, g, estimation loop depends on how sin/ N varies with .
Figure 3.3 shows some typical forms of sin £ N(jw) for two of the systems shown in
Fig. 2.2, where system type 2 is regarded to be the most common in process control.
This system is seen to have a ‘domain of attraction” which is 0 < @, < wy In
which wy is the next frequency above w,go Where £ N(jw)= 0°. In the case of a
system of type 3, it is seen from Fig. 3.3(b) that the ‘domain of attraction’ is deter-
mined by w; < @,g0 < wy in which @, is the frequency below w,g, at which
£ N(jw) = + 180°.

The consequence of the above discussion is that for a system of type 2, the
convergence of the estimation loop is secured if the estimator is started at a suffi-
ciently low frequency, whereas the case of a system of type 3, one must simulta-
neously ensure that the system is started at a frequency above wy .

The slight oscillation of the frequency depicted in Fig. 3.2 can be roughly esti-
mated by assuming that the steady state solution of the actual system is

(’3)180(5) = wigo + Aw sin (Zmi'sot + (0] (35)
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Figure 3.3(a). Domain of attraction for systems with frequency response characteristics such
as type no. 2 in Fig. 2.2.
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Figure 3.3(b). Domain of attraction for systems with frequency response characteristics such
as type no. 3 in Fig. 2.2,

It can be shown that

ol
Ao & ——2 | N(joo$ o)l (36)

=]

180

3.2.  Estimation of IN(jw,go)|

In Fig. 3.4 a block diagram is shown of the part of the estimator which deals
with the quantity |N(jw,go)l. The difference between the real sinusoidal deviation
signal and the estimated deviation (assuming integral action in the closed loop) is

de(t) = e(t) — &(r) = AyIN| sin (@150t + L N) — 5(t) — Ay|N| sin (D150) (3.7)
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Figure 3.4. Basic scheme for estimation of | N(jevygo)l-
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Here |N| is a scalar quantity generated by an integrator, this scalar being the pre-
viously mentioned estimate of | N(jow,go)l- If it is assumed that factor § in Fig. 3.4
has a small numerical value, the rate of change | N| in the output of the integrator
will be small. The system in Fig. 3.4 tends to make the cross-correlation equal to
zero between the difference signal de, which is a sinusoide, and the sinusoidal pertur-
bation signal. This is seen by formulating the differential equation governing the
system in Fig. 3.4.

IN| = B sin (@, go 1)0e(t) (3.8)

Applying (3.7) into (3.8) and neglecting the influence of the stochastic disturbance,
we get

2 A . 5 -
IN|~ B 7}: [IN|(cos £ N —cos (2(50t + L N)) — NI — cos 2,50 1)] (3.9)

Equation (3.9) shows that the input to the integrator contains a sinusoidal oscil-
lation with the frequency 2@;go. Assuming now that the loop for estimating ;g0
has converged and therefore £ N ~ 0°, and by taking the average of (3.9) over some
periods of the frequency 2,40, the differential equation (3.9) will approach the
following:

2 A .
K1~ g (NI = KD (3.10)

This is a stable differential equation where | N| approaches |N| with a time constant

2

m (3.11)

Tiy =

4. Adaptation of the controller

4.1. Adjustment of the controller parameters

_ Any control algorithm may be adapted on the basis of the estimates @;go and
|N(jew, g0)l- Here we shall look at the adaptation of a PID controller with the trans-
fer function

(1 + T;s)(1 + Tys)
T;s

his)=K, @.1)

It is proposed that the adaptation of this controller is done according to the block
diagram in Fig. 4.1. Here it is seen that the estimate |N| is compared to a desired
value |N|, and an integral controller is used to adjust the proportional gain K, of
the main controller of (4.1). Furthermore the integral time T; and the derivative time
T, are adjusted according to the simple relationships given previously

l -~
?‘ = y|@yg0l 4.2)
1 1

= =08 — = 0yl@s0l 4.3)
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Figure 4.1. Scheme for adapting the control parameters.

The reason for using |(b,g0| rather than @, g0 is that |@,go| is a positive number
while the estimator for w, gy may arrive at a negative solution. The block diagram of
Fig. 4.1 also shows that a lowpass filtering is introduced in order to remove the
effect of the oscillations in the estimate @, g¢.

4.2.  Adjustment of the perturbation signal

The perturbation signal (8y(t)) gives a response in the system deviation which
comes in addition to the natural system deviation caused by process disturbances,
and should therefore be kept as small as possible. On the other hand, the ‘signal to
noise ratio’ i.e., the ratio of the variance of the perturbation signal to the variance of
the disturbance, both measured at the system deviation, should have a reasonable
value in order for the variance of the parameter estimates to be acceptable. At any
rate it is of interest to adjust the amplitude of the perturbation signal so that the
*signal to noise ratio’ is kept under control. An estimate of the disturbance response
can be derived from the block diagram of Fig. 3.4 as de. This estimate is proper
when ;50 = W50 = constant (see also section 3.2, (3.7)). In Fig. 4.2 a block
diagram is shown based upon Fig. 3.4 for the automatic adjustment of the pertur-
bation amplitude Ay. It determines the variance of the estimated perturbation
response

@0y

and the variance of the estimated disturbance response

@e()?
by establishing the relationship
n(ée(t))’ — (&(1))* = Tay(A)) (4.4)

where

n: prescribed signal to noise-ratio
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Figure 4.2. Scheme for adjusting the amplitude of the perturbation signal.

If the integration of (4.4) is made slowly enough, the perturbation amplitude (Ay)
will be adjusted until the steady state determined by

n(oe(t))” = @) 4.5)

is reached.

5. Verification of the theory by experiments

The estimator and the adaptive controller described in the previous sections
have been tested on a laboratory process consisting of cascaded water vessels. It is
sought to keep the water level x in the last vessel in the sequence, close to a refer-
ence. See Fig. 5.1, where

g: water flow rate into the cascaded vessels
x: water level in the last vessel
p: valve position for the valve at the water outflow from the system

u and y have been mapped linearly into the range (0%, 100%). Linearization of the
system above yields the following model:

K
Yo+ Tl + Toofl + Tas) -

G.1)

With y, = 50%, the time constants of the system are approximately 7; = T, ~ 40 s
and T, = 10 s. In the first phase of the experiment, only the estimator was tested.
The following controller parameters were used, see (4.1): K, = 1-5, T, = 100-0, T; =

0-0. A set of experimental runs was carried out under the conditions which are
summarized in Table 1, where the initial value of {N| = 2-0 and the amplitude of
the perturbation signal Ay = 1%. Note that p = “partly closed’ means that this
valve is open and becomes partly closed during the run.




Continuous estimation of closed loop frequency response 233

Ys _|Adaptive| Y _|Constant
|controller element ] l

JEE

i

Figure 5.1. Basic experimental set-up.

Initial value Result in
Run of wygo o p Ve P figure
1 0-005 00005 005 50%  Open {37 (a-b)
2 0-1 0.001 0-05 50% Open 52
3 0-001 3.5E4 005 50% Open 53
4 stationary 0.0005 0-05 50% Partly 54
value closed

Table 1. Conditions for the experiments carried out on the Estimator.

Figure 5.2 confirms the developed theory on the domain of attraction, see sec-
tion 3.1. Since this process contains negligible amounts of time lag, we cannot expect
to detect any wy,. In this figure, the estimate of wyg, is seen to oscillate around
w50 & 0-06. At this frequency |N(jw)| &~ 1-7. According to (3.6), the amplitude is
(run no. 1)

05 x 1073
“=40 x 006

A x 1-:7=3510"3

Figure 5.2(a). Estimate of w, g, using two different initial values.
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sec
Figure 5.2(b). Estimate of |N(jw,g)|, run no. 1.

This is in good agreement with the results in Fig. 5.2, Figure 5.3 shows that the rate
of convergence of @,g, depends on the gain of the estimation loop, see (3.4).

When the valve at the outflow of the water from the system suddenly becomes
partly closed during the run, the time constant of this vessel will suddenly increase.
The time constants of the two other vessels will, however, decrease due to the lower
steady states of their water levels. In addition to these effects, the gain of the process
will change. The total effect of these parameter changes on the estimate of w, g4, is
shown in Figure 5.4.

In the last phase of the experiment, the full adaptive controller was tested. When
there is a significant change in system parameters, large transient deviations may
occur in e and Se. As e and de are inputs to the updating of [N| and @50, there
should be no updating of these estimates when e and e exceed some predetermined
limits (run no. 5). The following initial values for the controller scheme were used:
K, =15, T, = 1000, @, = 0-001, |N| = 2-0. In addition, the following constants
were used: o = 0-5 1073, # = 0-02 (run no. 5), # = 0-005 (run no. 6), y =05, & = 0-4,
7 =10, g = 103, 7, = 103, |N|, = 2-0. When the steady state was reached for the
variables (#,g0, |[N|, K »» 1)), experiments were performed as summarized in Table 2.

I SOS B  RRY
1 T L3 L L] ¥ Su
Figure 5.3. Estimate of w, g, using two different loop gains.
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Figure 54. Estimate of @, g, run no. 4.
run Result in
no. Vs P Ay figure
5 50% Partly 1-0 5-5 (a)}{(d)

closed

6 50% Open Adapted with 5.6 (a)i)
1-0 as initial
value

Table 2. Conditions for the experiments on the adaptive controller.

Figure 5.5 confirms that the adaptive controller works with sudden changes in
the parameters of the process. Figure 5.6 shows that the adaptation of Ay works
satisfactorily. Note how the size of e approaches that of de, and how the sinusoidal
variation in u approaches white noise.

iooo-o; 1400.0
i f

Figure 5.5(q). Estimate of w444, run no. 5.




236

J. G. Balchen and B. Lie

L T
+ S0.0
4. 30.0 i !
+ 100 it PRI SR
200.0 &HO0 .0 100-0-(2- LTACD..O
: i : f : . i t +>
sec

Figure 5.5(b). Integral time in the controller, run no. 5.

-

I

I I i n 3 _{.

sec

+ 1.
4 O
[ T - O S A N |- WY S -4
2WO.0 4£00.C 1000.0 L4A00.0C "
t + + ¢ + f f + =
sec

Figure 5.5(d). Proportional gain in the controller, run. no. 5.
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Figure 5.6(a). Time response of the measurement y, run no. 6.
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Figure 5.6(b). Time response of the control variable u, run no. 6.
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Figure 5.6(c). Estimate of ©, 4, run no. 6.
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Figure 5.6(d). Integral time in the controller, run no. 6.
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Figure 5.6(¢). Estimate of |N(jw,go)|, run no. 6.
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Figure 5.6(f). Proportional gain in the controller, run no. 6.
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Figure 5.6(g). Amplitude of the perturbation signal, run no. 6.

m>

Figure 5.6(h). Estimate of system deviation caused by the perturbation signal, run on. 6.
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Figure 5.6()). Estimate of system deviation caused by the process disturbance, run no. 6.
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6. Conclusion

A new adaptive controller has been developed based upon on-line estimation of
the —180 degree phase shift frequency (®,5,) and the gain margin. These estimates
are used to update the parameters in a control algorithm, exemplified by a PID
controller. The estimator incorporates the tuning of the perturbation amplitude in
order to make the excitation sufficient but not excessive. This tuning is important
when controlling real processes where the size of the output disturbance is
unknown. Laboratory experiments verify the theory, and the behaviour of the con-
troller was satisfactory.

It is apparent that the variance of the estimate of , g, is somewhat sensitive to
disturbance frequency components in the neighbourhood of w,g,. This means that
care should be taken if the disturbance is strongly dominated by components in this
frequency domain.

In the algorithm presented in this paper, constants such as the gains of the
estimation loops, initial values, etc., are assumed to be known. Most of these quan-
tities can be determined through simple automatic experiments on the process, thus
minimizing the efforts of the user.
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