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Coordinating control of a special joint structure with more servos than
degrees of freedom
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A joint mechanism for use as a general building block in manipulators with a
very high number of degrees of freedom is introduced. Tt consists of 3 servos
driving a 2 d.of. universal joint by means of wire. A coordinate transformation
set is developed, which includes positional, velocity and force transformations.
Both direct and inverse transformations are presented. Special attention is given
to the inverse force transformation which is obtained using linear optimization.
The solution in this case is also shown to be valid for a more general class of
constrained non-linear optimization problems. An example is given of the use of
the coordinate transformation set; a joint control system including servos under
internal force control.

1. Introduction

The coordinate transformations necessary to describe movements of a complete
robotic or remote controlled manipulator can be separated into at least two levels.
The higher level concerns transformations between the generalized coordinates of
the joints and some external coordinate system which is convenient for task descrip-
tion (Whitney 1969; Paul 1981). At this level the corresponding generalized forces
are often considered as input to the system’s dynamic description (Luh, Walker and
Paul 1980a, b; Hollerbach 1980; Bejczy, Tarn and Chen 1985). The lower level
describes relations between the joints and their driving servos. These transform-
ations seem to have been given less attention in the literature, perhaps because
structural designs at this level vary more than the designs at the higher level. This
article develops the lower level description for one specific servo to joint connection
design.

The design arises from an idea developed at the Norwegian Institute of Tech-
nology concerning a manipulator with a high degree of kinematic redundancy. With
this type of manipulator it is necessary to reduce the weight of each Jjoint as much as
possible. This is done by mounting all servos in the manipulator base and by using
a light weight two degrees of freedom joint as a standard building block. The arm
consists of a number of straight links connected by universal joints. Each joint is
driven by linear hydraulic servos. The joints and servos are connected by steel wire
as shown in Fig. 1. Since the wire can support pulling forces only, each 2 d.o.f. joint
requires a minimum of three pulling wires. This paper will describe such a joint in
mathematical terms. In the two following sections the forward and inverse posi-
tional transformations are developed. Then, differential transformations are treated.
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Figure 1. Wire driven manipulator. The 9 servos driving 6 d.o.f. for positioning are mounted
in the base. When including a servo rotating base and a 3 d.o.f. spherical wrist joint,
the total number of d.of. is 10.

Special attention is given to the problem of inverting the relationship between wire
forces and joint torques. This is solved as a linear programming problem.

2. Description of the mechanism

A 2 d.of. mechanism joining links j and j + 2 of a manipulator is shown in Fig.
2. The wires driving link j + 2 are connected to moment arms mounted on the same

b: Moment arm configuration
of link j+2

Figure 2. Wire drive mechanism.
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Figure 3. Rotations of a universal joint. All coordinate systems have origin in the pivot
intersection point of link j + 1. Any coordinate system i is fixed with respect to link i.

link (Fig. 2(b)). The connecting point positions are denoted by p,, p,, p;. From
these points the wires are led through point p, on link j and down to the manipula-
tor base. Note that in practice it is impossible to lead three wires through the same
point. However, as this approximation simplifies the development of the analytic
expressions, it will be used throughout this paper. Figure 2(b) shows the mounting
of moment arms on link j + 2. The points p, lie in the plane *2x = 0. Their posi-
tions in the plane are given by the constant a and b. Usually one would choose
b = 1/2,/3 so that all three moment arms have length g, and the angle between each
pair is 120°.

The kinematic structure of the link is defined in Fig. 3. The total rotational
transformation of a universal joint can be represented by a rotation 6, about a
y-axis fixed in link j coordinates and a rotation 6, about the x-axis resulting from
the first rotation. The rotational matrix from j to link j 4+ 2 becomes:

R = rot (y, 6,) rot (x, 6,) = 0 ¢, — 5, (1)

where s, = sin 6,, ¢, = cos 6, etc.

The values 6, and 6, are defined as the generalized coordinates describing the
movement of the 2 d.of. joint.

3. Positional transformations

Displacements of the three servos driving the joint can be defined by lengths
[1:; 12, 15]" of the wires in Fig. 2. Knowing the positions, p;, of each wire end point
in link j coordinates and using point p, as reference, I, will be found as the vector
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magnitude of p;. The wire end points, as functions of joint variables are:

0_ —a_ —ac,
=|0|+R Of= 0 2)
lo 0 Io + asy
0 i af2 i ac,/2 — bas,s,
p:=|0|+R| —ba|= —bac, 3)
Io 0 Io - as}.fz - bacysx
0 a/2 ac,/2 + bas, s,
P;=|0]|+ ba | = bac, (4)
L, 0 lo — as,/2 + bac,s,

so the vector magnitudes become:

Iy = J(@ + I3 + 2l,as,)

L, = /[®b* + Ha? + 2 — lyas, — 2gbac, 5] O]

Iy = JI(b* + 3)a® + I§ — lpas, + 2y bacys,]
Eqn. (5) expresses the servo positions necessary to give a certain joint displacement
value @ = [6,, 6,]". In some cases the inverse expression might be useful, if for
instance one has decided to measure the wire lengths / to calculate 6. The following
two linear combinations are obtained after squaring (5):

6lpas, = 2b> — )a” + 21§ — 15 — I
dlybacys, = -1 + 13 (6)

Though many other linear combinations of (5) squared can be used, (6) exploits /
reasonably well, and is therefore recommended. 8 is now found by:

o W =3a 1,
sin 0, = 3, + Sloa QE-5-0B )]
sin 8, = (—ﬁ + 1‘;}/[4!0 ba.\/(l — sin? ﬂy)] 8)

When 6, or 6, approaches n/2 radians, numerical problems may arise. However,
since the joint design (Figs. 2 and 3) sets a practical limit of approx. 7/4 on 6, and
0, this situation will never occur. Note that if b = 1/2,/3 then Eqns. (5}48) become
somewhat simpler.

4. Direct differential transformations

Given an infinitesimal change in the joint variable one can find the correspond-
ing change in servo positions:

dl = Jde ©)
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where J, the Jacobian, is given by

a o ]
Jo 6, 06, 06,
Ay gy
0, o6, 00,
The elements of this matrix are found by differentiating (5):
A _loa A _
2, 1, > 2, °
alz_foa 1 . alz_loa
2, =7, (bsy s, — 36,); 0. L, (—be,cy) (10)
2{.3_ _ !'oﬂ' 1. 6!'3 _ ‘oa
aﬂy_ Js ( bs}'s.\' - ZCy)’ a&x_ 13 (bcycx)

The Jacobian can be used for velocity transformations as described in (Whitney
1969):

=7 (11)

where the dots denote time derivatives.
In addition one can find joint torques from wire forces using the virtual work
method as in (Paul 1981):

m=—Jf (12)

where m: joint torques; f: wire forces. The negative sign is a result of the definition
of force direction against servo displacement shown in Fig. 2.
Note that the Jacobian, as defined in (10), can be conveniently written:

J=aL 'H (13)

where a: moment arm defined in Fig. 2(b), and

1
L= I diag I: diagonal matrix of normalized wire lengths
0

| bss— 3¢, —bs,s, — i,
0 ~be, ¢, be,c,

The effect of collecting the wires in p,, is thus represented by the diagonal matrix L.
Also note that, according to Fig. 2, if I, > a then L ~ I, the identity matrix. These
facts will be used to simplify the development of an inverse force transformation.

J is a 2 by 3 matrix. This creates a problem when trying to solve (11) or (12). A
glance at the equations will show that, in general, (11) has no solution and (12) has
an infinite number of solutions. The following two sections describe how to deal
with these two problems.

5. Inverse velocity transformation

The inverse of (11) will be of use when measuring / in order to calculate 0. In this
case we have a redundant set of measurements which could be reduced simply by
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neglecting one of the elements in { However, one would obtain a better estimate of 0
by exploiting all three measurements. A reasonably good estimate of @ is given by

0=J41 (14)

where J* = (JTJ)"'J": a pseudoinverse of J.

J* can be expressed in detail using (10) or (13). It can be shown that (14) gives a
minimum variance estimate of © if the measuring errors for each element in / are
independent and equal in variance.

6. Inverse force transformation

‘The main problem when inverting (12) is how to choose one f among those who
satisfy the equation. A simple solution involves constructing a 3 x 3 matrix by aug-
menting —J7 with an artificial constraint. This constraint may specify a bias force
keeping a weighted sum of the wire forces constant. A reasonable servo force vector
fmay also be found using some optimization procedure.

The method used in this section minimizes the force vector components. This
tends to keep joint wear and dissipated power low without explicitly minimizing
these effects. Since wires support pulling forces only, the solution must only contain
positive force values. See Fig. 2. In fact all wire forces should be greater than a
predefined positive value. This is both because the hydraulic servos often have bad
characteristics ncar zero force and becausc the wirc might behave badly when slack.
In addition to these constraints, (12) must be satisfied. If the function to be mini-
mized is linear, the optimization problem can be solved using the simplex method
(Phillips et al. 1976). As argued at the end of this section, the exact shape of this
function is not important. For this reason a linear function will be used. Further-
more the function to be used will be especially designed to obtain the solution in a
simple way.

Before stating the optimization problem, matrix J is separated as shown in (13).
A minimum force vector is chosen as

Jonin = Lfn (15)
where £, = [f.,. [, S]": predefined constant vector.
Defining the variable k,

k=aL 'f, (16)
an optimization problem, which is independent of @ and L, can be stated:
minimize B=k, +k,+k; (A
subject to —Hk=m (B) 17)

k>k, (O

where H': defined in (13); m: desired joint torque vector

km = aL_l min — Qfm
The problem can be solved numerically using the simplex method for linear prog-
ramming problems.

Before using the simplex method, (17(C)) must be formulated as an equality
constraint by adding three new variables, k' = [k k3, k3]", where &’ = 0. Then

k+ K=k, (18)
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The problem now has 5 linear equality constraints and 6 variables. According to the
theory of linear programming, any optimal solution contains at least one variable
equal to zero. Since k > k,, (definitely positive) one of the elements in k’ has to be
zero. According to (18) the corresponding element in k equals k. As a result the
solution can be divided into 3 cases.

case i: ki=k, and ki=0

The solution in each case can be represented symbolically. Before developing the
three cases, three matrices H; will be defined: H, is the 2 x 2 matrix obtained by
omitting row no. i of H. H is defined in (13). E.g.:

bs,s, —4c, —bs s, —3c, |
— yox 2%y ¥ Ox ¥ 19
s [ —beyc, bey e, ] )

CASE 1:
Inserting k, = k,, in (17(B)), the restriction becomes:

ke, B kx| |m,
-] )= ]
U m,,+kmc,j|
I:kS]_ Hl [ m,

where by (19)
L S
HT-| © 2bc,e,  CEe,
! 1 1 85,8,
< 2bcye,  cie,
)
kl = km
ky =kt 4 (st 22 ) (20)
27 m T, My 2bcye,  cic,) T

1 1 5,8
=ky+— - 2= 1m
Ky =k + o, * ( 2bc,c, + cic,) ¥

For case 1 to be valid, the conditions
k= k, and ky=k,

must be satisfied. Using (20) this can be written

m 1 5,8
my ( + -’2—")m,, >0
cy 2bcye, ey

11-!+(— l +52Lsi)mx:,»o @)
Cy Y
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CASE 2:

Here the solution 1s:

1 1 5,5,
by (g B
ky =k, (22)
1
be,c,
And conditions for case 2 to be valid:
—E!—( ! +f§i)mx?0

<y 2bcyc, ey

kazkm—

iy

CASE 3:

Here the solution is:

1
koa=k
2 m + bc,cx mx (24)
k3 = kp
And the conditions for case 3 to be valid:
omy (U s
¢, ( 2be,c, + cie, my >0
=0 (25)

m,
beyc,

Using (21), (23) and (25) to design a decision rule, an algorithm to solve (17) can be
stated:

BEGIN
case 1 « true; case 2 « true; case 3 « true
— : _
d 0,
! beyc,
1 1 Sy m
ol b () | )
cy 2bc,c,  cjc, m,
d3 -__1) ( - ! - szsx)
| "1 Lg¢ 2bcyc, cyc,)

IF d, > 0 THEN case 2 + false
ELSE case 3 « false

IF d, > 0 THEN case 3 « false
ELSE case 1 « false
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IF dy = 0 THEN case 1 « false
ELSE case 2 « false
IF case | THEN k —k_ + [0, —d5, d,]"
IF case 2 THEN k « k,, + [d5, 0, —d,]"
IF case 3 THEN k— k_, + [—d,,d,, 0]"

END (26)
After finding the optimal vector k the optimal vector fis computed using (16):
ret i (26B)
a

When developing the optimal solution, the criterion B = k; + k, + k3 was never
mentioned explicitly. B was implicitly considered as an increasing linear function of
k, so the solution also applies to the more general objective function:

B - alkl + a2k2 + ﬂsk;, ai > 0
or

B=a,fi+ayf+asf3,4,>0

In fact the solution applies to any objective function which is monotonically increas-
ing in k or f, so quite generally it can be said to minimize ‘the wire forces’ subject to
the constraints given in (17).

7. Application example

A system involving the developed expressions is shown in Fig. 4. Here Eqn. (12),
(11) and (5) are used to describe the transformations in the mechanical part of the
system, These are well defined direct expressions. The inverse expressions are calcu-
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Figure 4. Universal joint control system.
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lated in a real time computer, supporting a positional controller working in joint
coordinates. In Fig. 4 the state vector, [0, 07]", is estimated using (14), (17) and (18)
on a redundant set of measurements on the wires. The controller output is con-
verted into servo force reference using the algorithm (26).

8. Conclusion

This paper has pointed out the use of lower level coordinate conversion for one
special servo mechanism which illustrates problems concerning both non-linear
transmissions and redundancy.

Note that the velocity conversion expression (11) was inverted using a tradi-
tional pseudoinverse while the force/torque relation (12) was solved as a linear prog-
rammimg problem. The difference in solution methods reflects differences in nature
of the two problems at hand. The inversion method for the force expression is espe-
cially interesting since it solves a quite general class of optimization problems at the
same time.

Obviously such a set of transformations must be supported by a powerful com-
puter. For most applications however, it is recommended that simpler, but less accu-
rate, transformation expressions are used. In this case the given expressions will only
serve as a guide. It is of course also possible to avoid the problem by using kine-
matic structures that are simpler to describe mathematically but perhaps more
expensive to manufacture. This approach will become less attractive in the future
since the price of computing power is decreasing in relation to the price of mechani-
cal structures.
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