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Several methods for task space control of kinematically redundant manipulators
have been proposed in the literature. Most of these methods are based on a
kinematic analysis of the manipulator. In this paper we propose a control algo-
rithm in which we are especially concerned with the manipulator dynamics. The
algorithm is particularly well suited for the class of redundant manipulators con-
sisting of a relatively small manipulator mounted on a larger positioning part.

The main idea behind the algorithm is to augment the task space position
vector by a set of generalized coordinates for the positioning part, so that the
augmented task space position vector constitutes a set of generalized coordinates
for the manipulator. We then show how to choose a proper reference for the
positioning part. Feeback linearization and decoupling in the augmented task
space make it straightforward to develop a controller which distributes the high
frequency motion to the small manipulator and the low frequency motion to the
positioning part.

In a simulation experiment, this control algorithm performed significantly
better than controllers using generalized inverses of the manipulator Jacobian.

1. Introduction

Traditionally, robotic manipulators have been designed with a minimum
number of joints—to reduce the complexity of the control system—and with rather
large and heavy links—to ensure good positioning accuracy through the stiffness of
the arm.

Today, we can avoid these clumsy mechanisms by the use of advanced control
theory and high speed computers. Lightweight constructions with kKinematic
redundancy can be controlled through high speed motion with good positioning
accuracy and moderate power consumption.

This paper considers a redundant manipulator consisting of a small, fast (non-
redundant) manipulator mounted on a large, slow positioning part. Here we take
advantage of the redundancy to design a system with a large working area, high
bandwidth and moderate power consumption. The idea is to distribute the fast
motion to the small manipulator and the slow, gross motion to the positioning part.

Both the manipulator structure and the control system are inspired by the
human arm (Fig. 1). The upper arm and the forearm (and the body itself) can be
considered to constitute the positioning part, and the hand represents the small, fast
manipulator. This is easily illustrated by observing the process of handwriting. The
human arm has a large number of degrees of freedom: the shoulder is a 3 dof. joint,
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Figure 1. Human arm (the rotational axes are denoted z, - - - zg).

the elbow is a 2 dof. joint and the wrist and the hand have got a very large number
of joints and links.

The same principle applies to a manipulator mounted on a free swimming ROV.
Here, the submarine itself corresponds to the positioning part.

Redundant manipulators are also useful when there are obstacles in the working
area. In this case, redundant degrees of freedom may be required to position the end
effector without colliding with the obstacles (Khatib 1985).

1.1. Previous work

Industrial manipulator systems have usually been programmed by a teach-in
procedure where the manipulator arm is led through the actual task by a human
operator. The joint displacements are sampled and recorded, and later used as a
servo reference when copying the operations. The tracking is then done by using a
PID controller for each servo loop.

In many applications, the reference trajectory for the manipulator is specified in
terms of task coordinates which are the position and orientation of the end effector
in a task-defined coordinate system. The conventional way of controlling a manipu-
lator when the reference trajectory is given in the task space, is to transform the task
space reference to the joint space. A controller is then designed to track this refer-
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ence with a4 PID controller at each joint (Luh 1983) or by means of the computed
torque technique (Bejczy 1974).

This solution cannot be applied to redundant manipulators, as there is no
unique position transformation from the task space to the joint space for this type
of manipulator. In most previous work on redundant manipulators, this problem
has been solved by using the manipulator Jacobian to transform the task space
velocity or acceleration to the joint space. Since the Jacobian matrix of a redundant
manipulator is rectangular and not invertible, generalized inverses of the Jacobian
have been used (Klein and Huang 1983) and (Klein'and Chirco 1987). By using an
appropriate generalized inverse, a performance index that is quadratic in joint velo-
cities is minimized. However, when this technique is used, the manipulator may
reach singularities or lose degrees of freedom when the joints reach their limit
(Baillieul 1985). A vector in the null space of the Jacobian has been added to the
joint velocity to improve the result that is obtained from using generalized inverses.
This null vector has been used to avoid singularities (Yoshikawa 1985) and mini-
mize actuator torques (Hollerbach and Suh 1985). The use of generalized inverses is
a purely kinematic approach which does not take the dynamic properties of the
redundant manipulator into account. Because of this, a well coordinated use of
control variables or small control deviations is not necessarily the result.

Salisbury and Abramowitz (1985) discussed redundant manipulators with a
small, fast manipulator on a positioning part, and investigated a very simple mecha-
nism of this kind. A planar two-link mechanism with rotary joints is used to posi-
tion the end of link 2 in one direction. Here the motion of the mechanism is divided
into external motion and internal or null motion in order to obtain a high band-
width with moderate power consumption. The external motion is controlled with a
high bandwidth, while the internal motion which maintains a desirable configu-
ration has a lower bandwidth.

In a recent work by Egeland (1987) the control algorithm proposed in this paper
was successfully implemented on an industrial manipulator system. Experiments
were carried out on the 8 degrees of freedom Trallfa TRACS spray painting robot.

The proposed control system has previously been presented in Lunde, Egeland
and Balchen (1985).

1.2. Outline of the paper

We consider the control of a particular class of redundant manipulators, i.e. a
small non-redundant manipulator mounted on a positioning part.

A control system which is particularly suited for this class of manipulators is
presented. In this control system the task space position vector is augmented in such
a way that the augmented task space position vector contains a set of generalized
coordinates of the redundant manipulator. Singularities and the loss of degrees of
freedom are avoided by specifying a suitable augmented task space reference.
Advantage is taken of the good dynamic characteristics of this class of manipulators
by using feedback linearization and decoupling in the augmented task space.

The control system is then applied to a planar four-link redundant manipulator,
and the performance of the control system is compared to the performance of con-
trollers using a generalized inverse of the manipulator Jacobian.




162 E. Lunde et al.

Figure 2. Redundant manipulator.

2. Basic definitions
The dynamic model of a robotic manipulator is multi-variable, non-linear and

highly coupled. Similarly, the kinematic model can also be complex, especially in the
case of redundant degrees of freedom.

2.1. Dynamics

The dynamic equation for a manipulator is usually written (Luh, Walker and
Paul 1980)

M(g)g = nlg, §) + (M

where ¢ is the vector of the n joint displacement and z is the vector of n generalized
forces. M(q) is the inertia matrix. The vector n(g, §) contains terms due to Coriolis,
centrifugal, gravitational and viscous friction forces.

2.2. Kinematics

The relation between the joint space coordinates g and the task space position p
18 in general non-lineart

p=Hhg) (2
where dim ¢ = nand dim p = m.
The inverse transformation

g=h""(p) 3)

will exist only in the non-redundant case, ie. when n =m, and—because of its
complexity—it will be practical to solve only when n is small. For a kinematically
redundant manipulator (n > m) the system (3) will be underdetermined. This means
that given a task space position p, there are a corresponding infinite-number of joint
space positions g. This is illustrated in Fig. 2 for a simple planar manipulator, where
we consider only the xy-position of the tip of the manipulator arm.

The velocity transformation can be written

p=Jg}q @

1 In this paper we consider the task space position vector p to represent both the position
and the orientation of the end effector.
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where the Jacobian matrix is defined by

The inverse velocity transformation will be well-defined only when the Jacobian
matrix is square (n = m) and non-singular, i.e. J ~ '(g) exists.

2.3. Control

Accurate and fast manipulator control is not straightforward because of the very
complex nature of the dynamics (1). This means that calculating a proper control t
will be time-consuming, even on a very fast computer.

Most tasks are most naturally defined in the task space. Hence, using redundant
manipulators, the tracking of a task space reference r also represents a considerable
problem as we need to transform the reference itself, the control deviation (v — p), or
some task space control vector into the joint space, in which the real actuators are
controlled.

3. Feedback linearization and decoupling. Review.

By choosing a proper control vector t, the model (1) can be transformed into a
system of n decoupled double integrators. This wellknown technique has previously
been used by several authors, and is known by different names such as ‘ Resolved
Acceleration Control’ (Luh et al. 1980) and ‘The Computed Torque Technique’
(Bejczy 1974).

We define a joint space state vector z = [z], 231" where z, = g and z, = §. The
control vector

© = M(qu — nlg, §) 5)
applied to the model (1) gives the system of n decoupled double integrators in joint
space

g=u (6)
where u is a transformed control vector. The state space model then becomes
2 = 3z
f,=u (7

Similarly, we can obtain an equivalent model in the task space: then we choose
the state vector z = [z7, 2717, where Z, = pand %, = p. From (4) we develop

P=Joa+J@q ®)
Using (1) and (8) we find the control vector
© = M(g)J (@) — Jig}g] — nlg, 4) ©)

which gives the linearized and decoupled system
bp=1u (10)
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and the state space model

L, =1 (1)

A proper controller for the double integrators (6) or (10), may easily be designed
using linear control theory. In this paper linear quadratic optimal control is used.

4. Augmentation of task space

There is no unique transformation from a task space trajectory to a correspond-
ing joint space trajectory for a redundant manipulator. The problem of tracking a
task space reference trajectory with a redundant manipulator can be divided into
two areas, first the kinematical problem of avoiding singularities and the loss of
degrees of freedom, and second the control problem of following the trajectory
without excessive input generalized forces.

4.1. Kinematics

In order to avoid singularities and the loss of degrees of freedom, we must be
able to control the configuration of the redundant manipulator arm. For a non-
redundant manipulator mounted on a positioning part, the configuration is given by
the task space position p and the generalized coordinate p of the positioning part
(Fig. 3).

We now define an augmented task space position vector

i

where dim p, = dim g = n, and the elements of p, constiiute a set of generalized
coordinates for the manipulator. The positional transformation can be expressed:

Pa=hyq (12)
Since dim p, = dim g, there is an inverse transformation
a=hy'(pa) (13)

There must be a finite number of solutions of (13), but when taking the joint limits
into account usually only one solution remains. Based on (12) we define the aug-

Figure 3.  Augmented task space position vector of a redundant manipulator.
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mented Jacobian matrix

Py
Jg) =7 14
which is a n x n matrix, and therefore invertible, except in singular points. This
means that given the augmented task space velocity p,, we find the joint space
velocity from

a=J."@p. (15)

From any given reference p,.,, we now need to define a reference p, of the
positioning part. This should be done so that singularities and the loss of degrees of
freedom are avoided and so that the dynamical properties of this class of manipula-
tors are utilized. An obvious choice of p, ., will be one that gives the outer small
manipulator a configuration with good manipulating abilities, i.e. close to the centre
of its working area.

If the positioning part has three degrees of freedom and is used to give the base
of the outer manipulator three transitional degrees of freedom, p..; in many cases
can be chosen as

Dreg =dig — dy (16)

Here d,,, is the translational part of p,; and d, is a vector which is constant relative
to the base of the outer non-redundant manipulator. d,, is the translational position
of the centre of the working area of the outer non-redundant manipulator with
respect to its base. If the positioning part has one or two degrees of freedom, p,.¢ is
chosen as a subset or a projection of (16); depending upon where the singular points
of the positioning part are situated (Egeland 1987).

This choice of the reference p,; will, as long as p, . is not approaching the limit
of the working area of the manipulator, avoid singularities and the loss of degrees of
freedom. However, p,, can also be chosen in such a way that it minimizes a suitable
performance index, e.g. the time used to complete the task.

4.2. Control

If an augmented task space reference p, ¢ is specified, a corresponding joint
space reference ¢, can be found from the inverse transformation (13). A controller
may then be developed in the joint space.

However, for the particular class of redundant manipulators which is considered
in this paper, there are serious drawbacks to this solution. If the hand is to be
positioned accurately, all of the joint displacements g;, i = 1, ..., n, must be close to
the corresponding references g, ;. This means that for a small, fast non-redundant
manipulator mounted on a slow positioning part, the positioning part will limit the
bandwidth of the system. This method of controlling the redundant manipulator
will also require large input generalized forces in the joints. This is because high
accelerations are required in the joints of the positioning part, and these joints move
high inertias.

This drawback indicates that we should develop the controller in the task space.
Even though we want to track the reference p,. accurately, we can accept some
deviation from the reference p; of the positioning part. This means that we should
be able to give the redundant manipulator a high bandwidth and a large working
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area by distributing the high frequency motion to the outer, small manipulator, and
the low frequency motion to the slow (and power consuming) positioning part.
The linearizing and decoupling control is found by (9):

T = Mgl "(@)[u — J (9)q] — nlg, §) (17
The state space model is then
X, =x,
Iy=u (18)

where x, = p,, x, = p, and u is the control vector transformed into the augmented
task space.

We now develop a controller for the system (18) using linear quadratic optimal
control theory (Athans and Falb 1966). The performance index is chosen as

T
V= lim % (Ax"QAx + u” Pu)dt (19)
T Li]
where x = [x], x7]", Ax = x — x,¢, x,. is the state reference, Q = diag (g,,, ..
q2n, Zn) and P = diag (pll’ sty pnu)

High accuracy is desired for the tracking of the task space reference. Therefore,
the weights g; corresponding to the position deviations in task space should be
high. The tracking of the reference for the positioning part need not be very accu-
rate, and therefore the weights g;; corresponding to the position deviations of the
positioning part are moderate. The resulting feedback control for the system (18)
with the performance index given by (19) is then

-

U = Gi AX; + Gign AXi 4 + Ugy (20)
where g; = —\/ (9:i/Pw)
Gien =~/ Gl P) + Gini40/P3)
Uoi = Xres, i4n

Le. the last term, u,,, represents feedforward from the desired acceleration. Integral
action may be included.

5. Use of generalized inverses

For a kinematically redundant manipulator the dimension of the joint space is
greater than the dimension of the task space:

dim(g)=n>dim @) =m

Consequently, the Jacobian matrix J(g) is rectangular, and there is no unique
inverse velocity transformation

g=J"YqWp
This is the underdetermined case.

A rectangular n x m matrix A does not have an unique inverse 4~ !, but it is
possible to find a generalized inverse B so that

AB=1, (n>m) @n




Kinematically redundant robotic manipulators 167

In fact, there is an infinite number of matrices B with the property (21).
The most commonly used generalized inverse is the pseudoinverse, or the
Moore-Penrose inverse (Ben—Israel and Greville 1974). For n > m this is

Jr=JTgan (22)
This can easily be deduced by minimization of the criterion function
H@) = 44"0q4 (23)
with Q = I, and subject to the constraint
P=Jgaq (24)

ie. use of a pseudoinverse corresponds to an instantaneous minimization of the
{quadratic) joint velocities. The inverse transformation is then

qg=J"p (25)

A general solution to (24) can be found by adding a null vector to the specific
solution (25) (Klein and Huang 1983)

g=J"(gp+ 1 — T (@J@]z (26)
An arbitrarily chosen vector z is projected into the null space of J(g), through the
matrix [I — J*J]. (Notice that adding the null vector g, = [I — J *(¢)J(¢g)]z does

not affect the task space velocity vector p calculated by (24)). The common solution
is then to choose z to optimize a criterion g(g). When maximizing we choose

z = Vylg)
The manipulability measure was introduced by Y oshikawa (1985a)
wg) = \/det [J(@)J"(@)] (27

When wi(g) approaches the maximum value, the manipulator approaches a configu-
ration with good kinematical properties, i.e. avoids singular configurations. We then
choose

7 =0oVw(g) (28)

where o is a positive gain constant.
Klein and Chirco (1987) investigated the criterion

9lg)=(g—9)"q—q.) (29)

where g, is a desired joint position, i.e. one specific configuration where the manipu-
lator has good properties with respect to the avoidance of singularities etc. Other
choices of the vector z have been proposed (Klein and Huang 1983), (Liegeois 1977),
but will not be considered here.

The solutions to the inversion problem have been based so far on pure kine-
matical considerations. If we want to take the dynamical characteristics of the
manipulator into account, one approach is to choose the weight matrix 0 = M(g) in
the criterion function (23), which now represents the kinematic energy of the
systems. Minimization of (23) gives the generalized inverse

JE=M UM gH! (30)

M(g) is the inertia matrix.
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However, in all cases the optimization is instantaneous, the opposite of optimal
control theory where we consider system behaviour over a time interval. The effect
of a generalized inverse in a control system is difficult to analyse, and may give
non-optimal behaviour (as will be illustrated in the next section).

In the non-redundant case (n = m) all generalized inverses reduce to the ordinary
inverse (J* = J~'). When the manipulator has too few degrees of freedom (n < m),
some tasks are impossible to perform; some configurations in the task space are
impossible to realize. In this case there is an approximate generalized inverse similar
to the pseudoinverse of the redundant case.

Let us turn to the controller design when using generalized inverses. According
to the controller algorithm outlined in the previous section, we develop the control-
ler in the task space. In § 4 high and low frequency motion was distributed by
decoupling in the augmented task space. In this case the joint motion will depend
on the generalized inverse and the choice of null vector.

The control vector ¥ might be found by optimal control as in the previous
section, but in this case we only control the position of the end effector p.

We combine (9) and (26) into a task space linearizing and decoupling control

T = M(@){J " (@u — J@7] + [ - T (@) (@]} — nlg, §) (31)

where the pseudoinverse solution is obtained by choosing z = 0. Now u is the task
space control vector of the m decoupled double integrators.

In the non-redundant case (n = m) the algorithms (17) and (31) both reduce to
the resolved acceleration control of Luh et al. (1980).

6. Simulation experiments

In this section we will present a simple simulation experiment comparing the
following three control algorithms presented in the previous sections:

(1) The augmented task space approach (17).

(2) The algorithm using the generalized inverse based on the manipulability

measure, (28) and (31).

(3) The pseudoinverse algorithm, i.e. (31) with z = 0.
In the simulation experiments the idealized, planar, four-link manipulator shown in
Fig. 4 was studied. The four joint angles are denoted by g, g,, g5 and g,. The tip of

the manipulator arm were to track a position reference in the horizontal xy-plane.
For this task the manipulator was kinematically redundant.

Y, M

10kg 1 =10m
10kg 1 =1.0m
2kg 1 =02m
Zkg 1, =0.2m

-

L)

w

‘BUENE_E
non

-

Figure 4. Planar manipulator.
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Figure 5. Controller, case 2.

Feedback linearization and decoupling in task space was used in all three cases.
However, the term J(g)§ was not calculated as it was assumed to be negligible. The
controllers for the decoupled double integrators were found by linear quadratic
optimal control as given by (19) and (20).

The dimensions of the state vector x and the control vector # will be different in
the augmented task space algorithm and in the generalized inverse algorithms.
Therefore the weight matrices P and Q will also have varying dimensions, they were
chosen as follows:

1) dimx =8, dimu=4
Q = diag (10000, 10000, 100, 100, 200, 200, 2, 2)
P = diag (1, 1, 10, 10)
(2)and 3) dimx =4, dimu =2
Q = diag (10000, 10000, 200, 200)
P =diag (1, 1)

In case 2, the null vector gain a (28) was tuned to o = 10. The controller structure
for case 2 is shown in Fig. 5, where feedforward from the desired acceleration is
included. The controllers for cases 1 and 3 will be quite similar to this, the differ-
ences are given by (17) and (31) withz = 0.

The augmented task space position vector p, = [p”, pT]" was chosen as illus-
trated in Fig. 4. The two inner links constitute the positioning part of the manipula-
tor, p is therefore the position of joint 3. The reference p,, was given, and the
reference for the positioning part was calculated as

Peet = Pret — C3P3
where p2 = [0-2828, 0]", and C?9 is the rotational transformation matrix from coor-
dinate system 2 to the base system O:
o - [oos (@ +4qz) —sin (g, + qz)]
sin (¢, + q2) cos (¢, + 4,)

This will position the outer small manipulator in a configuration avoiding singu-
larities. A zero velocity reference was used for the position part to give it a smooth
movement.
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In the simulation experiments the manipulator was to track a sinusoidal refer-
ence moving with constant velocity in the y-direction:

1-7 + 005 sin 2nt
Pell) = [ 0-1¢ ](
Initially, the manipulator was at rest.

The simulation results are shown in Figs. 6, 7 and 8. Fig. 6 shows the angles of
joints 1 and 3 for the first 5 seconds of the simulation. Fig. 7 shows the torques of
joints 1 and 3. The responses of joints 2 and 4 are omitted because they are quite
similar to the responses of joints 1 and 3 respectively.

It is clear from the results that the distribution of the high frequency motion to
the outer joints and the low frequency motion to the inner joints functioned as
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Figure 7. Joint torques.

proposed. For the augmented task space approach we see that joint 1 moved with
almost constant speed and a very low actuator torque while joint 3 had a high
amplitude sinusoidal motion with a moderate torque being applied to the joint.

With the pseudoinverse solution, case 3, the situation is reversed. Now, both the
fast and the slow motion was executed by the inner joints, while the two outer joints
hardly moved at all. In fact, this is quite natural since the pseudoinverse minimizes
the sum of the quadratic joint velocities: The inner joints will usually be situated
farthest away from the tip of the manipulator arm, and will therefore realize any
given task space velocity with lower joint velocities than the outer joints.

Case 2, the algorithm based on the maximization of the manipulability measure,
gave a response analogous to the pseudoinverse. However, here the additional null
space motion also gave an additional energy consumption, ie. required higher
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torques. This null space motion optimizes a kinematical criterion function (27)
without considering the manipulator dynamics: it forces the manipulator arm into a
configuration which avoids singularities. In the current simulation example the
manipulator was given an initial configuration far away from any singularlity so
that in this example the increased energy consumption did not improve the tracking
accuracy.

The difference in behaviour using the three algorithms can be illustrated by cal-
culating the energy consumption

5
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Figure 8. Tracking errors.
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which gave the following results

(1) E=079 Ws
@) E=11-1Ws
(3) E=134Ws

Thus a reasonable proposition is: the better the control algorithm, the lower the
energy consumption, provided of course that the tracking errors are of the same
magnitudes.

Tracking errors in each of the three cases are shown in Fig. 8. The accuracy of
the manipulability measure algorithm was clearly inferior to the pseudoinverse case,
even though both seemed to be accurate within reasonable limits. The steady state
error that occurred when using the augmented task space approach was probably
due to the omission of the term

Jigh = =2 gy G
q

For any real manipulator the maximum actuator torques available will be
limited. This means that when using the generalized inverse methods, a variety of
tasks (i.e. high frequency references) will saturate the actuators of the inner joints,
causing a considerable tracking error. Using the augmented task space approach the
same tasks can be executed with good tracing accuracy and moderate energy con-
sumption.

Notice that the preceding simulation experiments were carried out without
deliberately favouring any properties of the different algorithms. It would have been
quite simple to construct an example where the pseudoinverse was driven close to a
singular point. The augmented task space algorithm would have avoided this singu-
larity, and the differences between the responses would have become extremely large
in favour of the latter.

7. Conclusion

An algonthm for dynamic control of redundant manipulators has been pre-
sented. The algorithm has been used for the control of manipulators consisting of a
small non-redundant manipulator mounted on a larger positioning part. By a suit-
able choice of controller parameters, high and low frequency motion is distributed
to the fast and slow parts of the manipulator. Singularities and the loss of degrees of
freedom are avoided for simple manipulators by generating a reference for the posi-
tioning part on-line.

Even though the manipulators considered are restricted to a certain construc-
tional class, we believe that the proposed control principle is fairly general because
most redundant manipulators will have characteristics from this class. At least the
inner links and actuators will always be dimensioned to carry the weight of the
outer part of the arm.

Simulation experiments with a simple four-link planar manipulator showed that
the control algorithm functioned as proposed. The experiments demonstrated that,
for this class of manipulators, the augmented task space approach carried out the
tasks with considerably lower energy consumption (i.c. lower torque for the inner
Jjoints) than the generalized inverse approaches. Also the bandwith of the system will
be higher with this control algorithm.
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The investigation carried out by Klein and Chirco (1987) with the criterion (29),
seems to confirm the drawbacks of the generalized inverse methods as demonstrated
in this paper.
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